JPS59168125A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS59168125A
JPS59168125A JP3913583A JP3913583A JPS59168125A JP S59168125 A JPS59168125 A JP S59168125A JP 3913583 A JP3913583 A JP 3913583A JP 3913583 A JP3913583 A JP 3913583A JP S59168125 A JPS59168125 A JP S59168125A
Authority
JP
Japan
Prior art keywords
pitch
sec
spinning
fiber
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3913583A
Other languages
Japanese (ja)
Inventor
Tadayuki Matsumoto
忠之 松本
Michihiro Shiokawa
塩川 満弘
Chuichi Endo
遠藤 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3913583A priority Critical patent/JPS59168125A/en
Publication of JPS59168125A publication Critical patent/JPS59168125A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain carbon fibers of a radial structure with cleavage on the surface thereof and further a high elasticity, by melt spinning an optically anisotropic pitch at a specific shear rate in spinneret holes and orientation forming parameter. CONSTITUTION:A pitch containing >=60% optically anisotropic component is melt spun at >=550sec<-1> shear rate in spinneret holes expressed by formula I [Q is the flow rate of the pitch (cm<3>/sec); D is the spinneret hole diameter (cm)] and >=100 orientation forming parameter (f) expressed by formula II [t is the average residence time in the spinneret holes (sec)] to give fibers, which are then infusibilized in the presence of oxygen and carbonized or further graphitized in an atmosphere of an inert gas to afford the aimed carbon fibers.

Description

【発明の詳細な説明】 本発明はピッチから高性能を有する炭素繊維を製造する
方法に関するものであり、ざらに詳しくは、繊維中の光
学的異方性組織がラジアル4構造を示し、表面に開裂を
イ1づ−る高弾性率を有するビツヂ系炭素繊維の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing high performance carbon fiber from pitch, and more specifically, the optically anisotropic structure in the fiber exhibits a radial 4 structure and The present invention relates to a method for producing a bits-based carbon fiber having a high modulus of elasticity that reduces cleavage.

光学的異方性のビッヂから製造した炭素繊維は、PAN
系の炭素繊頼に比べて良好な黒鉛化性を示寸ので、高弾
性率の炭素繊維が得られる利点がある。
Carbon fibers made from optically anisotropic bits are PAN
It exhibits better graphitization properties than other carbon fibers, so it has the advantage of producing carbon fibers with a high modulus of elasticity.

従来から炭素繊維原わ1としてピッチを用いる方法の中
で、得られる炭素繊維に配向構造を形成し高性能の繊維
を得るために、光学的異方性のピッチを使用する方法が
知られている。ピッチの光学的置方性成分はピッチを溶
融紡糸する際、繊維軸方向に配列するが、繊Ivli軸
に垂直な組紐横断面組織においては、典型的な例どして
、放射状に配列したラジアルタイプ、同心円状に配列し
たオニオンタイプ、不規則に配列したランダムタイプの
3つが知られている。
Among the conventional methods of using pitch as carbon fiber raw material 1, a method of using optically anisotropic pitch is known in order to form an oriented structure in the carbon fibers obtained and obtain high-performance fibers. There is. When the pitch is melt-spun, the optical orientation component of the pitch is aligned in the fiber axis direction, but in a braid cross-sectional structure perpendicular to the fiber Ivli axis, the radial component is typically aligned radially. There are three known types: onion type, which is arranged concentrically, and random type, which is irregularly arranged.

前記3つのタイプのピッチ系炭素戦雑の構造の中でラジ
アル構造を有するものは、黒鉛構造を形成する炭素層面
が繊維横断面内で放射状に規則正しく配向しており、し
かし炭素層面ば繊絹輔方向に伸びる大きなドメインを形
成している。したがってラジアル構造を有刃る炭素繊維
は黒鉛化すtlが高(、黒鉛化した場合に高い弾性・キ
ミと熱伝導性、電気伝導性を有し?: +l−3す、燃
料電池の電極などに使用するに(まR適<f祠料である
。にだラジアル構造の炭素繊維は表面に開裂を有し−C
おり、表面Ti4iが大きくなっているので、接着性を
要求される用途にも他の円形断面を有するもの(ランタ
ム、オニオン構造のもの)より優れている。
Among the above three types of pitch-based carbon fiber structures, those with a radial structure have carbon layer surfaces forming a graphite structure oriented radially and regularly within the fiber cross section; It forms a large domain that extends in the direction. Therefore, carbon fiber with a radial structure has a high tl when graphitized, and when graphitized, it has high elasticity, thermal conductivity, and electrical conductivity. In use, R<f is the abrasive material. Carbon fibers with a radial structure have cleavage on the surface and -C
In addition, since the surface Ti4i is large, it is superior to other types having a circular cross section (rantum and onion structures) even in applications where adhesiveness is required.

従来、光学的異方性ピップを溶融紡糸する方法は種々知
られているが、上記ラジアル構造糸のみを工業的に得る
方法は知られていない。
Conventionally, various methods for melt-spinning optically anisotropic pips have been known, but a method for industrially obtaining only the above-mentioned radial structure yarn is not known.

本発明は、高性能のラジアル構造糸を工業的に1qるこ
とを目的として、光学的巽ブ)性ピッチの溶融紡糸方法
についC検問した結果、口金孔内のズリと得られる炭素
繊維の構造の間の関係を見い出し、本発明にff1lJ
達したもので・ある。
The present invention aims to industrially produce 1q of high-performance radial structure yarns, and as a result of investigation into the melt-spinning method of optically flexible pitch, we have found that the shear in the spinneret hole and the structure of the resulting carbon fibers have been investigated. In this invention, we found the relationship between ff1lJ
It is something that has been achieved.

すくI′わら本発明は光学的異方1(1成分が60%以
上であるピッチを溶融紡糸した後、不融化処理および炭
化あるいはざらに黒鉛化処理して炭素繊維を製)告りる
に際し、(1)式で示される口金孔内のズリ速度γを5
5 Q sea  ’ を越え、かつ下記(2〉式で永
される配向形成パラメータfが100以上である条件上
で溶融紡糸することを特徴どづ−る炭素繊維の製造方法
で゛ある3、γ−320、、/πD3・・・・・・・・
・・・・(1)1゛−ff1・・・・・・・・・・・・
・・・・・・・・・・・・(2)[0:ピッヂ流F3 
(am3./sec )D:[1金孔径(cm) [:口金孔内平均滞留時間(sec ) ]本発明iJ
かかる崩成を採用したことにより、はじめて高弾14率
を右するラジアル構造の炭素繊維を工業的なレベルで経
済的に製造し1qたものである。
The present invention is based on optical anisotropy 1 (producing carbon fiber by melt-spinning pitch containing 60% or more of one component, followed by infusibility treatment and carbonization or rough graphitization treatment). , the shear velocity γ in the mouth hole shown in equation (1) is set to 5
This is a method for producing carbon fibers characterized by performing melt spinning under conditions in which the orientation formation parameter f, which is expressed by the following formula (2), exceeds 5 Q sea' and is 100 or more.3, γ -320,,/πD3...
・・・・・・(1)1゛-ff1・・・・・・・・・・・・
・・・・・・・・・・・・(2) [0: Pidge style F3
(am3./sec) D: [1 Gold hole diameter (cm) [: Average residence time in the mouth hole (sec)] Invention iJ
By adopting such a disintegration process, for the first time, carbon fiber with a radial structure having a high bullet rate of 14% was economically manufactured at an industrial level.

特に本発明によれば、160 m/min以上という高
スピードでも安定して紡糸することができ、しかも得ら
れる炭素繊肩1は均一なラジアル構造を有する連続フィ
ラメン1〜であるという特徴を有するものである。
In particular, according to the present invention, the carbon fiber shoulder 1 can be stably spun even at a high speed of 160 m/min or more, and the carbon fiber shoulder 1 obtained is characterized in that it is a continuous filament 1 having a uniform radial structure. It is.

本発明でいう光学的異方性を示すピッチは炭化、黒鉛化
処理で良好な黒’tit (M ’r告を形成乃ること
により高弾性率を達成する。光学的異方性とは、後述す
るが、ピッチを偏光下で観察した場合、たとえばピッチ
をエポキシ樹脂に包埋した後、表面を研磨して、反射偏
光顕微鏡を用いて直交偏光下で観察すると、置方性部分
が光って児えるものである。
Pitch exhibiting optical anisotropy in the present invention achieves high elastic modulus by forming good black 'tit (M'r) through carbonization and graphitization treatment. Optical anisotropy means: As will be explained later, when pitch is observed under polarized light, for example, if the pitch is embedded in epoxy resin, the surface is polished, and then observed under orthogonal polarized light using a reflective polarizing microscope, the orientated parts will shine. It is something that brings forth children.

別の見分(プ方としては脱色検板を用いて色の変化を観
察して判断する方法もある。
Another way to tell is to use a decolorized test plate and observe the change in color.

かかる異方性ビッヂを製)告する方法は、既にいくつか
の方法が知られでいる。たとえば特開昭49−1912
7号公報、特開昭54−160427号公報、特開昭5
7−168989号公報などの方法で製造されるが、本
発明にはかかる公知の異方性ピッチのいずれをも適用す
ることができる。
Several methods are already known for producing such anisotropic bits. For example, JP-A-49-1912
Publication No. 7, JP-A-54-160427, JP-A-5
Although it is manufactured by a method such as that disclosed in Japanese Patent No. 7-168989, any of such known anisotropic pitches can be applied to the present invention.

かかる光学的異方性を示す成分は該ピッチ中60%以上
、好ましくは75%以上、さらに好ましくは90%以上
含有されているものが黒鉛化性に与える影響の点で選択
される。
The component exhibiting such optical anisotropy is selected from the viewpoint of its influence on graphitizability, such that it is contained in the pitch in an amount of 60% or more, preferably 75% or more, and more preferably 90% or more.

本発明では静止型[]金にピッチをう算入し、[J合孔
から押出でことにより紡糸−リ−る方法にd5いて、口
金孔内て゛のズリの大きざと、ざらにこれと口金孔内平
均)11)閉時間とから定義付けられる配向形成パラメ
ータとを特定な条イ1の下で同時に満すことが必須の要
件である1、 溶H11ピッヂが「1金内を通過づる時のズリの大きさ
は下記(1〉式で示されるズリ速度γで定義される。
In the present invention, the pitch is taken into account in the stationary type metal, and the size of the gap in the die hole is determined by the size of the gap in the die hole. 11) It is an essential requirement that the orientation formation parameters defined by the closing time and the orientation formation parameters defined by the The size of the shear is defined by the shear speed γ shown by the following formula (1).

γ−32Q/πD3・・・・・・・・・・・・(1)[
Q:ピッチ流量(am3/sec )D:[]金合孔(
am)] 光学的異方性ピッチはズリにより各種の配向をづ−るが
、ラジアル構造の配向を達成づ−るには、上記スリ速度
γを550sec−+ を越え、より好ましくは650
SeO−1以上に設定することが重要である。550s
ec−1以下ではラジアル構造よりもランダム構造を形
成し易く、かかる糸は開裂のない、接衿性や熱特性、電
気特性の劣る炭素繊維を形成する。
γ-32Q/πD3・・・・・・・・・・・・(1) [
Q: Pitch flow rate (am3/sec) D: [] Gold alloy hole (
am)] The optical anisotropic pitch creates various orientations due to shear, but in order to achieve the orientation of the radial structure, the above-mentioned scraping speed γ should be set to exceed 550 sec-+, more preferably 650 sec-+.
It is important to set it to SeO-1 or higher. 550s
If the yarn is less than ec-1, a random structure is more likely to be formed than a radial structure, and such a yarn forms carbon fibers that are free from cleavage and have poor jointability, thermal properties, and electrical properties.

紡糸された繊組の配向構造は、上記ズ′りの太きさとス
リを受()る時間によって定義されるト1記〈2)式で
表される配向形成パラメータ[にJ一つ−C1さらに強
く影響を受(〕るbのである。。
The orientation structure of the spun fiber set is defined by the thickness of the gap and the time for receiving the scraping, and is defined by the orientation formation parameter [J1-C1 It is even more strongly influenced by b.

f−7J−t  ・・・・・・・・(2)[1:1]金
孔内乎均)j18留口)間(sec ) Jなお上記式
の1」全孔内平均滞留時間tは上記〈3)式より求める
ことかできる33 【−πF)2M/4Q・・・・・・・・・(3)[0:
口金孔の長さくcm)’1 本発明においては、かかる配向形成パラメータfが10
0以−F、好j:シクは140以十の範囲にあることが
ラジアル構造の配向を安定して得るために必要な要イ1
である。
f-7J-t ・・・・・・・・・(2) [1:1] The average residence time t in all holes in the above formula is 33 [-πF)2M/4Q (3) [0:
The length of the mouthpiece hole is cm)'1 In the present invention, the orientation forming parameter f is 10
0 or more - F, favorable j: 140 or more is necessary to stably obtain the orientation of the radial structure.
It is.

なお本発明において、明円形の口金用出孔を採用する場
合は、上記口金孔(¥Dは同一断面f^の円形に換算し
た時の直径を適用りる。また本発明にお(〕るズスリ速
度は1−1金叶出孔部分の流路の断面積の最も小ざい部
分の流路i¥で、また平均滞留時間tは吐出孔部分の流
路中の平均滞留時間でWt l覆る。すなわら該流路は
ピッチを田川する外部へ開孔1ノだ最小断面積以降の流
路部分を意味し、通常の口金にa5りる導入部分は含ま
ない。
In addition, in the case of adopting a bright circular mouth hole for the mouthpiece in the present invention, the diameter of the mouthpiece hole (¥D is the diameter when converted to a circle with the same cross section f^) is applied. The slurry speed is determined by the flow path i at the smallest cross-sectional area of the flow path in the 1-1 gold leaf outlet hole portion, and the average residence time t is the average residence time in the flow path in the discharge hole portion Wtl. In other words, the flow path means the flow path portion beyond the minimum cross-sectional area of 1 mm opening to the outside, which extends the pitch, and does not include the introduction portion that is larger than a5 in a normal cap.

本発明(J、かかる条イ!1を同時に満足覆る範囲で溶
融紡糸することにより、安定して均一なラジアル(11
1造の配向を有Jる高弾↑4率の炭素繊維を工業的に製
造し得るのである。
The present invention (J, by simultaneously melt-spinning such a strip A! 1 in a range that satisfactorily covers it, a stable and uniform radial (11
It is possible to industrially produce carbon fibers with a high elasticity ↑4 ratio and a 1-structure orientation.

本発明でいうラジアルならびにランダム構造の繊維につ
いて顕微鏡写真図で説明すると、第1ならび′に2図の
ぞ1〜Cは、それぞれ紡糸直後、不融化後、黒鉛化後に
お(]る各11i雛のそれぞれの状態を示すもので、第
1図はラジアル構造を有で−る繊維の例で、リハ型的な
マルタ十字模様が観察される。
To explain fibers with radial and random structures as used in the present invention using microscopic photographs, Figures 1 to 1C in Figures 1 and 2 are 11i chicks produced immediately after spinning, after infusibility, and after graphitization, respectively. Figure 1 shows an example of a fiber with a radial structure, in which a rehab-type Maltese cross pattern is observed.

なお図のCはかかる繊維を黒鉛化したものであり、繊頼
の一部が開裂欠損した状態がよくわかる。第2図a〜G
はランタム(b造を有づる炭素繊維の例゛C゛あるが、
いずれにしてもかかる構造が紡糸時から黒鉛化に至るま
での全ての段階において繊維を支配していることが判明
する。かかる現象はいずれもカラーで観察て−きる。た
とえば第1図aの紡糸直後の繊郭を偏光顕微鏡で観察す
る際に、脱色検板を検板の速度が小ざい方の光の振動方
向を第1.3象限として挿入覆ると、第1.3象限が青
色、第2.4象限が黄色となって観察される。、また第
1図aの場合、試別を回転させ−r4:)m察される邑
の位[m関係が変化しないことから内部の光学的異方性
成分が放射状に配向していることを確認できる。
Note that C in the figure shows such a fiber graphitized, and it can be clearly seen that a portion of the fiber has been cleaved and lost. Figure 2 a-G
There is an example of carbon fiber ゛C゛ with lantum (b structure),
In any case, it has been found that this structure dominates the fiber at all stages from spinning to graphitization. All such phenomena can be observed in color. For example, when observing the fibers immediately after spinning in Figure 1a using a polarizing microscope, if a decolorizing test plate is inserted and covered with the vibration direction of the light in which the speed of the test plate is smaller in the 1.3 quadrant, the 1st The 3rd quadrant is observed as blue, and the 2nd and 4th quadrants are observed as yellow. , In addition, in the case of Figure 1a, by rotating the sample, the position of the position detected by r4:)m does not change, indicating that the internal optical anisotropic components are radially oriented. You can check it.

本発明の方法ににれば従来)ヱ成されitl <’Kか
った高いスピードで紡糸することができる。すなわち上
記(1)式から理解されるように、スリ速度は、ビッヂ
の141孔当りの吐出吊Qに依存するので、紡糸速度を
速くして、田用量を大きくづることによりズリ速度が大
きくなり、ラジアル構造糸か形成し易くなる。従って本
発明の方法によれば、たとエバ160 m/ min以
上、さらには200m/min以上とか300m/mi
n以−にという高速紡糸が可(mテア’o1条件ニJ:
ツT4;t1 ooo m/min以上という超スピー
ドで紡糸Jること・b可能である。
According to the method of the present invention, it is possible to perform spinning at a high speed, which was higher than that achieved conventionally. In other words, as can be understood from the above equation (1), the shedding speed depends on the discharge lift Q per 141 holes of the bitge, so by increasing the spinning speed and increasing the amount of rice, the shearing speed increases. , it becomes easier to form a radial structure yarn. Therefore, according to the method of the present invention, the speed of the ember is 160 m/min or more, further 200 m/min or more, or 300 m/min.
High-speed spinning is possible (m tear 'o1 condition ni J:
It is possible to spin at an ultra-high speed of T4; t1 ooo m/min or more.

なお本発明において、ズリ通電を大きくするということ
は、口金背面圧が高くなるということにhす、かかる条
イ′1下では、高速紡糸にd3いても均一な径を有する
連続フィラメントを容易に製造することができるという
利点がある。
In the present invention, increasing the shear energization means increasing the back pressure of the spinneret. Under such a thread '1, continuous filaments having a uniform diameter can be easily produced even during high-speed spinning. It has the advantage that it can be manufactured.

本発明において、紡糸条件をコン1ヘロールすることに
より、所望の比率て゛ラジアル、ランダムの両方の構造
が混6.する糸を形成することもできる。
In the present invention, by controlling the spinning conditions, both radial and random structures can be mixed in a desired ratio. It is also possible to form threads that

スリ速度γを550sec−+以下とし、かつ配向形成
パラメータfを90以下とすれば、全ての部分がランダ
ム1f/I造をイjする炭素繊維を1uることができる
ので紡糸条件に応じて2種類またはそれ以−1の種類の
口金孔を同一「1金内に設【)るか、または複数の口金
から吐出させて引ぎ揃えれば、所望の比率でラジアル、
ランダム構造の混繊糸を得ることができる。
If the pick-up speed γ is 550 sec-+ or less and the orientation formation parameter f is 90 or less, it is possible to produce 1u carbon fiber in which all parts have a random 1f/I structure. By installing the orifice holes of one type or more in the same metal, or by discharging from multiple nozzles and aligning them, the radial,
A mixed fiber yarn with a random structure can be obtained.

口金内のズリの1?I性が両省の中間にある場合はラジ
アル・ランダム両4f4造の混在した糸となるが、その
場合両者の比ヰiは一定とならず、場合によっては1つ
の単組紐の繊Iff +11+方向に筒構造が繰り返え
し表れる場合もあるので、ラジアル・ランダムの比率を
=)ントロールづ−ることができない。
1 of the gaps in the mouthpiece? If the I property is between the two, the yarn will be a mixture of radial and random 4F4 structures, but in that case the ratio of the two will not be constant, and in some cases the fibers of one single braid will move in the Iff +11+ direction. Since the cylindrical structure may appear repeatedly, it is not possible to control the radial random ratio.

ピッチは訓量ポンプ亡不活性気体による加圧押出しもで
きるが、泪品ポンプにj、る押出しが好J、しく適用さ
れる。特に多数の吐出孔を有づる口金を使用して均一な
マルヂノイラメン1〜を形成りる場合や濾過工程を通し
て01出する場合に極めて有効である。
Pitch can be extruded under pressure using an inert gas using a mass pump, but extrusion using a liquid pump is preferably applied. It is particularly effective when forming uniform Mardinoiramen 1 through a nozzle having a large number of discharge holes or when discharging O1 through a filtration process.

本発明の方法にJ、って得られる紡糸御の単繊肩1径は
30μ以下が適当であり、好ましくは5〜30μさらに
は7〜20μの範囲にあるのが、糸切れや強度の貞から
好ましいが、かかる径以外にも効果がある。
The shoulder diameter of the spun single fiber obtained by the method of the present invention is suitably 30μ or less, preferably in the range of 5 to 30μ, and more preferably in the range of 7 to 20μ to avoid yarn breakage and strength. However, other diameters are also effective.

かくして1りられる繊維は、ついで通常の方法により不
融化処理され、炭化、黒鉛化される。不融化処理として
はたどえば酸素の存在下、通常空気中で250〜420
℃で醇化さける方法が適用できる。また酸素としてオゾ
ンやNO2などの酸化性の気体を使用することも、不融
化処理の効率の点から好ましい。かかる不融化処理され
たm Iffはついで炭化、黒鉛化されるが、かかる方
法も通常採用される方法を適用することかできる。かか
る11− 炭化処理どしてはたとえ(J真空または不活性気体雰囲
気中で800〜1700’Cに加熱する方法があり、ま
た黒鉛化処理どしてはたとえば真空または不活性気体゛
雰囲気中で1700℃以」−に加熱処Jり1する方法が
ある。
The fiber thus obtained is then treated to be infusible, carbonized, and graphitized by a conventional method. The infusibility treatment can be traced back to 250 to 420 in the presence of oxygen, usually in air.
A method of avoiding liquefaction at ℃ can be applied. Further, it is also preferable to use an oxidizing gas such as ozone or NO2 as oxygen from the viewpoint of efficiency of the infusibility treatment. The infusible mIff is then carbonized and graphitized, and any commonly used method can be applied to this process. For such carbonization treatment, there is a method of heating to 800 to 1700'C in vacuum or inert gas atmosphere, and for graphitization treatment, for example, heating to 800 to 1700'C in vacuum or inert gas atmosphere is possible. There is a method of heat treatment at temperatures above 1700°C.

以下本発明を実施例を挙げてさらに汀線に説明づる。The present invention will be further explained below with reference to examples.

なお実施例中の測定方法は以下に示で方法による。Note that the measurement method in the examples is as shown below.

[光学的賃方性] 試別を]−ボキシ系樹脂に包埋したあと、常法にJ:す
ω(磨した。研磨面をl eitz社製0RTI−10
PL A N Fi微鏡を用いて反則偏光法によりlI
A察した。
[Optical properties] After embedding in a boxy-based resin, the sample was polished using a conventional method.
II by anti-polarization method using PLA N Fi microscope
A I guess.

光学的異方性成分の存在量は、前記した偏光下で観察し
た時の等方性部分と巽方性部分の面積比から求めた。
The abundance of the optically anisotropic component was determined from the area ratio of the isotropic portion and the traverse portion when observed under the polarized light described above.

[キノリンネ溶分] JIS−に−2425に規定される遠心分前法と’t濾
過法とを組合せた方法で行なった。
[Quinoline solution] This was carried out by a method combining the pre-centrifugation method and the 't filtration method specified in JIS-2425.

[ガラス転位温度) −19− 1〕erkin −E 1mer礼製1つS C−2を
用いて窒素雰囲気中で測定した。試別を290℃まで加
熱後、V濡まて・冷却し、再亀臂渇して測定することに
より、脱水ピーク等ベースラインを乱J−要因を除いて
測定した。
[Glass Transition Temperature] -19- 1] Measured in a nitrogen atmosphere using Erkin-E 1mer manufactured by SC-2. After heating the sample to 290° C., wetting it with V, cooling it, and drying it again, we measured the baseline such as the dehydration peak, excluding the disturbance J-factor.

[元素分析] 柳本製作所製CI−I NコーダーM1−3型を使用し
て、試料分解炉900〜950℃、酸化炉850℃、還
元炉550 °C、ヘリウム流速180mα/minの
測定条件の下で測定した。
[Elemental analysis] Using a CI-IN Coder M1-3 manufactured by Yanagimoto Seisakusho, the measurement conditions were a sample decomposition furnace of 900 to 950°C, an oxidation furnace of 850°C, a reduction furnace of 550°C, and a helium flow rate of 180 mα/min. It was measured with

[強伸度測定] JIS−R−7601のに規定される方法に準じた。繊
維の直径は、強伸度測定部に隣接した部分を走査型電子
顕微鏡を用いて測定した。また開裂したIi 維はその
横断面の顕微鏡写真から面積を求めた。
[Strength and elongation measurement] According to the method specified in JIS-R-7601. The fiber diameter was measured using a scanning electron microscope at a portion adjacent to the strength/elongation measuring section. Furthermore, the area of the cleaved Ii fiber was determined from a micrograph of its cross section.

実施例1 軟化点が80℃の]−ルタールビッヂを窒素雰囲気中で
約1時間か(Jて410℃まで臂温し溶融さけた後、3
0 rpmで攪拌しながら410℃で12時間熱処理し
た。ついで380℃で窒素J+tl圧し200メツシコ
のガラスピーズを用いて不溶分を9濾過により除去した
後、420℃、5mm1−1(]で減圧処理を行ない低
沸点成分を除去した。
Example 1 - Tartar bitge with a softening point of 80°C was warmed to 410°C for about 1 hour to avoid melting in a nitrogen atmosphere, and then heated to 410°C to avoid melting.
Heat treatment was performed at 410° C. for 12 hours while stirring at 0 rpm. Next, the mixture was heated to 380° C. under nitrogen J + tl pressure and insoluble matter was removed by filtration using 200 mesh glass beads, followed by vacuum treatment at 420° C. and 5 mm 1-1 (] to remove low-boiling components.

得られたビツヂを一丁ボキシ樹脂に包埋して研磨後、反
射偏光顕微鏡で観察した結果、約90%以上が光学的異
方性成分であった。光学的異方性組織は大きな流れ状を
示した。熱処理ピッチの特性は、キノリンネ溶分63W
1%、軟化点340℃、ガラス転位湿度195℃であり
、元素分析結果は、炭素93wt%、水素3.7wt%
、窒素1.0wt%であった。
The obtained bits were embedded in a boxy resin, polished, and then observed with a reflective polarizing microscope. As a result, approximately 90% or more of the bits were optically anisotropic components. The optically anisotropic structure showed a large flow shape. The characteristics of heat-treated pitch are 63W quinoline solubility.
1%, softening point: 340°C, glass transition humidity: 195°C, elemental analysis results: carbon: 93wt%, hydrogen: 3.7wt%
, nitrogen content was 1.0 wt%.

この熱処理ピッチを用いて、孔径、孔長を変更した各種
の口金を使用し、単孔当りの吐出量を0゜080cm3
/min 、紡糸湿度380℃、口金表面温度355°
Cで溶融紡糸し、600m/minのローラで引取り、
平均直径が12μの各種の糸を得た。この糸の密度は1
.30/Cm3で、また溶融ピッチの密度は1.19/
cm3であった。
Using this heat treatment pitch, various types of ferrules with different hole diameters and lengths were used, and the discharge amount per single hole was reduced to 0°080cm3.
/min, spinning humidity 380°C, spinneret surface temperature 355°
Melt-spun at C, taken up with rollers at 600 m/min,
Various threads with an average diameter of 12μ were obtained. The density of this thread is 1
.. 30/Cm3, and the density of the molten pitch is 1.19/Cm3.
It was cm3.

この糸を熱風循環型オーブンに入れ、空気中で不融化処
理した。不融化処理糸f’tは、まず室1品から15)
0°Cに約15分間で昇渇し、150℃で昇温開始から
15分間保持した。ついで150〜310°0まで譬湿
速度1°C/minでシr温し、310℃(こ30分間
保持して不融化を完了した。この不融化糸を室湿から1
200′Cj、で5℃7mtn テ1温して炭化し、ざ
らに2000℃で黒鉛化した。
This yarn was placed in a hot air circulation oven and subjected to infusibility treatment in air. Infusible treated yarn f't is first processed from 1 item to 15)
The temperature was raised to 0°C in about 15 minutes, and the temperature was maintained at 150°C for 15 minutes from the start of heating. Then, it was heated to 150 to 310°0 at a humidity rate of 1°C/min, and was kept at 310°C for 30 minutes to complete infusibility.
It was carbonized by heating at 200'Cj for 1 hour at 5°C and 7 mtn, and then roughly graphitized at 2000°C.

(qられた黒鉛化糸について、横断面の光学内周/j1
り構造や強度特性などを表1にまとめた。
(For the q graphitized yarn, the optical inner circumference of the cross section / j1
Table 1 summarizes the structure, strength characteristics, etc.

本発明例である実験NO,1,2ばズリ速度γか550
sec−’ を越え、かつ配向形成パラメータfも10
0以上である場合であり、jqられた黒鉛化糸の横断面
組織はラジアル構造で、糸の開裂を有する繊維であった
Experiment No. 1, 2, which is an example of the present invention, has a shear speed γ or 550
sec-' and the orientation formation parameter f is also 10
0 or more, and the cross-sectional structure of the jqed graphitized yarn was a radial structure, and the fiber had yarn cleavage.

比較例である実験N0.3は配向形成パラメータfが1
00未渦である場合であり、またN004はズリ速度γ
が550sec −1未満で配向形成パラメータfが1
00未満である場合であり、いずれも得られた黒鉛化糸
の横断面@I織はラジアル構造とランダム構造とが混在
したものであった。J:た比較例であるN095はズリ
速度γが55 Q 5ec−1未渦で、かつ配向形成パ
ラメータfが90以下であり、均一なランダム構造の黒
鉛化糸であった。
In Experiment No. 3, which is a comparative example, the orientation formation parameter f was 1.
00 is the case where there is no vortex, and N004 is the shear velocity γ
is less than 550 sec −1 and the orientation formation parameter f is 1
In both cases, the graphitized yarn obtained had a cross section @I weave with a mixture of radial structure and random structure. J: Comparative example N095 had a shear rate γ of 55 Q 5ec-1 without swirling, an orientation formation parameter f of 90 or less, and was a graphitized yarn with a uniform random structure.

El、たN o、 1の口金孔とN005の口金孔とを
同一口金に同じボール数段りた口金で同様に紡糸した結
果、全ての部分がラジアル構造のものと全ての部分がラ
ンダム構造であるものが1月1に混繊された黒鉛化糸が
得られた。
As a result of spinning in the same spinneret using the same spinneret with the same number of balls in the same spinneret and the spinneret holes of No. 1 and N005, all parts had a radial structure and all parts had a random structure. Some mixed graphitized yarn was obtained on January 1st.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.2図はイれぞれランタム構造どランタム構造を有
する各繊維の紡糸から黒鉛化に↑るJ、での構)りj変
化を)[)跡しJこ繊キ11横断面の(局光顕微鏡η゛
真図である。 図中aは溶融紡糸直後のグリーンフj・イバーど称され
る繊維の横断面図、1〕は不融化後の繊維横断面図、G
は黒1イ)化摂のIli卸横卸商断面図す。 特許出願人   東  し  株  式  会  礼1
8− 14
Figure 1.2 shows the changes in structure from spinning to graphitization of each fiber with a random structure and a random structure, respectively. (This is a true view of a local light microscope. In the figure, a is a cross-sectional view of a fiber called green fiber immediately after melt-spinning, 1) is a cross-sectional view of a fiber after infusibility, and G
Black 1a) A cross-sectional view of the Ili wholesaler in Kasetsu. Patent applicant: Toshi Co., Ltd. Rei 1
8-14

Claims (1)

【特許請求の範囲】 光学的異方性成分が60%以」ニであるビッヂを溶融紡
糸した後、不融化処理および炭化あるいはさらに黒鉛化
処11!シて炭素繊維を製造するに際し下記(1)式で
示される口金孔内のズリ速度γが550sec−+ を
越え、かつ下記(2)式で示される配向形成パラメータ
fが100以上である条件下で溶融紡糸することを特徴
とする炭素繊維の製造方法。 γ−32Q/πD3・・・・・・・・・(1)f−γf
t・・・・・・・・・・・・・・・・・・・・・(2)
[Q:ピッ゛チの流m (am3/sec )、1〕二
ロ金孔径(am) 1 :口金孔内滞留時間(sec ) ]
[Claims] After melt-spinning a bitch having an optically anisotropic component of 60% or more, it is subjected to infusibility treatment, carbonization, or further graphitization treatment11! When producing carbon fibers, the conditions are such that the shear velocity γ in the die hole, expressed by the following formula (1), exceeds 550 sec-+, and the orientation formation parameter f, expressed by the following formula (2), is 100 or more. A method for producing carbon fiber, characterized by melt spinning. γ-32Q/πD3 (1) f-γf
t・・・・・・・・・・・・・・・・・・・・・(2)
[Q: Pitch flow m (am3/sec), 1] Niro gold hole diameter (am) 1: Residence time in the mouth hole (sec)]
JP3913583A 1983-03-11 1983-03-11 Production of carbon fiber Pending JPS59168125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3913583A JPS59168125A (en) 1983-03-11 1983-03-11 Production of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3913583A JPS59168125A (en) 1983-03-11 1983-03-11 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS59168125A true JPS59168125A (en) 1984-09-21

Family

ID=12544658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3913583A Pending JPS59168125A (en) 1983-03-11 1983-03-11 Production of carbon fiber

Country Status (1)

Country Link
JP (1) JPS59168125A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913889A (en) * 1983-03-09 1990-04-03 Kashima Oil Company High strength high modulus carbon fibers
US20180051392A1 (en) * 2015-03-09 2018-02-22 Korea Institute Of Industrial Technology Method of manufacturing high strength synthetic fibers, and high strength synthetic fibers manufactured using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4913889A (en) * 1983-03-09 1990-04-03 Kashima Oil Company High strength high modulus carbon fibers
US20180051392A1 (en) * 2015-03-09 2018-02-22 Korea Institute Of Industrial Technology Method of manufacturing high strength synthetic fibers, and high strength synthetic fibers manufactured using the same
US10422052B2 (en) * 2015-03-09 2019-09-24 Korea Institute Of Industrial Technology Method of manufacturing high strength synthetic fibers

Similar Documents

Publication Publication Date Title
Edie et al. Melt-spun non-circular carbon fibers
JPS59168127A (en) Production of carbon fiber
JPS59168126A (en) Production of pitch based carbon fiber
GB2095222A (en) Production of pitch fiber having a random mosaic structure in cross section
US4356158A (en) Process for producing carbon fibers
JPS59168125A (en) Production of carbon fiber
JPS60194120A (en) Production of pitch fiber
JPH0781211B2 (en) Carbon fiber manufacturing method
JPH0545685B2 (en)
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS62170528A (en) Carbon fiber and production thereof
JPS59168124A (en) Production of carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber
JPS60181313A (en) Manufacture of pitch fiber
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPH01282349A (en) Production of pitch-based carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method
JPH026620A (en) Pitch-based carbon fiber and production thereof
JPS62184123A (en) Production of pitch based carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JPS62170527A (en) Production of pitch-based carbon fiber
JP3024320B2 (en) Method for producing high strand strength carbon fiber