JP3406696B2 - Method for producing high thermal conductivity carbon fiber - Google Patents

Method for producing high thermal conductivity carbon fiber

Info

Publication number
JP3406696B2
JP3406696B2 JP19458394A JP19458394A JP3406696B2 JP 3406696 B2 JP3406696 B2 JP 3406696B2 JP 19458394 A JP19458394 A JP 19458394A JP 19458394 A JP19458394 A JP 19458394A JP 3406696 B2 JP3406696 B2 JP 3406696B2
Authority
JP
Japan
Prior art keywords
fiber
pitch
carbon fiber
diameter
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19458394A
Other languages
Japanese (ja)
Other versions
JPH0841730A (en
Inventor
寛之 田所
豊 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19458394A priority Critical patent/JP3406696B2/en
Publication of JPH0841730A publication Critical patent/JPH0841730A/en
Application granted granted Critical
Publication of JP3406696B2 publication Critical patent/JP3406696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は平均繊維径が4〜8μm
の高熱伝導率炭素繊維の製造方法である。本発明で得ら
れた炭素繊維は耐熱衝撃性、寸法安定性を要求される宇
宙用材料、航空機用材料、自動車のブレーキ用材料等に
広く使用される。 【0002】 【従来の技術】現在、炭素繊維はポリアクリルニトリル
(PAN)を原料としたPAN系炭素繊維とピッチを原
料としたピッチ系炭素繊維が製造されているが、現状で
は高性能炭素繊維として主にPAN系炭素繊維が用いら
れている。 【0003】しかしながら、市販されているPAN系炭
素繊維の熱伝導率は100W/mKよりも小さいため、
耐熱衝撃性、寸法安定性を要求される分野での使用は制
限される。 【0004】一方、メソフェースピッチを原料とするピ
ッチ系炭素繊維は、一般的にPAN系炭素繊維に比べ
て、高熱伝導率を示すと言われているが、市販のピッチ
系炭素繊維ではAMOCO社製THORNELP―12
0が高熱伝導率を示すが、700W/mKより小さいも
のである。 【0005】特開平5―163619号公報には、30
00℃以上で焼成することにより、黒鉛結晶子の層面方
向の広がりLaが1000Åより大きく、電気比抵抗が
1.1μΩmより小さく、1100W/mKより大きい
熱伝導率をもつ炭素繊維の製造方法が開示されている。 【0006】しかし1100W/mKより大きな熱伝導
率をもつピッチ系炭素繊維は極めて高弾性となるため繊
維糸条は剛直となり繊維のハンドリング時に繊維糸条が
折れたり、毛羽が多量に発生する等の問題がある。 【0007】このため繊維のハンドリングが容易である
細径な高熱伝導率炭素繊維が求められるが、その製造方
法は報告されていない。 【0008】特開平4―163319号公報には、ピッ
チ繊維を不融化し、酸素含有雰囲気中で延伸熱処理、延
伸予備炭化処理し、不活性ガス雰囲気下中で延伸しなが
ら炭化を行って熱伝導率、圧縮強度の高い炭素繊維の製
造方法が開示されている。 【0009】しかしながら、延伸処理を施してもPAN
系炭素繊維に匹敵するハンドリングが容易である繊維径
8μm未満である細径な高熱伝導率炭素繊維の製造方法
は報告されていない。 【0010】またJ.Mater.Res.,Vol.
5,No3,P570―577,Mar 1990の
「種々の温度で焼成したピッチ系炭素繊維の構造および
電気特性」の中では、ピッチ繊維の繊維径を変えて、不
融化、炭化を行い、種々の温度で焼成した結果、繊維径
の大きいピッチ繊維から得られた炭素繊維は、ピッチ繊
維中のメソフェースのドメインの平均サイズが大きくな
るため黒鉛化した際の黒鉛化性が繊維径の小さいものに
比べ高くなることを報告しており、従って細径な炭素繊
維から高熱伝導性の炭素繊維が得がたいことが推察され
る。 【0011】 【発明が解決しようとする課題】上記のように、従来の
技術から細径な炭素繊維から高熱伝導性の炭素繊維が得
がたいことが推察されるが、本発明者等は熱伝導性の高
い炭素繊維を作るために鋭意検討した結果、ある特定の
方法で製造された細径な炭素繊維が、従来の知見と異な
り繊維径の大きな炭素繊維に比べ黒鉛化性が高く、高熱
伝導な炭素繊維が得られることを見いだし、本発明に到
達した。 【0012】本発明の目的は繊維径が4〜8μmの高熱
伝導率炭素繊維の製造方法を提供するものである。 【0013】 【課題を解決するための手段】本発明は光学的異方性の
メソフェースピッチを溶融紡糸し、不融化、黒鉛化処理
して炭素繊維を製造する際に、メソフェースピッチを、 A)導入孔から吐出孔に至る形状が90〜150度の角
度のアプローチ部で縮流し、 B)アプローチ部終端で一旦平坦部とし、 C)平坦部に設けたキャピラリー径が50〜110μm
である円形断面の吐出孔を有する紡糸ノズルを通過させ
て、紡糸を行い、繊維径5〜11μmの細径ピッチ繊維
を得、炭化した後、不活性ガス雰囲気下で黒鉛化するこ
とを特徴とする、繊維径が4〜8μmの高熱伝導率炭素
繊維の製造方法である。 【0014】以下、本発明の内容を詳細に説明する。 【0015】本発明の炭素繊維の出発原料であるピッチ
は、コールタール、コールタールピッチ等の石炭系ピッ
チ、石炭液化ピッチ、エチレンタールピッチ、流動接触
触媒分解残査から得られるデカントオイルピッチ等の石
油系ピッチ、あるいはナフタレン等から触媒などを用い
て作られる合成ピッチ等、各種ピッチを包含するもので
ある。 【0016】本発明の光学的異方性のメソフェースピッ
チは、前記ピッチを従来公知の方法でメソフェースを発
生させたものである。 【0017】メソフェースピッチは、紡糸した際のピッ
チ繊維の配向性が高いものが望ましく、このためメソフ
ェース含有量は60%以上、好ましくは80%以上、さ
らに好ましくは90%以上含有するものが望ましい。 【0018】なお、メソフェース含有量は60%未満で
あると光学的異方性量が少ないため引張強度が低くなり
好ましくない。 【0019】また本発明で用いるメソフェースピッチは
軟化点が200〜400℃、好ましくは250℃〜35
0℃のものがよい。 【0020】軟化点が200℃未満のピッチはその調整
が困難であり、また軟化点が400℃超のピッチを用い
ると紡糸温度を高温設定する必要が生じるため、安定し
た紡糸が行えなくなる。 【0021】ピッチ中に3μm以上の固形異物が存在す
ると紡糸時に糸切れが頻発することとなるので、得られ
たピッチは紡糸に先だって絶対濾過精度が3μm以下の
フィルター、あるいはこのフィルターと同等あるいはそ
れ以上の濾過精度をもつ濾過方法によりピッチ中の異物
を除去しておくことが望ましい。 【0022】高熱伝導率ピッチ系炭素繊維を製造するた
めの様々の検討の結果、黒鉛化性を高めることにより高
熱伝導率を得るには、ピッチ繊維状態における分子の繊
維軸方向への配向性がよいものを紡糸することが有効で
あることがわかった。 【0023】本発明では前述のピッチからピッチ繊維を
紡糸する際に、図1に示すように導入孔から吐出孔に至
る形状(θ1)が90〜150度の角度のアプローチ部
で縮流し、アプローチ終端で一旦平坦部(θ2)とし、
平坦部に設けた円形断面の吐出孔を通過させ、キャピラ
リー径(D3)が50〜110μm、吐出口長さ(L
2)が0.07〜0.17mmである紡糸ノズルを用い
て吐出口のピッチ粘度が100〜1000poise、
好ましくは200〜800poiseでさらに好ましく
は400〜800poiseで繊維径5〜11μmの細
径のピッチ繊維をつくることによって、繊維軸方向への
配向性の高いピッチ繊維が得られ、かつ高引張弾性率、
高引張強度をもつ高熱伝導率炭素繊維が得られる。 【0024】しかしながら炭素繊維においてラジアル成
分は軸方向の亀裂につながり、さらにこの亀裂は引張損
傷の生じやすい箇所になるため、従来のノズルでは高強
度化に限界があった。 【0025】従来のアプローチ終端で平坦部を有しない
円形断面の吐出孔の紡糸ノズルを用いてピッチ繊維を
得、不融化、炭化、黒鉛化を行い得られた炭素繊維の横
方向の断面を走査電子顕微鏡で観察すると、繊維表層に
少なくとも1.5μmから2.5μmはラジアル構造を
持ち、繊維内部はランダムあるいはオニオン構造を持
ち、複数の構造をとり、ある程度の高強度を保持するこ
とができる。 【0026】ところが、本発明で用いるノズル構造、す
なわち導入孔から吐出孔に至る形状が90〜150度の
角度のアプローチ部で縮流し、アプローチ終端で一旦平
坦部としたのち、円形断面の吐出孔を持つ紡糸ノズルを
用いると繊維表層のラジアル成分が1.5μm以下、望
ましくは1.0μm以下になり、ラジアル成分が少なく
なる。 【0027】本発明に用いるノズルはこのように、表層
部のラジアル成分がより少なくなるため、さらに高引張
強度を保持することができる。 【0028】アプローチ角度θ1は90度未満では導入
口長さが長くなり不適切であり、150度超ではアプロ
ーチ終端で平坦部を設ける効果が得られ難くなる。 【0029】アプローチ角度θ1をこのように決定され
るので、また優れた引張強度を得るためには導入口長さ
L1は3〜10mm、好ましくは4〜6mmにすること
が好ましく、導入口径D1が0.5〜10mm、好まし
くは1.2〜5mmであり、導入口での滞留時間を1〜
400秒、好ましくは4〜200秒とすることが好まし
い。 【0030】導入口径が0.5mm未満あるいは10m
m超、同様に滞留時間が1秒未満あるいは400秒超で
は優れた強度の繊維を得ることができない。 【0031】また、平坦部の径D2は導入口径D1の
0.8倍以下、吐出口径D3の1.5倍以上が望まし
く、このときに本発明の効果を最も得ることができる。
吐出孔の断面は引張強度の向上をもたらすためには円形
のものを用いたとき最も効果を発揮する。 【0032】また、キャピラリー径が50μm未満で
は、キャピラリーの加工が非常に困難となったり、ノズ
ルの整備が煩雑となり、110μm超では、細径なピッ
チ繊維の紡糸が不安定となり好ましくない。 【0033】また吐出口長さ0.07mm未満では安定
した紡糸が行えず、0.17mm超では繊維表層部のラ
ジアル部分が増加することが推測され、そのために高強
度を保持できないことが考えられるため、キャピラリー
径と吐出口長さの比1.5〜2の範囲内が望ましい。 【0034】ピッチ粘度が100poise未満では、
極度に粘度が低いため、断糸が増加し紡糸を行うことが
殆ど不可能となり、1000poise超では、紡糸時
に糸切れが起きると他の糸もしくはノズル面に付着し、
紡糸が不安定となり好ましくない。 【0035】また、4〜8μmのハンドリング面で優位
な細径炭素繊維を得るためには、ピッチ繊維の繊維径
を、ピッチ繊維を不融化、炭化、黒鉛化することにより
繊維径の収縮が生じる分を予め考慮して、5〜11μm
にしなければならない。 【0036】つぎにピッチ繊維は、酸化性ガス雰囲気
下、通常100〜350℃、好ましくは130〜320
℃で、通常10分〜10時間、好ましくは1〜6時間、
不融化処理を行う。 【0037】酸化性ガスとしては酸素、空気あるいはこ
れらに二酸化窒素、塩素等を混合したガスが用いられ
る。不融化温度が100度未満ではピッチの反応性が低
くなり、また350度超では過度の酸化が行われ、引張
強度が低下してしまう。 【0038】また不融化時間は10分未満では反応が未
達となり、10時間超では過度に不融化されてしまい好
ましくない。不融化処理した繊維は窒素、アルゴン等の
不活性ガス雰囲気下で炭化、黒鉛化処理を通常1秒〜1
0時間、好ましくは10秒〜6時間行い、引張弾性率1
00GPa〜1000GPa、引張強度2.0GPa〜
5.0GPaの炭素繊維を得、黒鉛化することにより、
高引張弾性率、高引張強度をもち、且つ3000℃以上
で黒鉛化すると1100W/mKより大きい熱伝導率を
有することを特徴とする繊維径が4〜8μmのハンドリ
ング性に優れた細径ピッチ系高熱伝導率炭素繊維が得ら
れる。 【0039】黒鉛化処理した繊維の、黒鉛化の進行度合
いは、広角X線回折から求めた積層厚みLc002、結
晶子の大きさLa110、層間隔d002で評価した。 【0040】積層厚みLc002は炭素結晶中の002
面の積層の厚さを、La110は結晶子の大きさを、層
間隔d002は結晶の002面の層間隔を示し、Lc0
02は50〜500Å、La110は100〜1000
Å以上、d002は3.352〜3.450Åの値を示
す。 【0041】Lc002、La110が大きいほど、ま
たd002が小さいほど黒鉛化性が高いと判断でき、格
子欠陥による伝導電子の散乱が抑えられて高熱伝導率を
示す。 【0042】積層厚みLc002、結晶子の大きさLa
110、層間隔d002は繊維を粉末状にしたのち、標
準シリコンと混合して試料とする粉末法を用い、002
面、110面の回折線から学振法「人造黒鉛の格子定数
および結晶子の大きさ測定法」により求めた。 【0043】また熱伝導率は、炭素繊維を直径10m
m、厚さ3mm〜6mmの円柱状一方向炭素繊維強化プ
ラスチックにし、理学電気(株)製レーザーフラッシュ
法熱定数測定装置PS―7型を用いて、比熱および熱拡
散率を測定し、次式により算出した。 【0044】 【数1】λ=Cp×α×ρ/Vf 【0045】ここでλは炭素繊維の熱伝導率、αは炭素
繊維の熱拡散率、Cpは一方向炭素繊維強化プラスチッ
クの絶対比熱、ρは密度、Vfは一方向炭素繊維強化プ
ラスチック中に含まれる炭素繊維の体積分率である。 【0046】マトリックス樹脂の熱伝導率は、炭素繊維
の熱伝導率に対して無視できるほど小さいので炭素繊維
の熱伝導率はλで求められる。なお、測定は室温(25
℃)で行った。 【0047】以下、さらに本発明を明確にするために、
実施例、比較例を用いて説明する。 【0048】 【実施例】 【0049】 【実施例1】原料としてコールタールピッチを用い、触
媒存在下で直接水素化を行い、この水素化ピッチを減圧
化500℃で熱処理したのち、低沸点成分を除きメソフ
ェースピッチを得た。 【0050】このピッチは軟化点304℃、トルエン不
溶分80重量%でメソフェース含有量が94%であっ
た。このメソフェースピッチを用いて、図1に示すよう
な導入孔から吐出孔に至る形状が120度の角度のアプ
ローチ部で縮流し、アプローチ終端で一旦平坦部とし、
キャピラリー径0.10mm、吐出口長さ0.15m
m、平坦部長さ0.8mmのノズルを用い、吐出口のピ
ッチ粘度が450ポイズになるように紡糸し、繊維径1
0μmのピッチ繊維を得た。 【0051】このピッチ繊維を、空気に二酸化窒素ガス
を5体積%、酸素ガスを10体積%添加した酸化雰囲気
下で、150℃から310℃まで1℃/minで昇温し
不融化繊維を得た。この不融化繊維を390℃まで昇温
し、50min炭化し、炭化繊維を得た。 【0052】つぎにこの炭化繊維を3200℃の温度
で、3時間黒鉛化処理を行い炭素繊維を得た。 【0053】この炭素繊維は、繊維径7.4μmで、引
張弾性率900GPa、引張強度3.3GPa、X線構
造パラメータがLc002が450Å、La110が9
10Å、d002が3.364Å、熱伝導率1180W
/mKであり毛羽の発生は極めて少なかった。 【0054】 【実施例2】実施例1のピッチを用いて図1に示すよう
な導入角135度、キャピラリー径0.09mm、吐出
口長さ0.14mmのノズルを用い、吐出口のピッチ粘
度が600ポイズになるように紡糸し、繊維径9.5μ
mのピッチ繊維を得た。 【0055】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。 【0056】この炭素繊維は、繊維径6.8μmで、引
張弾性率980GPa、引張強度4.0GPa、X線構
造パラメータがLc002が480Å、La110が9
70Å、d002が3.359Å、熱伝導率1230W
/mKであり毛羽の発生は極めて少なかった。 【0057】 【比較例1】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.10mm、吐出
口長さ0.15mmのノズルを用い、吐出口のピッチ粘
度が450ポイズになるように紡糸し、繊維径10μm
のピッチ繊維を得た。 【0058】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。 【0059】この炭素繊維は、繊維径7.4μmで、引
張弾性率900GPa、引張強度2.8GPa、X線構
造パラメータがLc002が420Å、La110が7
60Å、d002が3.365Å、熱伝導率1070W
/mKであり毛羽の発生は多かった。 【0060】 【比較例2】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.10mm、吐出
口長さ0.15mmのノズルを用い、吐出口のピッチ粘
度が600ポイズになるように紡糸し、繊維径13μm
のピッチ繊維を得た。 【0061】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。 【0062】この炭素繊維は、繊維径9.0μmで、引
張弾性率900GPa、引張強度2.5GPa、X線構
造パラメータがLc002が350Å、La110が5
90Å、d002が3.370Å、熱伝導率600W/
mKであり毛羽の発生は多かった。 【0063】 【比較例3】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.10mm、吐出
口長さ0.15mmのノズルを用い、吐出口のピッチ粘
度が700ポイズになるように紡糸し、繊維径13μm
のピッチ繊維を得た。 【0064】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。 【0065】この炭素繊維は、繊維径9.3μmで、引
張弾性率900GPa、引張強度2.3GPa、X線構
造パラメータがLc002が360Å、La110が6
50Å、d002が3.369Å、熱伝導率700W/
mKであり毛羽の発生は多かった。 【0066】 【比較例4】実施例1のピッチを用いて図2に示すよう
な導入角120度、キャピラリー径0.12mm、吐出
口長さ0.20mmのノズルを用い、吐出口のピッチ粘
度が600ポイズになるように紡糸し、繊維径10μm
のピッチ繊維を得た。 【0067】このピッチ繊維を用いて実施例1と同じ条
件で不融化、炭化、黒鉛化を行い炭素繊維を得た。 【0068】この炭素繊維は、繊維径7.3μmで、引
張弾性率900GPa、引張強度2.7GPa、X線構
造パラメータがLc002が290Å、La110が4
90Å、d002が3.379Å、熱伝導率530W/
mKであり毛羽の発生は多かった。 【0069】 【発明の効果】本発明の炭素繊維は、工業的に実施適応
が容易な技術で、同一条件で炭化または黒鉛化された従
来の炭素繊維にくらべて極めて大きな熱伝導率を示し、
毛羽の発生が極めて少なく、また繊維糸条が折れる問題
が少ない、すなわちハンドリング性に優れた細径炭素繊
維を製造することができ、耐熱衝撃性、寸法安定性を要
求される宇宙用材料、航空機用材料、自動車用材料等の
分野での利用に適した炭素繊維を提供することが可能と
なる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has an average fiber diameter of 4 to 8 .mu.m.
Is a method for producing high thermal conductivity carbon fibers. The carbon fiber obtained by the present invention is widely used as a material for space, a material for aircraft, a material for brake of an automobile, and the like, which require thermal shock resistance and dimensional stability. 2. Description of the Related Art At present, PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from pitch are manufactured as carbon fibers. PAN-based carbon fibers are mainly used. However, since the thermal conductivity of commercially available PAN-based carbon fibers is smaller than 100 W / mK,
Use in fields where thermal shock resistance and dimensional stability are required is limited. [0004] On the other hand, pitch-based carbon fibers using mesoface pitch as a raw material are generally said to exhibit higher thermal conductivity than PAN-based carbon fibers. THORNELP-12
0 indicates high thermal conductivity, but less than 700 W / mK. [0005] Japanese Patent Application Laid-Open No. Hei 5-163609 discloses 30
Disclosed is a method for producing a carbon fiber having a lamination of graphite crystallite in the layer plane direction of more than 1000 °, an electric resistivity of less than 1.1 μΩm, and a thermal conductivity of more than 1100 W / mK by firing at 00 ° C. or more. Have been. However, pitch-based carbon fibers having a thermal conductivity of more than 1100 W / mK have extremely high elasticity, so that the fiber yarns become rigid, causing the fiber yarns to break during handling of the fibers or to generate a large amount of fluff. There's a problem. [0007] For this reason, a small diameter high thermal conductivity carbon fiber which can easily handle the fiber is required, but no production method has been reported. Japanese Patent Application Laid-Open No. 4-163319 discloses that pitch fibers are made infusible, subjected to drawing heat treatment and drawing preliminary carbonization treatment in an oxygen-containing atmosphere, and carbonized while being drawn in an inert gas atmosphere to conduct heat. A method for producing a carbon fiber having high modulus and compressive strength is disclosed. However, even if the stretching process is performed, the PAN
There is no report on a method for producing a thin high-thermal-conductivity carbon fiber having a fiber diameter of less than 8 μm, which is easy to handle comparable to that of the base carbon fiber. [0010] Also, J.I. Mater. Res. , Vol.
5, No. 3, P570-577, Mar 1990, "Structure and Electrical Properties of Pitch-Based Carbon Fibers Fired at Various Temperatures", the fiber diameter of the pitch fibers is changed to carry out infusibilization and carbonization. As a result of firing at a temperature, the carbon fibers obtained from the pitch fibers having a large fiber diameter have a larger graphitic property when graphitized because the average size of the mesoface domains in the pitch fibers is larger than those having a smaller fiber diameter. Therefore, it is inferred that it is difficult to obtain carbon fibers having high thermal conductivity from thin carbon fibers. As described above, it is inferred from the prior art that it is difficult to obtain carbon fibers having high thermal conductivity from thin carbon fibers. As a result of intensive studies to produce carbon fibers with a high diameter, thin carbon fibers produced by a specific method have a higher graphitization property than carbon fibers The inventors have found that carbon fibers can be obtained, and have reached the present invention. An object of the present invention is to provide a method for producing high thermal conductivity carbon fiber having a fiber diameter of 4 to 8 μm. According to the present invention, a mesoface pitch having an optical anisotropy is melt-spun, and is infused and graphitized to produce a carbon fiber. A) The shape from the introduction hole to the discharge hole contracts at the approach portion at an angle of 90 to 150 degrees. B) The flat portion is temporarily formed at the end of the approach portion. C) The diameter of the capillary provided in the flat portion is 50 to 110 μm.
Is passed through a spinning nozzle having a discharge hole having a circular cross section to perform spinning, obtain a fine pitch fiber having a fiber diameter of 5 to 11 μm, carbonize, and then graphitize in an inert gas atmosphere. A high thermal conductivity carbon fiber having a fiber diameter of 4 to 8 μm. Hereinafter, the contents of the present invention will be described in detail. The pitch which is the starting material of the carbon fiber of the present invention includes coal-based pitch such as coal tar, coal tar pitch, coal liquefied pitch, ethylene tar pitch, and decant oil pitch obtained from fluid catalytic cracking residue. Various pitches such as a petroleum pitch or a synthetic pitch made from naphthalene or the like using a catalyst or the like are included. The optically anisotropic mesoface pitch of the present invention is obtained by generating a mesoface at the pitch by a conventionally known method. It is desirable that the mesoface pitch has a high orientation of the pitch fiber when spun, so that the mesoface content is 60% or more, preferably 80% or more, more preferably 90% or more. . If the content of the mesophase is less than 60%, the amount of optical anisotropy is small, so that the tensile strength is undesirably low. The mesoface pitch used in the present invention has a softening point of 200 to 400 ° C., preferably 250 to 35 ° C.
0 ° C is preferred. It is difficult to adjust a pitch having a softening point of less than 200 ° C. If a pitch having a softening point of more than 400 ° C. is used, it is necessary to set a high spinning temperature, so that stable spinning cannot be performed. If solid matter of 3 μm or more is present in the pitch, yarn breakage frequently occurs during spinning. Therefore, the pitch obtained before the spinning is a filter having an absolute filtration accuracy of 3 μm or less, or a filter equivalent to or equivalent to this filter. It is desirable to remove foreign matter in the pitch by a filtration method having the above filtration accuracy. As a result of various studies for producing high thermal conductivity pitch-based carbon fibers, in order to obtain high thermal conductivity by increasing the graphitization property, the orientation of molecules in the pitch fiber state in the fiber axis direction must be improved. It has been found that spinning good ones is effective. In the present invention, when spinning the pitch fiber from the pitch described above, the shape (θ1) from the introduction hole to the discharge hole is contracted at an approach portion having an angle of 90 to 150 degrees as shown in FIG. At the end, make a flat part (θ2)
The liquid is passed through the discharge hole having a circular cross section provided in the flat portion, the capillary diameter (D3) is 50 to 110 μm, and the discharge port length (L)
2) using a spinning nozzle having a diameter of 0.07 to 0.17 mm, the pitch viscosity of the discharge port is 100 to 1000 poise,
By producing pitch fibers having a small diameter of 5 to 11 μm, preferably 200 to 800 poise, more preferably 400 to 800 poise, pitch fibers having a high orientation in the fiber axis direction can be obtained, and a high tensile modulus,
A high thermal conductivity carbon fiber having high tensile strength is obtained. However, in the carbon fiber, the radial component leads to a crack in the axial direction, and this crack is a place where tensile damage is likely to occur. At the end of the conventional approach, a pitch fiber is obtained using a spinning nozzle having a circular cross section having no flat portion at the end of a flat section, and the cross section of the carbon fiber obtained by infusibilizing, carbonizing and graphitizing is scanned. When observed with an electron microscope, the fiber surface layer has a radial structure of at least 1.5 μm to 2.5 μm, the inside of the fiber has a random or onion structure, and has a plurality of structures, and can maintain a certain high strength. However, the nozzle structure used in the present invention, that is, the shape from the introduction hole to the discharge hole contracts at the approach portion at an angle of 90 to 150 degrees, and once becomes flat at the end of the approach, the discharge hole has a circular cross section. Is used, the radial component of the fiber surface layer becomes 1.5 μm or less, preferably 1.0 μm or less, and the radial component decreases. As described above, the nozzle used in the present invention has a smaller radial component in the surface layer portion, so that a higher tensile strength can be maintained. If the approach angle θ1 is less than 90 degrees, the length of the inlet becomes long and inappropriate, and if it exceeds 150 degrees, the effect of providing a flat portion at the end of the approach becomes difficult to obtain. Since the approach angle θ1 is determined in this manner, and in order to obtain excellent tensile strength, the length L1 of the inlet is preferably 3 to 10 mm, preferably 4 to 6 mm, and the inlet diameter D1 is 0.5 to 10 mm, preferably 1.2 to 5 mm, and the residence time at the inlet is 1 to
It is preferably 400 seconds, preferably 4 to 200 seconds. The inlet diameter is less than 0.5 mm or 10 m
If the retention time is longer than 1 m or more than 400 seconds, a fiber having excellent strength cannot be obtained. The diameter D2 of the flat portion is desirably 0.8 times or less the introduction diameter D1 and 1.5 times or more the discharge diameter D3. At this time, the effect of the present invention can be obtained most.
The cross section of the discharge hole is most effective when a circular one is used to improve the tensile strength. If the capillary diameter is less than 50 μm, it becomes extremely difficult to process the capillary or the maintenance of the nozzle becomes complicated. If it exceeds 110 μm, spinning of fine pitch fibers becomes unstable, which is not preferable. If the discharge port length is less than 0.07 mm, stable spinning cannot be performed. If the discharge port length is more than 0.17 mm, it is presumed that the radial portion of the fiber surface layer increases, so that high strength cannot be maintained. Therefore, it is desirable that the ratio of the capillary diameter to the discharge port length is in the range of 1.5 to 2. When the pitch viscosity is less than 100 poise,
Since the viscosity is extremely low, yarn breakage increases and spinning becomes almost impossible, and if it exceeds 1000 poise, if yarn breakage occurs during spinning, it will adhere to other yarns or nozzle surfaces,
Unstable spinning is not preferred. Further, in order to obtain a fine carbon fiber having an excellent handling surface of 4 to 8 μm, the fiber diameter of the pitch fiber is reduced by infusing, carbonizing and graphitizing the pitch fiber. 5 to 11 μm
Must be. Next, the pitch fiber is usually heated in an oxidizing gas atmosphere at 100 to 350 ° C., preferably 130 to 320 ° C.
C, usually 10 minutes to 10 hours, preferably 1 to 6 hours,
Perform infusibilization treatment. As the oxidizing gas, oxygen, air or a mixture of these gases with nitrogen dioxide, chlorine or the like is used. If the infusibilizing temperature is less than 100 ° C., the reactivity of the pitch will be low, and if it exceeds 350 ° C., excessive oxidation will occur, and the tensile strength will decrease. If the infusibilization time is less than 10 minutes, the reaction is not reached, and if it exceeds 10 hours, the infusibilization is excessively unfavorable. The infusibilized fiber is carbonized and graphitized in an atmosphere of an inert gas such as nitrogen or argon for 1 second to 1 second.
0 hours, preferably for 10 seconds to 6 hours, and a tensile elastic modulus of 1
00 GPa-1000 GPa, tensile strength 2.0 GPa-
By obtaining 5.0 GPa carbon fiber and graphitizing it,
A fine pitch system having a high fiber elasticity and a high tensile strength, and having a thermal conductivity of more than 1100 W / mK when graphitized at 3000 ° C. or higher, and having a fiber diameter of 4 to 8 μm and excellent handling properties. A high thermal conductivity carbon fiber is obtained. The degree of progress of the graphitization of the graphitized fiber was evaluated based on the lamination thickness Lc002, crystallite size La110, and layer interval d002 determined by wide-angle X-ray diffraction. The lamination thickness Lc002 is 002 in the carbon crystal.
La110 indicates the crystallite size, La002 indicates the layer spacing on the 002 plane of the crystal, and Lc0 indicates the layer thickness of the crystal.
02 is 50-500Å, La110 is 100-1000
As described above, d002 indicates a value of 3.352 to 3.450 °. It can be determined that the larger the values of Lc002 and La110 and the smaller the value of d002, the higher the graphitization property. Thus, scattering of conduction electrons due to lattice defects is suppressed, and high thermal conductivity is exhibited. Lamination thickness Lc002, crystallite size La
110, the layer interval d002 is obtained by powdering a fiber, mixing it with standard silicon, and using a powder method as a sample.
It was determined by the Gakushin method “method for measuring lattice constant and crystallite size of artificial graphite” from the diffraction lines on the 110 and 110 planes. The thermal conductivity of the carbon fiber was 10 m in diameter.
m, a cylindrical unidirectional carbon fiber reinforced plastic having a thickness of 3 mm to 6 mm, and a specific heat and a thermal diffusivity were measured using a laser flash method thermal constant measuring apparatus model PS-7 manufactured by Rigaku Denki Co., Ltd. Was calculated by Λ = Cp × α × ρ / Vf where λ is the thermal conductivity of the carbon fiber, α is the thermal diffusivity of the carbon fiber, and Cp is the absolute specific heat of the unidirectional carbon fiber reinforced plastic. , Ρ is the density, and Vf is the volume fraction of carbon fibers contained in the unidirectional carbon fiber reinforced plastic. Since the thermal conductivity of the matrix resin is so small as to be negligible with respect to the thermal conductivity of the carbon fiber, the thermal conductivity of the carbon fiber is determined by λ. The measurement was performed at room temperature (25
C). Hereinafter, in order to further clarify the present invention,
An example and a comparative example will be described. EXAMPLE 1 Coal tar pitch was used as a raw material, and hydrogenation was carried out directly in the presence of a catalyst. The hydrogenated pitch was heat-treated at a reduced pressure of 500 ° C., and then a low-boiling component was obtained. Except that a mesoface pitch was obtained. This pitch had a softening point of 304 ° C., a toluene-insoluble content of 80% by weight, and a mesophase content of 94%. Using this mesoface pitch, the shape from the introduction hole to the discharge hole as shown in FIG. 1 contracts at the approach portion at an angle of 120 degrees, and once becomes a flat portion at the end of the approach,
Capillary diameter 0.10mm, discharge port length 0.15m
m, using a nozzle having a flat part length of 0.8 mm, spinning so that the pitch viscosity of the discharge port becomes 450 poise, and a fiber diameter of 1
A 0 μm pitch fiber was obtained. The pitch fiber was heated from 150 ° C. to 310 ° C. at a rate of 1 ° C./min in an oxidizing atmosphere in which nitrogen dioxide gas was added to air at 5% by volume and oxygen gas at 10% by volume to obtain infusible fiber. Was. The infusible fiber was heated to 390 ° C. and carbonized for 50 minutes to obtain a carbonized fiber. Next, the carbonized fiber was graphitized at a temperature of 3200 ° C. for 3 hours to obtain a carbon fiber. The carbon fiber had a fiber diameter of 7.4 μm, a tensile modulus of 900 GPa, a tensile strength of 3.3 GPa, and an X-ray structural parameter Lc002 of 450 ° and La110 of 9
10 °, d002 is 3.364 °, thermal conductivity 1180W
/ MK, and generation of fluff was extremely small. Example 2 Using the pitch of Example 1, a nozzle having an introduction angle of 135 degrees, a capillary diameter of 0.09 mm, and a discharge port length of 0.14 mm as shown in FIG. Is spun to 600 poise, and the fiber diameter is 9.5μ.
m pitch fibers were obtained. Using this pitch fiber, infusibilization, carbonization and graphitization were performed under the same conditions as in Example 1 to obtain a carbon fiber. This carbon fiber had a fiber diameter of 6.8 μm, a tensile modulus of 980 GPa, a tensile strength of 4.0 GPa, and X-ray structural parameters Lc002 of 480 ° and La110 of 9
70 °, d002 is 3.359 °, thermal conductivity 1230W
/ MK, and generation of fluff was extremely small. Comparative Example 1 Using the pitch of Example 1, a nozzle having an introduction angle of 120 degrees, a capillary diameter of 0.10 mm, and a discharge port length of 0.15 mm as shown in FIG. Is spun so as to be 450 poise, and the fiber diameter is 10 μm.
Was obtained. Using this pitch fiber, infusibilization, carbonization and graphitization were performed under the same conditions as in Example 1 to obtain a carbon fiber. The carbon fiber had a fiber diameter of 7.4 μm, a tensile modulus of 900 GPa, a tensile strength of 2.8 GPa, and X-ray structural parameters Lc002 of 420 ° and La110 of 7
60 °, d002 3.365 °, thermal conductivity 1070W
/ MK, and the generation of fluff was large. Comparative Example 2 Using the pitch of Example 1, a nozzle having an introduction angle of 120 °, a capillary diameter of 0.10 mm, and a discharge port length of 0.15 mm as shown in FIG. Is spun to 600 poise, fiber diameter 13μm
Was obtained. Using this pitch fiber, infusibilization, carbonization and graphitization were performed under the same conditions as in Example 1 to obtain a carbon fiber. This carbon fiber has a fiber diameter of 9.0 μm, a tensile modulus of elasticity of 900 GPa, a tensile strength of 2.5 GPa, an X-ray structural parameter Lc002 of 350 °, and La110 of 5
90 °, d002 is 3.370 °, thermal conductivity 600 W /
mK and fluff was generated frequently. Comparative Example 3 Using the pitch of Example 1, a nozzle having an introduction angle of 120 degrees, a capillary diameter of 0.10 mm, and a discharge port length of 0.15 mm as shown in FIG. Spin to 700 poise, fiber diameter 13μm
Was obtained. Using this pitch fiber, infusibilization, carbonization and graphitization were performed under the same conditions as in Example 1 to obtain a carbon fiber. The carbon fiber had a fiber diameter of 9.3 μm, a tensile modulus of 900 GPa, a tensile strength of 2.3 GPa, and X-ray structural parameters Lc002 of 360 ° and La110 of 6
50 °, d002 is 3.369 °, thermal conductivity 700 W /
mK and fluff was generated frequently. Comparative Example 4 Using the pitch of Example 1, using a nozzle having an introduction angle of 120 degrees, a capillary diameter of 0.12 mm, and a discharge port length of 0.20 mm as shown in FIG. Is spun to 600 poise, fiber diameter 10μm
Was obtained. Using this pitch fiber, infusibilization, carbonization and graphitization were carried out under the same conditions as in Example 1 to obtain a carbon fiber. The carbon fiber had a fiber diameter of 7.3 μm, a tensile modulus of 900 GPa, a tensile strength of 2.7 GPa, and X-ray structural parameters Lc002 of 290 ° and La110 of 4
90 °, d002 is 3.379 °, thermal conductivity 530 W /
mK and fluff was generated frequently. The carbon fiber of the present invention is a technology which is easy to apply industrially, and has a very large thermal conductivity as compared with a conventional carbon fiber carbonized or graphitized under the same conditions.
Space materials and aircraft that generate very little fluff and have few problems of fiber thread breakage, that is, can produce fine-diameter carbon fiber with excellent handling properties, and are required to have thermal shock resistance and dimensional stability. It is possible to provide carbon fibers suitable for use in fields such as materials for automobiles and materials for automobiles.

【図面の簡単な説明】 【図1】本発明に用いる紡糸ノズルの一部断面概略図を
示す。 【図2】比較例に用いる従来の紡糸ノズルの一部断面概
略図を示す。 【符号の説明】 D1 導入口径 D2 平坦部直径 D3 キャピラリー径 L1 導入口長さ L2 吐出口長さ θ1 アプローチ部角度 θ2 平坦部角度
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic partial cross-sectional view of a spinning nozzle used in the present invention. FIG. 2 is a schematic partial cross-sectional view of a conventional spinning nozzle used in a comparative example. [Description of Signs] D1 Inlet diameter D2 Flat part diameter D3 Capillary diameter L1 Inlet length L2 Discharge port length θ1 Approach part angle θ2 Flat part angle

フロントページの続き (56)参考文献 特開 昭63−105116(JP,A) 特開 平2−229219(JP,A) 特開 平6−65813(JP,A) 特開 平5−117918(JP,A) 特開 平6−146119(JP,A) 特開 平5−163619(JP,A) 特開 昭60−252723(JP,A) 特開 昭60−194120(JP,A) 特開 昭59−168127(JP,A) 特開 平7−42025(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 9/14 - 9/155 Continuation of front page (56) References JP-A-63-105116 (JP, A) JP-A-2-229219 (JP, A) JP-A-6-65813 (JP, A) JP-A-5-117918 (JP) JP-A-6-146119 (JP, A) JP-A-5-1663619 (JP, A) JP-A-60-252723 (JP, A) JP-A-60-194120 (JP, A) JP-A-60-194120 59-168127 (JP, A) JP-A-7-42025 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) D01F 9/14-9/155

Claims (1)

(57)【特許請求の範囲】 【請求項1】 光学的異方性のメソフェースピッチを溶
融紡糸し、不融化、炭化、黒鉛化処理して炭素繊維を製
造する際に、メソフェースピッチを、 A)導入孔から吐出孔に至る形状が90〜150度の角
度のアプローチ部で縮流し、 B)アプローチ部終端で一旦平坦部とし、 C)平坦部に設けたキャピラリー径が50〜110μm
である円形断面の吐出孔を有する紡糸ノズルを通過させ
て、紡糸を行い、繊維径5〜11μmの細径ピッチ繊維
を得、不融化、炭化した後、不活性ガス雰囲気下で黒鉛
化することを特徴とする、繊維径が4〜8μmの高熱伝
導率炭素繊維の製造方法。
(57) [Claims 1] When producing a carbon fiber by melt-spinning an optically anisotropic mesoface pitch and performing infusibilization, carbonization and graphitization, the mesoface pitch is reduced. A) the shape from the introduction hole to the discharge hole contracts at the approach portion at an angle of 90 to 150 degrees; B) a flat portion is temporarily formed at the end of the approach portion; C) the diameter of the capillary provided in the flat portion is 50 to 110 μm.
Spinning by passing through a spinning nozzle having a discharge hole having a circular cross-section, obtaining a fine pitch fiber having a fiber diameter of 5 to 11 μm, infusible and carbonized, and then graphitized in an inert gas atmosphere. A method for producing a high thermal conductivity carbon fiber having a fiber diameter of 4 to 8 μm.
JP19458394A 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber Expired - Lifetime JP3406696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19458394A JP3406696B2 (en) 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19458394A JP3406696B2 (en) 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber

Publications (2)

Publication Number Publication Date
JPH0841730A JPH0841730A (en) 1996-02-13
JP3406696B2 true JP3406696B2 (en) 2003-05-12

Family

ID=16326963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19458394A Expired - Lifetime JP3406696B2 (en) 1994-07-28 1994-07-28 Method for producing high thermal conductivity carbon fiber

Country Status (1)

Country Link
JP (1) JP3406696B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090037948A (en) * 2006-07-28 2009-04-16 데이진 가부시키가이샤 Heat conductive adhesive
JP2008208490A (en) * 2007-02-27 2008-09-11 Teijin Ltd Pitch-based carbon fiber and carbon fiber-reinforced composite material
CN114959949B (en) * 2022-04-27 2023-06-13 北京化工大学 Condensed ring aromatic hydrocarbon carbon fiber and preparation method thereof

Also Published As

Publication number Publication date
JPH0841730A (en) 1996-02-13

Similar Documents

Publication Publication Date Title
MInus et al. The processing, properties, and structure of carbon fibers
CN100365178C (en) Preparation method of polyacrylonitrile-based carbon core
Edie et al. Ribbon-shape carbon fibers for thermal management
WO1984003722A1 (en) Process for producing carbon fibers
JP2615268B2 (en) Carbon yarn and method for producing the same
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS62273231A (en) Carbon-fiber reinforced composite material and production thereof
Edie The effect of processing on the structure and properties
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
US4859382A (en) Process for preparing carbon fibers elliptical in section
JPH05272017A (en) Carbon fiber and its production
JP2825923B2 (en) High strength carbon fiber and precursor fiber
JP3024320B2 (en) Method for producing high strand strength carbon fiber
JP3164704B2 (en) Method for producing pitch-based high compressive strength carbon fiber
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
JP3024319B2 (en) Method for producing high strand strength carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS62170527A (en) Production of pitch-based carbon fiber
JPS6262917A (en) Production of pitch carbon yarn
JP2766521B2 (en) Method for producing pitch-based carbon fiber
JPH05163619A (en) Carbon fiber and its production
JPH0610215A (en) Pitch carbon fiber and its production

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030204

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term