JPS6278220A - Production of ribbon-like carbon fiber - Google Patents

Production of ribbon-like carbon fiber

Info

Publication number
JPS6278220A
JPS6278220A JP21976185A JP21976185A JPS6278220A JP S6278220 A JPS6278220 A JP S6278220A JP 21976185 A JP21976185 A JP 21976185A JP 21976185 A JP21976185 A JP 21976185A JP S6278220 A JPS6278220 A JP S6278220A
Authority
JP
Japan
Prior art keywords
pitch
ribbon
spinning
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21976185A
Other languages
Japanese (ja)
Inventor
Kazutoshi Haraguchi
和敏 原口
Eiji Tanigawa
谷川 栄司
Kenji Nukina
貫名 健次
Hiroaki Minami
宏明 南
Toyohiro Maeda
豊広 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Dainippon Ink and Chemicals Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP21976185A priority Critical patent/JPS6278220A/en
Publication of JPS6278220A publication Critical patent/JPS6278220A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the titled fiber having high tenacity and free from void, fluff, etc., by extruding a spinning pitch through a spinning nozzle having large width/height ratio of the opening part, winding the spun fiber at a specific draft ratio, infusibilizing in oxygen atmosphere and heating in an inert gas at a high temperature. CONSTITUTION:A pitch for spinning is extruded through a spinning nozzle provided with a slit having a width/height ratio of the opening part of 2-300 and continuously wound at a draft ratio of 10-3,000 to obtain a ribbon-like pitch fiber. The fiber is infusibilized in an oxygen-containing atmosphere such as air at 280-440 deg.C and carbonized by heating at 800-3,000 deg.C in an inert gas atmosphere such as nitrogen gas to obtain the objective ribbon-like carbon fiber.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リボン状炭素繊維の製造方法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing ribbon-shaped carbon fibers.

従来の技術及びその問題点 炭素繊維は、現在主にポリアクロニトリル(以下P’A
Nという)及びピッチを出発原料として製造されている
Conventional technology and its problems At present, carbon fiber is mainly made of polyacronitrile (hereinafter referred to as P'A
It is produced using N) and pitch as starting materials.

PAN系の炭素繊維は、引張り強度300 kq/mm
2以上のものが市販されてあり、各種の高性能複合材料
用素材として広く使用されている。しかしながら、PA
N系炭素炭素繊維高性能複合材料用素材としての重要な
性能である弾性率が比較的低く、市販品の多くにおいて
は20〜3 Q ton/mm”程度であり、4 Q 
ton/mm2をこえるものは得られていない。この弾
性率における限界は、公知の如<PAN系炭素炭素繊維
発原料に由来するもので、炭素繊維内部の結晶成長及び
配向によて必然的に制約されるものである。又、PAN
系炭素炭素繊維その炭化収率が出発原料の約50%と低
いことや、不融化以後の工程において緊張処理を必要と
する等の理由により、コスト高となる欠点もある。
PAN-based carbon fiber has a tensile strength of 300 kq/mm
Two or more are commercially available and are widely used as materials for various high-performance composite materials. However, P.A.
The elastic modulus, which is an important performance as a material for N-based carbon carbon fiber high-performance composite materials, is relatively low, and most commercially available products are around 20 to 3 Q ton/mm", and 4 Q ton/mm".
No material exceeding ton/mm2 has been obtained. This limit in elastic modulus is derived from the PAN-based carbon fiber starting material, as is well known, and is inevitably restricted by crystal growth and orientation within the carbon fiber. Also, PAN
Carbon fibers also have the drawback of high cost due to the low carbonization yield of about 50% of the starting material and the need for tension treatment in the steps after infusibility.

一方、ピッチ系炭素繊維は、上述のPAN系炭素炭素繊
維する問題点を有しておらず、より安価で高性能の素材
となり得るものと期待されている。
On the other hand, pitch-based carbon fiber does not have the problems of the above-mentioned PAN-based carbon fiber, and is expected to be a cheaper and higher-performance material.

即ち、特に光学的異方性を示すピッチを原料とする場合
には、前駆体繊維(以下ピッチ繊維という)の欧化過程
中の温度上昇(1000〜3000℃)に伴って結晶の
成長及び配向が良好に進行するので、40ton/m1
2以上の高弾性を有する炭素繊維が容易に得られる。又
、出発原料が、他用途に使用される有用物の残渣である
ことから、安価に入手可能であり、又炭化収率がピッチ
繊維重量の約90%にも達するので、製造コストが低い
という利点を有している。しかしながら、この様なピン
チ系炭素繊維にも種々の解決すべき問題点がある。
In other words, especially when pitch exhibiting optical anisotropy is used as a raw material, crystal growth and orientation may change as the temperature rises (1000 to 3000°C) during the Europeanization process of the precursor fiber (hereinafter referred to as pitch fiber). 40ton/m1 as it progresses well
Carbon fibers with high elasticity of 2 or more can be easily obtained. In addition, since the starting material is the residue of useful materials used for other purposes, it can be obtained at low cost, and the carbonization yield reaches approximately 90% of the pitch fiber weight, so the manufacturing cost is low. It has advantages. However, such pinch type carbon fibers also have various problems that need to be solved.

(i>  一般に、溶融ピッチは、紡糸温度が高く、温
度による粘度変化が大きい、又ピッチ!!lraの強度
がPANを含む一般の有機HAHのそれよりも極めて低
い等の理由により、有機高分子に比して安定した連続紡
糸性に劣る。このため、現在市販されているピッチ系炭
素1!![(長繊維〉の糸径は、11μm程度であり、
工業的規模でこれよりも細かい織組化は行なわれていな
い。
(i> In general, molten pitch has a high spinning temperature, a large viscosity change due to temperature, and the strength of pitch!!lra is extremely lower than that of general organic HAH including PAN. It has inferior stable continuous spinning properties compared to Pitch-based carbon 1!! (long fiber), which is currently commercially available.
No finer structuring has been done on an industrial scale.

又、市販のピッチ系炭素繊維は、強度の点でも、200
)u+/u2程度以下であり、満足すべきものとは言い
難い。
In addition, commercially available pitch-based carbon fibers have a strength of 200%.
) u+/u2 or less, which is hardly satisfactory.

従って、この様な溶融ピッチの紡糸性及び得られる炭素
繊維の強度の向上を図るべく、種々の研究が行なわれて
いる。例えば、特開昭57−88016号公報は、紡糸
用ピッチを調製する熱処理工程に先立って、予め原料ピ
ッチに還元処理を施しておくことにより、溶融ピッチの
紡糸性を向上させる技術を開示している。特開昭57−
100186号公報に開示された方法は、潜在的異方性
ピッチと呼ばれるピッチを、又特開昭58−18421
号公報に示された方法は、ブリメソフェーズピッチと呼
ばれるピッチを夫々紡糸用ピッチとして用いることによ
り、溶融ピッチの紡糸性を向上させるものであり、これ
により200 kM mm2以上の強度を有する炭素繊
維が得られると報告されている。しかしながら、これ等
の公報に開示された方法によっても、100乃至200
ホ一ル以上の多ホール紡糸において、工業的規模で安定
した連続紡糸により得られるピッチ系炭素繊維の直径は
10μm程度まである。ピッチ系繊維の場合、一般に繊
維径が小さくなる秒単位面積当りの強度は大きくなる。
Therefore, various studies are being conducted to improve the spinnability of such melt pitch and the strength of the resulting carbon fibers. For example, Japanese Patent Application Laid-open No. 57-88016 discloses a technique for improving the spinnability of molten pitch by subjecting the raw material pitch to a reduction treatment in advance prior to the heat treatment step for preparing pitch for spinning. There is. Japanese Unexamined Patent Publication 1987-
The method disclosed in Japanese Patent Application Laid-open No. 100186 also uses a pitch known as a potential anisotropic pitch.
The method disclosed in the publication improves the spinnability of molten pitch by using a pitch called Brimesophase pitch as a spinning pitch, thereby producing carbon fibers with a strength of 200 kmM mm2 or more. It is reported that it can be obtained. However, even with the methods disclosed in these publications, 100 to 200
In multi-hole spinning of one hole or more, the diameter of pitch-based carbon fiber obtained by stable continuous spinning on an industrial scale is up to about 10 μm. In the case of pitch-based fibers, the strength per second unit area generally increases as the fiber diameter decreases.

上述の10μm以上の繊維径では、ピッチ系炭素綿;維
が本来有している優れた強度特性が十分に発揮されてい
ないことを意味する。
The above-mentioned fiber diameter of 10 μm or more means that the excellent strength characteristics originally possessed by pitch-based carbon cotton fibers are not fully exhibited.

(ii)  更に、ピンチ系繊維では、紡糸用ピッチの
物性及び紡糸条件の若干の変動により、しばしばクラッ
ク、たて割れ等のミクロ的な欠陥を生じやすく、品質の
安定性が損われるという問題点がある。
(ii) Furthermore, pinch type fibers often have the problem that micro-defects such as cracks and warp cracks are likely to occur due to slight variations in the physical properties of the spinning pitch and spinning conditions, which impairs quality stability. There is.

(iii )  更に又、ピッチ繊維の強度が、同じ前
駆体繊維としてのPAN繊維に比して極めて低く、従っ
て、連続長繊維製造に際し、紡糸以降の合糸及び焼成過
程においてケバ立ち(1〜つ中の部分的な糸切れ)を生
じやすい。
(iii) Furthermore, the strength of pitch fibers is extremely low compared to PAN fibers, which are the same precursor fibers. (partial thread breakage) is likely to occur.

問題点を解決するための手段 本発明者は、上記の如き技術の現状に鑑みて鋭意研究を
重ねた結果、特定の開口形状を有するノズルから紡糸用
ピッチを押出した後、特定のドラフト比で巻取って得た
りリボン状ピンチ繊維を不融化し、次いで加熱処理する
場合には、従来技術の上記問題点を実質的に解消若しく
は大巾に軽減し得ることを見出した。即ち、本発明は、
開口部の幅/高さ比が2〜300のスリットを有する紡
糸ノズルから紡糸用ピッチを押し出し、ドラフト比が1
0〜3000となる様に連続的に巻き取ってリボン状ピ
ンチ繊維を1ワだ後、これを酸素含有雰囲気中280〜
4/lo’cて不融化処理し、次いで不活性カス雰囲気
中800〜3000’Cで加熱することを特徴とするリ
ホン状炭素繊維の製造方法に係る。
Means for Solving the Problems As a result of intensive research in view of the current state of the technology as described above, the inventor of the present invention has discovered that after extruding spinning pitch from a nozzle having a specific opening shape, the spinning pitch can be extruded at a specific draft ratio. It has been found that the above-mentioned problems of the prior art can be substantially eliminated or greatly reduced if the pinched fibers obtained by winding or ribbon-like fibers are made infusible and then heat treated. That is, the present invention
The spinning pitch is extruded from a spinning nozzle having a slit with an opening width/height ratio of 2 to 300, and the draft ratio is 1.
After winding the ribbon-shaped pinched fiber for one wafer by continuously winding it up to 0 to 3,000, it is rolled in an oxygen-containing atmosphere to 280 to 3,000.
The present invention relates to a method for producing a liphon-like carbon fiber, which is characterized by performing an infusibility treatment at 4/lo'c and then heating at 800 to 3000'C in an inert gas atmosphere.

本発明で使用する紡糸用ピッチは、ピッチ状物質を不活
性ガス流通下に熱重縮合させることにより得“られる。
The spinning pitch used in the present invention is obtained by subjecting a pitch-like material to thermal polycondensation under an inert gas flow.

ピッチ状物質としては、石油系ピッチ、石炭系ピッチ及
び有機化合物からの熱分解残漬ピッチのいずれでおって
も良い。特にコールタールやコールタールピッチの様な
石炭系ピッチを原料とする場合には、熱重縮合に先立っ
て、特開昭57−88016号公報に記載の方法に従っ
て、予め原料ピッチを芳香族還元性溶剤により350〜
50.0℃で熱処理しておくことにより、紡糸性をより
一層改善することができる。紡糸用ピッチとしては、紡
糸可能であれば特に限定されないが、特に高強度長繊維
用としては、軟化点が280〜330’Cであり、室温
で測定される光学的異方性成分量が80〜100@量%
であるものが好ましい。尚、本願においては、「軟化点
」とは、米国メトラー社製軟化点測定装置により測定し
た軟化温度をいい、「光学的異方性成分Jとは、充分伺
磨した試ねを偏光顕微鏡により直交ニコルプリズム下室
温で観察した場合に常に明視野を与えるものをいう。軟
化点が、280’C未)箇の場合には、ピッチ繊維の不
融化及び炭化処理が困難となる傾向を生じ、一方330
’Cを上回る場合には、紡糸性が急速に低下して、いず
れの場合にも高強度のリボン状炭素l1li紐を安定し
て製造することが困難となる傾向が大となる。又、光学
的異方性成分量が80容量%を下回る場合には、紡糸中
に糸切れを生じやすくなり、特にトラフト比か大きい条
件下でのリボン状ピッチ繊維の安定した連続紡糸か困難
となる傾向か生ずる。
The pitch-like substance may be any of petroleum-based pitch, coal-based pitch, and pyrolysis residue pitch from organic compounds. In particular, when coal tar or coal-based pitch such as coal tar pitch is used as a raw material, the raw material pitch is subjected to aromatic reducing properties in advance according to the method described in JP-A-57-88016 prior to thermal polycondensation. 350~ depending on the solvent
By heat-treating at 50.0°C, spinnability can be further improved. The pitch for spinning is not particularly limited as long as it can be spun, but especially for high-strength long fibers, pitches with a softening point of 280 to 330'C and an optically anisotropic component amount of 80°C measured at room temperature are recommended. ~100@quantity%
It is preferable that In this application, "softening point" refers to the softening temperature measured using a softening point measurement device manufactured by Mettler, Inc. in the United States, and "optical anisotropic component J" refers to the softening temperature measured using a softening point measuring device manufactured by Mettler, Inc. in the United States, and "optical anisotropic component J" refers to the softening temperature measured using a softening point measuring device manufactured by Mettler, Inc. in the United States. It always gives a bright field when observed under a crossed Nicol prism at room temperature.If the softening point is below 280'C, it tends to be difficult to infusible and carbonize the pitch fibers. On the other hand 330
If it exceeds 'C, the spinnability rapidly decreases, and in either case there is a strong tendency that it becomes difficult to stably produce a high-strength ribbon-like carbon 11li string. Furthermore, if the amount of optically anisotropic component is less than 80% by volume, yarn breakage is likely to occur during spinning, making it difficult to stably and continuously spin ribbon-like pitch fibers, especially under conditions where the trough ratio is large. A tendency arises.

リボン状ピッチ繊維の製造は、紡糸用ピンチか良好な曳
糸性を示す温度(これはピッチの種類に応じて実験的に
容易に定められる)において、幅/高さ比か2〜300
のスリット状ノズルからピッチを押出し、ドラフト比が
10〜3000となる様に連続して巻取ることにより行
なう。ここに、ドラフト比とは、巻取速度/吐出速度を
いう。スリットの幅/高さ比が2未満の場合には、リボ
ン状とする効果が少なくなり、得られる炭素繊維がしば
しばたて割れ、クランク等の欠陥を含む様になり、又繊
維形状そのものもリボン状とは言い難くなり、後述する
発明の効果が十分に奏されなくなる。一方、スリットの
幅/高さ比が300を上回る場合には、紡糸時のピンチ
同化点が不安定となり、短時間ではあるがしばしばスプ
リット現象(吐出されたピッチ融液が2つの若しくはそ
れ以上に分離して巻き取られる現象)が生じて、安定し
た連続紡糸が困難となる。スリン[・状ノズルの幅方向
の大きさは、0.10mm程度から3cm程度までの範
囲内で目的とするリボン状炭素繊維の形状の合せて任意
に選択することができる。又、スリン1へノズルの高さ
はQ、2mm以下とすることが好ましい。一方、ノズル
の深さは、紡糸条件、目的とするリボン状炭素繊維の形
状及び断面高次構造(断面内の分子配列状態)等に応じ
て、広い範囲内から選択可能であり、実質上制限はない
。ドラ71〜比が10〜3000の範囲を外れる場合に
は、安定した巻取りが難しくなる。
The production of ribbon-like pitch fibers is carried out using a width/height ratio of 2 to 300 at a spinning pinch or at a temperature that exhibits good spinnability (this is easily determined experimentally depending on the type of pitch).
This is done by extruding the pitch from a slit-shaped nozzle and continuously winding it up so that the draft ratio is 10 to 3,000. Here, the draft ratio refers to take-up speed/discharge speed. If the width/height ratio of the slit is less than 2, the ribbon-like effect will be reduced, and the obtained carbon fiber will often contain defects such as vertical cracks and cranks, and the fiber shape itself will become ribbon-like. Therefore, the effects of the invention, which will be described later, will not be sufficiently achieved. On the other hand, if the width/height ratio of the slit exceeds 300, the pinch assimilation point during spinning becomes unstable, and a split phenomenon (discharged pitch melt splits into two or more (separation and winding phenomenon) occurs, making stable continuous spinning difficult. The size in the width direction of the sulin[·-shaped nozzle] can be arbitrarily selected within the range of about 0.10 mm to about 3 cm depending on the shape of the intended ribbon-like carbon fiber. Further, it is preferable that the height of the nozzle to Surin 1 is Q, 2 mm or less. On the other hand, the depth of the nozzle can be selected from a wide range depending on the spinning conditions, the shape of the target ribbon-like carbon fiber, the cross-sectional higher-order structure (the state of molecular arrangement in the cross-section), etc., and there are practically no restrictions. There isn't. If the ratio of the roller 71 is outside the range of 10 to 3000, stable winding becomes difficult.

本発明においては、上記の様にして得られたリボン状ピ
ッチ繊維を酸素含有雰囲気中280〜440’Cで不融
化した後、不活性ガス雰囲気中800〜3000’Cで
加熱することにより炭素繊維化する。
In the present invention, the ribbon-shaped pitch fibers obtained as described above are made infusible at 280 to 440'C in an oxygen-containing atmosphere, and then heated at 800 to 3000'C in an inert gas atmosphere to form carbon fibers. become

かくして1qられる本発明りホン状炭素繊維は、その繊
維断面の形状かスリット状ノズルの形状にほぼ相似する
ものから幅/厚さ比か大ぎく低下したものまでの形状、
即ち幅/厚ざ比か1.5〜300程度の範囲内におる。
Thus, the carbon fiber of the present invention obtained by 1q has a cross-sectional shape of the fiber, ranging from a shape that is almost similar to the shape of a slit-like nozzle to a shape that has a width/thickness ratio that is significantly reduced.
That is, the width/thickness ratio is within a range of about 1.5 to 300.

発明の効果 本発明によれば以下の如き顕著な効果が得られる。Effect of the invention According to the present invention, the following remarkable effects can be obtained.

(i)  最終的に得られるリボン状炭素繊維は、その
内部にたて割れ、クラック、ボイド等のミクロ的欠陥を
ほとんど有しない。
(i) The ribbon-like carbon fiber finally obtained has almost no microscopic defects such as vertical cracks, cracks, and voids inside it.

(ii)  リボン状炭素繊維の断面積が大きい場合に
も、単位断面積当りの強度は大きく、200kL’mm
2以上となる。例えば、同−紡糸用ピッチを使用すると
ともに、同一の不融化条件(300″CX30分間)及
び炭化条件(1200’CX10分間)により炭素1.
fを調製する場合において、直径20μmの円形炭素繊
維の強度は150kM朋2であるのに対し、同一断面積
のリボン状炭素繊維の強度は、250〜400kg/m
m2程度にも達した。
(ii) Even when the cross-sectional area of the ribbon-like carbon fiber is large, the strength per unit cross-sectional area is large, 200 kL'mm.
2 or more. For example, the carbon 1.
When preparing f, the strength of a circular carbon fiber with a diameter of 20 μm is 150 km2, whereas the strength of a ribbon-shaped carbon fiber with the same cross-sectional area is 250 to 400 kg/m2.
It reached about m2.

(iii )  従って、200kMmm2g上の強度
を有する炭素繊維を製造するに際し、従来より広い断面
積のピッチ繊維を紡糸すればよく、連続紡糸特性が大き
く向上した。
(iii) Therefore, when producing carbon fibers having a strength of over 200 kmMmm2g, it is sufficient to spin pitch fibers with a wider cross-sectional area than conventional ones, and the continuous spinning characteristics have been greatly improved.

(iv)リボン状炭素性の場合、p!維断面積は太きく
ても繊紐厚みは小さい為、同じ断面積を有する円形又は
正四角断面炭素繊維に比べ、たわみ、まげといった変形
に対して強く、紡糸以降の合糸、焼成過程でのケバ立ち
が殆ど無くなった。
(iv) If ribbon-like carbonaceous, p! Even though the fiber cross-sectional area is large, the fiber cord thickness is small, so it is more resistant to deformation such as bending and curling than circular or square cross-section carbon fibers with the same cross-sectional area, and it is more resistant to deformation such as bending and curling after spinning, and during the firing process. The bristling appearance has almost disappeared.

実  施   例 以下に参考例及び比較例とともに実施例を示し、本発明
の特徴とするところをより一層明らかにする。
EXAMPLES Examples are shown below along with reference examples and comparative examples to further clarify the characteristics of the present invention.

参考例1 軟化点110℃、キノリンネ溶分0.18%、ベンゼン
不溶分35%のコールタールピッチ1重量部と水素化重
アントラセン油2重量部との混合溶液をオートクレーブ
中で430℃で60分間撹拌下加熱した後、加圧式フィ
ルターで熱時濾過し、更に減圧した300℃で水素化重
アントラセン油を除去して、還元ピッチを得た。
Reference Example 1 A mixed solution of 1 part by weight of coal tar pitch with a softening point of 110°C, a quinoline soluble content of 0.18%, and a benzene insoluble content of 35% and 2 parts by weight of hydrogenated heavy anthracene oil was heated in an autoclave at 430°C for 60 minutes. After heating with stirring, the mixture was filtered while hot using a pressure filter, and the hydrogenated heavy anthracene oil was removed at a reduced pressure of 300° C. to obtain reduced pitch.

ガス導入管、熱電対、撹拌機及び留出分除去管を備えた
反応器に上記で得られた還元ピッチ50kgを入れ、撹
拌上窒素ガスを導入しつつ410〜480℃で低分子量
成分の除去及び熱重縮合を行なった。反応時間及び温度
の選択により得られた8種の熱重縮合ピッチの性状を第
1表にNO,1〜8として示す。尚、各ピッチの光学的
異方性成分含有量は、67〜100容量%の範囲内にあ
った。
50 kg of the reduced pitch obtained above was placed in a reactor equipped with a gas introduction tube, a thermocouple, a stirrer, and a distillate removal tube, and while stirring and introducing nitrogen gas, low molecular weight components were removed at 410 to 480 °C. and thermal polycondensation. The properties of eight types of thermally polycondensed pitches obtained by selecting reaction times and temperatures are shown in Table 1 as NOs, 1 to 8. Incidentally, the optically anisotropic component content of each pitch was within the range of 67 to 100% by volume.

参考例2 水素化重アントラセン油との混合下における加熱処理を
経ることなく、参考例1と同様のコールタールピッチを
参考例1と同様にして熱重縮合反応に供した。得られた
3種の熱重縮合ピッチの性状をNO,9〜11として示
す。
Reference Example 2 The same coal tar pitch as in Reference Example 1 was subjected to a thermal polycondensation reaction in the same manner as in Reference Example 1 without undergoing heat treatment while mixing with hydrogenated heavy anthracene oil. The properties of the three types of thermally polycondensed pitches obtained are shown as NO, 9 to 11.

参考例3 軟化点85°C、キノリンネ溶物0.2%、ベンゼン不
溶分20%の石油系ピッチをそのまま参考例1と同様の
熱重縮合反応に供した。得られた2種の熱重縮合ピッチ
の性状をNo、12及び13として第1表に示す。
Reference Example 3 Petroleum pitch having a softening point of 85°C, 0.2% quinoline solution, and 20% benzene insoluble content was directly subjected to the same thermal polycondensation reaction as in Reference Example 1. The properties of the two types of thermally polycondensed pitches obtained are shown in Table 1 as Nos. 12 and 13.

第  1  表 実施例1〜13 参考例1〜3で冑た熱重縮合ピッチN0.1〜13を夫
々使用して、幅/高さ/深ざ=3,0mm10、“1 
mm/ 1 、0mmのスリットを有1゛るノズルから
軟化点+40℃なるノズル温度及びドラフト比800の
条件下に紡糸を行なって、リボン状ピッチ繊維を得た。
Table 1 Examples 1 to 13 Using the thermal polycondensation pitches N0.1 to 13 obtained in Reference Examples 1 to 3, respectively, width/height/depth = 3.0 mm10, "1
Ribbon-like pitch fibers were obtained by spinning from a nozzle having a slit of mm/1 and 0 mm at a nozzle temperature of softening point +40° C. and a draft ratio of 800.

紡糸時の糸切れ頻度を第2表に示す。Table 2 shows the frequency of thread breakage during spinning.

上記の如くして得られたリボン状ピツヂ繊!441を空
気中310’Cで不融化し、次いでN2ガス中1200
℃で10分間加熱して得たリボン状炭素繊維のクラック
、ボイド等の欠陥含有率及び引張り強度測定結果を第2
表に併セて示す。
Ribbon-like pitsuji fiber obtained as above! 441 was infusible at 310'C in air and then heated at 1200'C in N2 gas.
The content of defects such as cracks and voids and the tensile strength measurement results of the ribbon-shaped carbon fibers obtained by heating at ℃ for 10 minutes were
It is also shown in the table.

第  2  表 注:1)  100ホール紡糸機による。Table 2 Notes: 1) Based on a 100-hole spinning machine.

第1表及び第2表に示す結果から明らかな如く、軟化点
が280〜330’Cの範囲外であるか或いは光学的異
方性成分量が80容量%未満である場合には、リボン状
ピッチ繊維紡糸時に安定した連続紡糸性が得られない。
As is clear from the results shown in Tables 1 and 2, ribbon-like Stable continuous spinning properties cannot be obtained during pitch fiber spinning.

又、コールタールピッチを原料とする場合には、原料ピ
ッチを予め芳香族系還元性溶剤で処理しておくことによ
り安定した連続紡糸を行ない得ることも明らかである。
It is also clear that when coal tar pitch is used as a raw material, stable continuous spinning can be achieved by treating the raw pitch with an aromatic reducing solvent in advance.

実施例14〜17 参考例1で調製した熱重縮合ピンチNO34を使用して
、スリットの各寸法が種々前なるスリット状ノズルから
軟化点+40℃なるノズル温度及びドラフト比1000
の条件下に紡糸して得たリボン状ピッチ繊維を実施例1
〜13と同様にして不融化及び炭化処理して、リボン状
炭素繊維を得た。
Examples 14 to 17 Using the thermal polycondensation pinch NO34 prepared in Reference Example 1, a slit-shaped nozzle with various slit dimensions was used to obtain a nozzle temperature with a softening point of +40°C and a draft ratio of 1000.
Example 1 Ribbon-shaped pitch fibers obtained by spinning under the conditions of
Infusibility and carbonization treatments were carried out in the same manner as in 13 to obtain ribbon-shaped carbon fibers.

リボン状炭素繊維の断面形状及び強度を第3表に示す。Table 3 shows the cross-sectional shape and strength of the ribbon-like carbon fibers.

第  3  表 実施例18〜21 参考例]で調製した熱重縮合ピッチN0.3を使用して
、幅/高さ/深さ=0.6mm10.05mm10.3
mmのスリットを有するノズルから軟化点+40℃なる
ノズル温度及びドラフト比50〜1500の範囲内で紡
糸を行なった後、実施例1〜13と同様にして不融化及
び炭化処理して、リボン状炭素繊維を得た。得られたリ
ボン状炭素繊維の断面形状及び強度を第4表に示す。
Using the thermal polycondensation pitch N0.3 prepared in Table 3 Examples 18 to 21 Reference Example], width/height/depth = 0.6 mm 10.05 mm 10.3
After spinning with a nozzle having a slit of mm at a nozzle temperature of softening point +40°C and a draft ratio of 50 to 1500, infusibility and carbonization were performed in the same manner as in Examples 1 to 13 to obtain ribbon-like carbon. Obtained fiber. Table 4 shows the cross-sectional shape and strength of the ribbon-like carbon fibers obtained.

第  4  表 参考例22〜24 実施例5と同様にして得たリボン状炭素繊維を更に不活
性ガス雰囲気中1800〜2500℃で]0分間加熱し
て得た繊維の物性を第5表に示す。
Table 4 Reference Examples 22 to 24 Table 5 shows the physical properties of the fibers obtained by further heating the ribbon-shaped carbon fibers obtained in the same manner as in Example 5 at 1800 to 2500°C for 0 minutes in an inert gas atmosphere. .

第  5  表 比較例1 参考例1で調製した熱重縮合ピッチNO,4を使用して
、直径Q、2mm、深さ0.4mmのノズル形状を有す
る円形ノズルから軟化点+40°Cなるノズル温度及び
ドラフト比400の条件下に紡糸を行なった後、ピッチ
繊維を実施例1〜13と同一条件下に不融化及び炭化処
理した。得られた連続長繊維のケバ発生頻度を実施例4
の場合と比較して第6表に示す。
Table 5 Comparative Example 1 Using the thermal polycondensation pitch No. 4 prepared in Reference Example 1, a circular nozzle having a nozzle shape with a diameter Q of 2 mm and a depth of 0.4 mm was used to obtain a nozzle temperature of +40°C in softening point. After spinning under the conditions of a draft ratio of 400 and a draft ratio of 400, the pitch fibers were infusible and carbonized under the same conditions as in Examples 1 to 13. Example 4 shows the fuzz occurrence frequency of the obtained continuous long fibers.
A comparison is shown in Table 6.

第   6   表 参考例4〜6 実施例18〜21と同様にして幅/厚ざの異なるリボン
状炭素繊維3種を調製した。
Table 6 Reference Examples 4 to 6 Three types of ribbon-shaped carbon fibers having different widths/thicknesses were prepared in the same manner as in Examples 18 to 21.

第1図は、幅/厚ざ=75のリボン状炭素繊維の走査型
電子顕微鏡写真(60倍)、第2図は、幅/厚ざ=50
のリボン状炭素繊維の走査型電子顕微鏡写真(500倍
〉、第3図は、幅/厚ざ=10のリボン状炭素繊維の走
査型電子顕微鏡写真(1000倍)を夫々示す。
Figure 1 is a scanning electron micrograph (60x) of a ribbon-like carbon fiber with width/thickness = 75, Figure 2 is a scanning electron micrograph (width/thickness = 50).
Figure 3 shows a scanning electron micrograph (1000x) of a ribbon-like carbon fiber with a width/thickness ratio of 10.

参考例7〜8 実施例15で1qられたリボン状炭素繊維の断面高次構
造の走査電子顕微鏡写真を第′4図(3300倍)及び
第5図(4000倍)とじて示す。
Reference Examples 7 to 8 Scanning electron micrographs of the cross-sectional higher-order structure of the ribbon-like carbon fiber 1q obtained in Example 15 are shown in Figure '4 (3300x) and Figure 5 (4000x).

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は、実施例及び参考例で得られたリボ
ン状炭素繊維の走査電子顕微鏡写真を示す。 (以 上・
1 to 5 show scanning electron micrographs of ribbon-shaped carbon fibers obtained in Examples and Reference Examples. (that's all·

Claims (1)

【特許請求の範囲】[Claims] (1)開口部の幅/高さ比が2〜300のスリットを有
する紡糸ノズルから紡糸用ピッチを押し出し、ドラフト
比が10〜3000となる様に連続的に巻き取つてリボ
ン状ピッチ繊維を得た後、これを酸素含有雰囲気中28
0〜440℃で不融化処理し、次いで不活性ガス雰囲気
中800〜3000℃で加熱することを特徴とするリボ
ン状炭素繊維の製造方法。
(1) Spinning pitch is extruded from a spinning nozzle having a slit with an opening width/height ratio of 2 to 300, and is continuously wound to obtain a ribbon-like pitch fiber with a draft ratio of 10 to 3000. After that, it was heated in an oxygen-containing atmosphere for 28 hours.
A method for producing ribbon-shaped carbon fibers, which comprises performing an infusibility treatment at 0 to 440°C, and then heating at 800 to 3000°C in an inert gas atmosphere.
JP21976185A 1985-10-02 1985-10-02 Production of ribbon-like carbon fiber Pending JPS6278220A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21976185A JPS6278220A (en) 1985-10-02 1985-10-02 Production of ribbon-like carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21976185A JPS6278220A (en) 1985-10-02 1985-10-02 Production of ribbon-like carbon fiber

Publications (1)

Publication Number Publication Date
JPS6278220A true JPS6278220A (en) 1987-04-10

Family

ID=16740587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21976185A Pending JPS6278220A (en) 1985-10-02 1985-10-02 Production of ribbon-like carbon fiber

Country Status (1)

Country Link
JP (1) JPS6278220A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326510A (en) * 1990-01-17 1994-07-05 Osaka Gas Company Limited Carbon composite material incorporating carbon film, forming material and process for producing the carbon film
WO2001002632A1 (en) * 1999-07-01 2001-01-11 University Of Leeds Highly oriented mesophase pitch-based graphite tape and bulk carbon material
JP2007075983A (en) * 2005-09-09 2007-03-29 Kazunori Hidaka Coreless gear lapping disc
JP2008110427A (en) * 2006-10-30 2008-05-15 Kashifuji:Kk Gear finishing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS6147826A (en) * 1984-08-15 1986-03-08 Teijin Ltd Manufacture of pitch-based carbon fiber
JPS61275426A (en) * 1985-05-30 1986-12-05 Mitsui Cokes Kogyo Kk Pitch-based carbon fiber and production thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS6147826A (en) * 1984-08-15 1986-03-08 Teijin Ltd Manufacture of pitch-based carbon fiber
JPS61275426A (en) * 1985-05-30 1986-12-05 Mitsui Cokes Kogyo Kk Pitch-based carbon fiber and production thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5326510A (en) * 1990-01-17 1994-07-05 Osaka Gas Company Limited Carbon composite material incorporating carbon film, forming material and process for producing the carbon film
WO2001002632A1 (en) * 1999-07-01 2001-01-11 University Of Leeds Highly oriented mesophase pitch-based graphite tape and bulk carbon material
JP2007075983A (en) * 2005-09-09 2007-03-29 Kazunori Hidaka Coreless gear lapping disc
JP2008110427A (en) * 2006-10-30 2008-05-15 Kashifuji:Kk Gear finishing device

Similar Documents

Publication Publication Date Title
US4014725A (en) Method of making carbon cloth from pitch based fiber
US4115527A (en) Production of carbon fibers having high anisotropy
US4356158A (en) Process for producing carbon fibers
JPS6278220A (en) Production of ribbon-like carbon fiber
JP2849156B2 (en) Method for producing hollow carbon fiber
US4859382A (en) Process for preparing carbon fibers elliptical in section
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPS62170527A (en) Production of pitch-based carbon fiber
JP2766530B2 (en) Method for producing pitch-based carbon fiber
JPH0796725B2 (en) Pitch-based carbon fiber manufacturing method
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JPH06146120A (en) Pitch-based carbon fiber having high strength and high elastic modulus and its production
JPS63175122A (en) Production of carbon fiber tow
JPS6285030A (en) Production of carbon fiber with modified cross section
JP3125062B2 (en) Carbon fiber production method
JPS62170526A (en) Production of carbon fiber having elliptic cross-section
JP2766521B2 (en) Method for producing pitch-based carbon fiber
JPS59168123A (en) Preparation of pitch carbon yarn
JPH0832974B2 (en) Method for producing pitch carbon fiber
JPH01156513A (en) Production of pitch based carbon fiber
JPS59168125A (en) Production of carbon fiber
JPH04316612A (en) Production of graphite fiber
JPS60259631A (en) Production of pitch carbon fiber
JPS61291684A (en) Production of spinning pitch for carbon fiber
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber