JPS62170528A - Carbon fiber and production thereof - Google Patents

Carbon fiber and production thereof

Info

Publication number
JPS62170528A
JPS62170528A JP1152986A JP1152986A JPS62170528A JP S62170528 A JPS62170528 A JP S62170528A JP 1152986 A JP1152986 A JP 1152986A JP 1152986 A JP1152986 A JP 1152986A JP S62170528 A JPS62170528 A JP S62170528A
Authority
JP
Japan
Prior art keywords
pitch
spinning
fiber
optically
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1152986A
Other languages
Japanese (ja)
Inventor
Eiji Fujisawa
藤沢 英治
Tadanori Kitamura
北村 忠則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Nitto Boseki Co Ltd
Original Assignee
Nitto Boseki Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Boseki Co Ltd, Kawasaki Steel Corp filed Critical Nitto Boseki Co Ltd
Priority to JP1152986A priority Critical patent/JPS62170528A/en
Priority to DE19873701631 priority patent/DE3701631A1/en
Publication of JPS62170528A publication Critical patent/JPS62170528A/en
Priority to US07/234,164 priority patent/US5037697A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/15Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from coal pitch
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • D01F9/155Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues from petroleum pitch

Abstract

PURPOSE:To obtain a carbon fiber having different optical properties between the peripherals part and the core part, by melt-spinning a specific spinning pitch produced by adding an optically isotropic pitch to an optically anisotropic pitch and subjecting the spun fiber to infusibilization, carbonization and graphitization. CONSTITUTION:A freshly prepared optically isotropic pitch is added to an optically anisotropic pitch prepared from coal tar pitch to obtain a spinning pitch having a meso-phase content of 60-95vol% and a benzene-insoluble content of 80-95wt% and containing a matrix phase exhibiting bulk meso-phase when observed by a polarization microscope. A pitch fiber produced by the melt-spinning of the pitch is infusibilized, carbonized and, if necessary, graphitized to obtain the objective fiber having a peripheral part composed of an optically isotropic component and a core part composed of an optically anisotropic component which may contain an isotropic component as a part thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、繊維断面の外縁部が光学的等方性成分、その
中心部が光学的異方性成分らしくは光学的等方性成分を
部分的に含む異方性成分からなり、繊維表面に開裂が全
く存在しない構造を有する炭素繊維とその製造方法に関
する。
Detailed Description of the Invention: Industrial Field of Application The present invention is characterized in that the outer edge of the fiber cross section has an optically isotropic component, and the center has an optically anisotropic component. This invention relates to a carbon fiber having a structure in which there is no cleavage at all on the fiber surface, and a method for producing the same.

炭素繊維は、宇宙産業及び航空機産業などの特殊W4造
部材、及びレジャーやスポーツ用品等の分野で広く用い
られている。
Carbon fiber is widely used in fields such as special W4 construction components in the space and aircraft industries, and leisure and sporting goods.

従来の技術 一般に炭素繊維は、その機械的特性に基づいて、汎用炭
素繊維と高性能炭素繊維とに大別される。
BACKGROUND OF THE INVENTION Carbon fibers are generally classified into general-purpose carbon fibers and high-performance carbon fibers based on their mechanical properties.

この高性能炭素繊維は、原料から分類すると、ポリアク
リロニトリル等の合成繊維を原料とするものと、石油系
及びコールタール系ピッチを原料とするものがある。
Classifying these high-performance carbon fibers based on their raw materials, there are those made from synthetic fibers such as polyacrylonitrile, and those made from petroleum-based and coal tar-based pitches.

ポリアクリロニトリル等の合成I!l雑を原料とする場
合、原料繊維の価格が高いこと、原料繊維の炭化収率が
低いことなど、コスト高になる欠点を免れず、これらが
、一般的な工業材料としての用途拡大をはばむ大きな原
因となっていた。
Synthesis of polyacrylonitrile etc. I! When raw materials are used as raw materials, the drawbacks of high costs such as the high price of raw fiber and low carbonization yield of raw fiber are inevitable, and these are hindering the expansion of its use as a general industrial material. This was a major cause.

この様な状況の下で高性能炭素繊維を安価に製造する方
法として、光学的異方性のメソフェーズピッチ〔ビツヂ
類などの多核−多環芳香族分子が熱処理により成長する
と、ピッチの一部あるいは全部が液晶状態を示すように
なる。この様な液晶状態を炭素質メソフェーズあるいは
単にメソフェーズ(mesophase )と称する。
Under these circumstances, as a method to produce high-performance carbon fibers at low cost, optically anisotropic mesophase pitch (when polynuclear-polycyclic aromatic molecules such as bits grow through heat treatment, part of the pitch or Everything will show a liquid crystal state. Such a liquid crystal state is called a carbonaceous mesophase or simply a mesophase.

また、このメソフェーズを含むピッチをメソフェーズピ
ッチと称する。光学的異方性を示す。〕を原料とする方
法について研究がなされている。
Further, a pitch including this mesophase is referred to as a mesophase pitch. Exhibits optical anisotropy. ] is being researched.

このメソフェーズピッチ中のメソフェーズ含有量につい
ては、特公昭55−37611号公報、特公昭58−5
1526号公報に見られる様にメソフェーズピッチ中の
メソフェーズ含有位は40〜90%、あるいは70@m
%以上であり、これらの範囲を包括したピッチをメソフ
ェーズピッチと考えてよい。
Regarding the mesophase content in this mesophase pitch, Japanese Patent Publication No. 55-37611 and Japanese Patent Publication No. 58-5
As seen in Publication No. 1526, the mesophase content in mesophase pitch is 40 to 90%, or 70@m
% or more, and pitches encompassing these ranges may be considered mesophase pitches.

従来、このメソフェーズピッチを低m (300〜35
0℃)で紡糸した炭素繊維には繊維表面に開裂を生じ、
炭素繊維の性能を著しく低下させるという欠点があった
Conventionally, this mesophase pitch has been reduced to a low m (300 to 35
Carbon fibers spun at 0℃) have cleavage on the fiber surface,
This had the disadvantage of significantly reducing the performance of carbon fiber.

ピッチの光学的異方性成分であるメソフェーズは、溶融
紡糸する際、繊維軸方向に配列するが、その配列の方向
により、繊維軸方向に垂直な繊維断面組織は、三つのタ
イプに分類されることが知られている。
Mesophase, which is an optically anisotropic component of pitch, is aligned in the fiber axis direction during melt spinning, and depending on the direction of the alignment, the fiber cross-sectional structure perpendicular to the fiber axis is classified into three types. It is known.

即ち、繊維軸方向に垂直なラジアル構造、同心円状に配
列したオニオン構造、不規則に配列したランダム構造で
ある。従来、この構造の決定は、紡糸温度に依存すると
考えられている。即ち、紡糸温度の上昇とともにラジア
ル→ランダム→オニオンと変化すると考えられている。
That is, a radial structure perpendicular to the fiber axis direction, an onion structure arranged concentrically, and a random structure arranged irregularly. Conventionally, the determination of this structure is thought to depend on the spinning temperature. That is, it is thought that as the spinning temperature increases, the flow changes from radial to random to onion.

即ち、第1図に見られる如く、第1図の(イ)はラジア
ル構造であって、なお、繊維表面の開裂を表わし、第1
図の(ロ)はランダム構造であり、第1図の(ハ)はオ
ニオン構造である。
That is, as seen in FIG. 1, (a) in FIG. 1 has a radial structure, and also represents the cleavage of the fiber surface, and the
(B) in the figure is a random structure, and (C) in FIG. 1 is an onion structure.

ラジアル構造は、繊維表面に開裂が入り易いため、一般
的な工業材料として不利であり、同時に強度低下をもた
らすため、好ましい構造と考えられていない。そのため
、繊維表面の開裂の入らないランダムあるいは、オニオ
ン構造を有する炭素繊維製造技術、更に詳細には紡糸技
術について、いくつかの提案がなされている。
The radial structure is disadvantageous as a general industrial material because the fiber surface is easily cleaved, and at the same time it causes a decrease in strength, so it is not considered a preferable structure. Therefore, several proposals have been made regarding carbon fiber manufacturing technology having a random or onion structure that does not involve cleavage of the fiber surface, and more specifically regarding spinning technology.

これらの提案を大別すると、およそ次の2つの方法に分
類される。即ち、 ■ 紡糸湿度を上げることにより、ランダムあるいはオ
ニオン構造を有する炭素繊維を得る方法。
Broadly speaking, these proposals can be classified into the following two methods. Namely, (1) A method of obtaining carbon fibers having a random or onion structure by increasing the spinning humidity.

■ 紡糸ノズル孔部を通過する溶融ピッチの流れを制御
することにより、ランダムあるいはオニオン構造を有す
る炭素繊維を得る方法。
■ A method for obtaining carbon fibers with a random or onion structure by controlling the flow of molten pitch passing through the spinning nozzle hole.

である。It is.

■の例としては、特開昭59−76925号公報がある
。この方法は、繊維の構造を決定する因子として、紡糸
温度に於ける異方性成分と等方性成分の相状態により、
母相〔等方性成分とメソフェーズの2相混在状態に於い
て、母体となっている相を母相(マトリックス)と称す
る。〕が等方性となる温度で紡糸することにより、ラン
ダムまたはオニオン構造を有する炭素繊維を製造する方
法である。また、特開昭59−53717号公報に見ら
れる様に、ピッチの粘性変化温度よりも高い温度に昇温
した後、紡糸することにより、繊維表面に開裂の入らな
い構造を有する炭素繊維を得る方法もある。
An example of (2) is Japanese Patent Application Laid-Open No. 76925/1983. This method uses the phase states of anisotropic and isotropic components at the spinning temperature as a factor that determines the fiber structure.
Matrix phase [In a two-phase mixed state of an isotropic component and a mesophase, the phase that is the matrix is called the matrix. ] is a method for producing carbon fibers having a random or onion structure by spinning at a temperature at which the carbon fibers become isotropic. Furthermore, as seen in Japanese Patent Application Laid-open No. 59-53717, carbon fibers having a structure that does not cause cleavage on the fiber surface can be obtained by spinning after heating the pitch to a temperature higher than the viscosity change temperature. There is a way.

しかしながら、これらの方法はいずれも、紡糸温度が高
く、溶融ピッチの発泡現象が生じ、この泡による紡糸時
の切断、または、繊維中にこの泡が取り込まれたりする
ため、安定した紡糸を考えると好ましい方法とはいえな
い。また、これらは溶融粘度も低くなるため、マルチフ
ィラメントの紡糸に対応できないという欠点もある。
However, in all of these methods, the spinning temperature is high and the molten pitch foams, and this foam can cause breakage during spinning or be incorporated into the fiber, making it difficult to achieve stable spinning. This is not a desirable method. Furthermore, since these have low melt viscosity, they also have the disadvantage of not being compatible with multifilament spinning.

一方、■の例としては、特開昭59− 168124号公報および特開昭59−168127M
公報などがあげられる。これらは紡糸ノズルの形状を変
えることにより、異方性ビツチの流動を制御し、ランダ
ムまたはオニオン構造を有する炭素繊維を1与る方法で
ある。しかしながら、これらの方法も、溶融ピッチの流
動性の良い状態でのみ効果があり、実質的に紡糸温度を
高くづる必要があり、溶融ビツヂの発泡現象、または繊
維中への泡の混入は避けられない。またノズル孔の加工
性が困難である点も不利である。
On the other hand, examples of ■ include JP-A-59-168124 and JP-A-59-168127M.
Examples include public notices, etc. These methods control the flow of anisotropic bits by changing the shape of the spinning nozzle to produce carbon fibers having a random or onion structure. However, these methods are effective only when the molten pitch has good fluidity, and it is necessary to raise the spinning temperature substantially, making it impossible to avoid the foaming phenomenon of the molten pitch or the incorporation of bubbles into the fiber. do not have. Another disadvantage is that the nozzle hole is difficult to work with.

発明が解決しようとする問題点 この様に、従来の繊維表面に開裂の入らない構造を有す
る炭素繊維の製造方法は、づべて溶融ピッチが紡糸ノズ
ル孔を通過する時の流動を何らかの方法で制御する技術
、即ち、溶融ピッチの粘性を低くするか、ノズル孔の形
状を変えることによる機械的な方法であった。これらの
方法は、結果的に紡糸温度を上げなければその効果はな
く、溶融ピッチの熱的に不安定な温度域での紡糸となる
Problems to be Solved by the Invention As described above, conventional methods for manufacturing carbon fibers having a structure that does not cause cleavage on the fiber surface generally involve controlling the flow of the molten pitch when it passes through the spinning nozzle hole in some way. Control techniques were mechanical methods, either by lowering the viscosity of the molten pitch or by changing the shape of the nozzle hole. These methods have no effect unless the spinning temperature is increased, resulting in spinning in a temperature range where the molten pitch is thermally unstable.

そのため、紡糸時の泡による断糸または泡の混入した繊
維となり、高性能な炭素繊維を工業的に安定して製造す
るには十分でなく、満足できるものではない。
As a result, fibers are broken due to bubbles during spinning or fibers are mixed with bubbles, which is not sufficient to industrially stably produce high-performance carbon fibers, which is unsatisfactory.

問題点を解決するための手段 本発明の目的は、炭素繊維の表面に開裂の入らない構造
を右する高性能炭素繊維と、その炭素繊維を、溶融ピッ
チが熱的に安定で紡糸安定性が良く、比較的低い温度で
紡糸効率が良く製造することにある。
Means for Solving the Problems The purpose of the present invention is to develop high-performance carbon fibers that provide a structure that does not cause cleavage on the surface of carbon fibers, and to develop carbon fibers with thermally stable melt pitch and spinning stability. The objective is to manufacture the spinning material with good spinning efficiency at a relatively low temperature.

本発明は、炭素1!雑の表面に光学的等方性成分を形成
させることにより、その表面がラジアル構造をとること
を防ぎ、その表面に全く開裂が存在しない炭素繊維で、
その中心部分が光学的異方性成分もしくは光学的等方性
成分を部分的に含む光学的異方性成分からなっており、
光学的等方性成分からなるlIi維表面表面層さを任意
に変えることができる炭素繊維で、炭素繊維の構造の表
面が光学的等方性成分と、その中心部分が光学的異方性
成分もしくは光学的等方性成分を部分的に含む光学的異
方性成分とからなる炭素繊維に関する。
The present invention is based on carbon 1! By forming an optically isotropic component on the surface of the carbon fiber, it is possible to prevent the surface from taking on a radial structure, and there is no cleavage at all on the surface.
The central part consists of an optically anisotropic component or an optically anisotropic component partially containing an optically isotropic component,
A carbon fiber whose surface layer can be arbitrarily changed, consisting of an optically isotropic component.The surface of the carbon fiber structure is an optically isotropic component, and the center part is an optically anisotropic component. Alternatively, the present invention relates to a carbon fiber comprising an optically anisotropic component partially containing an optically isotropic component.

また、本発明は、コールタールピッチより調整した、光
学的異方性ピッチの溶融紡糸、ピッチ繊維の不融化処理
、ピッチ繊維の炭化処理及びピッチ繊維の黒鉛化処理か
らなる炭素繊維の製造方法に関する。更に詳細には、紡
糸用ピッチが、バルクメソフェーズを呈し、メソフェー
ズ含有量60へ・95容ω%で、ベンゼン不溶分量80
〜95重量%の成分を有し、ピッチ繊維に炭化処理及び
黒鉛化処理をほどこすとき、前記処理中に、ピッチ繊維
の表面に開裂が入るのを防ぐために、メソフェーズ含有
量及びベンゼン不溶分量を調整に際し、光学的異方性ピ
ッチに新たに調製した光学的等方性ピッチを添加する工
程で、光学的異方性ピッチに対し光学的等方性ピッチの
添加量を変えることにより、比較的低温溶融紡糸ができ
、ピッチを溶融紡糸するときに、ピッチ繊維の表面が光
学的等方性ピッチで形成されるようにすることにより、
炭化及び黒鉛化工程に於て、ピッチ繊維の表面に開裂が
入らないので、炭素繊維の表面に全く開裂が存在せず、
かつ炭素繊維の断面に於て炭素繊維の外周部を形成する
光学的等方性成分の幅を変えることができるピッチ調整
工程、そのピッチの溶融紡糸工程、不融化、炭化及び黒
鉛化工程から成る、前述の炭素繊維の製造方法に関する
The present invention also relates to a method for producing carbon fiber, which comprises melt spinning an optically anisotropic pitch prepared from coal tar pitch, infusible treatment of pitch fibers, carbonization treatment of pitch fibers, and graphitization treatment of pitch fibers. . More specifically, the spinning pitch exhibits a bulk mesophase, has a mesophase content of 60 to 95% by volume, and has a benzene insoluble content of 80%.
~95% by weight, and when carbonizing and graphitizing pitch fibers, the mesophase content and benzene insoluble content are reduced to prevent cleavage from occurring on the surface of the pitch fibers during the treatment. During adjustment, in the process of adding newly prepared optically isotropic pitch to optically anisotropic pitch, by changing the amount of optically isotropic pitch added to optically anisotropic pitch, relatively By making it possible to perform low-temperature melt spinning and forming the surface of pitch fibers with optically isotropic pitch when melt spinning pitch,
During the carbonization and graphitization process, no cleavage occurs on the surface of the pitch fiber, so there is no cleavage at all on the surface of the carbon fiber.
and a pitch adjustment process capable of changing the width of the optically isotropic component forming the outer periphery of the carbon fiber in the cross section of the carbon fiber, a process of melt spinning the pitch, and a process of infusibility, carbonization, and graphitization. , relates to a method of manufacturing the above-mentioned carbon fiber.

なお、前記製造方法の態様として、ピッチ調整工程で、
コールタールピッチまたは石油ピッチ、S RC等を減
圧蒸溜または溶剤抽出により調製された、軟化点が15
0℃以上及びベンゼン不溶分子が31ffi%以上の光
学的等方性ピッチを光学的異方性ピッチを添加すること
により準備された紡糸用ピッチを用いた炭:ti織繊維
製造方法が包含される。
In addition, as an aspect of the manufacturing method, in the pitch adjustment step,
Coal tar pitch, petroleum pitch, SRC, etc. prepared by vacuum distillation or solvent extraction, with a softening point of 15
Includes a method for producing charcoal:ti woven fiber using a spinning pitch prepared by adding an optically anisotropic pitch to an optically isotropic pitch having a temperature of 0°C or higher and a benzene-insoluble molecule content of 31ffi% or higher. .

本発明は、前記構成を採用したことにより、はじめて、
繊維表面に開裂の入らない構造を有する高性能な炭素繊
維を、200ボ一ル以上のマルチフィラメントの形態に
おいても安定して工業的に1!?ることができる。
By adopting the above configuration, the present invention provides the following features for the first time:
High-performance carbon fiber with a structure that does not cause cleavage on the fiber surface is stable and industrially 1! even in the form of multifilament of 200 volumes or more! ? can be done.

作用 本発明でいう光学的異方性とは、ピッチ表面を(σ1磨
して、反)1型偏光顕微鏡を用いて、直交漏光下で観察
した場合、光って児える部分、または、脱色検板を用い
た場合色の変化する部分のことである。
Optical anisotropy as used in the present invention refers to the part that shines when the pitch surface is polished by σ1 and observed under orthogonal light leakage using a 1-type polarizing microscope, or the part that shines during decolorization. When using a board, this is the part where the color changes.

この様な異方性ピッチを製造する原料は、例えば、コー
ルタール、コールタールピッチ、石炭液化物のような石
炭系重質油、石油の常圧残留油、または減圧蒸留及びこ
れらの残油の熱処理によって副生するタールやピッチの
いずれでもよいが、処理の容易さと好適な異方性ピッチ
が得られるという点で、コールタールピッチが特に有利
である。
Raw materials for producing such anisotropic pitch include, for example, coal tar, coal tar pitch, coal-based heavy oils such as coal liquefied products, atmospheric residual oils of petroleum, or vacuum distillation and these residual oils. Although any tar or pitch produced by heat treatment may be used, coal tar pitch is particularly advantageous in that it is easy to process and a suitable anisotropic pitch can be obtained.

かかるコールタールピッチから異方性ピッチを得る方法
としては、既にいくつかの方法が知られている。例えば
、特開昭49−19127号公報および特開昭59−3
6725号公報などの方法で製造されるが、本発明にお
いては、この様な公知の異方性ピッチを適用することが
できる。即ち、コールタールピッチを水素供与性溶媒、
例えば、テトラヒドロキノリンまたはテトラリンと供に
、自生圧下350〜500℃で水素化するか、またはコ
ールタールピッチを水素加圧上芳香族油と供に水素化し
、溶媒回収後、400〜500℃の温度で、不活性ガス
雰囲気下、常圧または減圧下でメソフェーズ化処理をし
て、異方性ピッチを得るちのである。
Several methods are already known for obtaining anisotropic pitch from such coal tar pitch. For example, JP-A-49-19127 and JP-A-59-3
Although it is manufactured by a method such as that disclosed in Japanese Patent No. 6725, such a known anisotropic pitch can be applied in the present invention. That is, coal tar pitch is used as a hydrogen-donating solvent,
For example, hydrogenation with tetrahydroquinoline or tetralin at 350 to 500°C under autogenous pressure, or hydrogenation of coal tar pitch with aromatic oil under hydrogen pressure and, after solvent recovery, a temperature of 400 to 500°C. Then, an anisotropic pitch is obtained by performing mesophasing treatment under an inert gas atmosphere at normal pressure or reduced pressure.

メソフェーズ化処理により[1された異方性ピッチは、
通常95容示%以上のメソフェーズを含有している。特
に、従来高性能炭素繊維用の紡糸ピッチとしては、偏光
顕微鏡下で全面異方性を呈するものが用いられている。
The anisotropic pitch made [1] by the mesophasing process is
It usually contains 95% by volume or more of mesophase. In particular, conventional spinning pitches for high-performance carbon fibers have been those that exhibit overall anisotropy under a polarizing microscope.

この全面異方性ピッチを、ピッチの熱的に安定な温度域
で紡糸すると、繊維表面に開裂を有するラジアル構造の
繊維となることは周知である。
It is well known that when this fully anisotropic pitch is spun in a temperature range where the pitch is thermally stable, it becomes a fiber with a radial structure having cleavage on the fiber surface.

本発明においては、紡糸用ピッチ中のメソフェーズ含有
ff160〜95容世%、好ましくは80〜90容弓%
、ベンゼン不溶分m80〜95重ffi%、好ましくは
80〜90Iffi%であり、このピッチのブロックを
偏光顕微鏡下で観察した時に、母相がバルクメソフェー
ズ(メソフェーズ球晶が合体成長し、さらに、母相を形
成する様になった状態をバルクメソフェーズと称してい
る。この状態では、等方性成分は島状に分布している。
In the present invention, the mesophase content in the spinning pitch is 160 to 95%, preferably 80 to 90%.
, the benzene insoluble content is 80 to 95% by weight, preferably 80 to 90Iffi%, and when a block of this pitch is observed under a polarizing microscope, the parent phase is bulk mesophase (mesophase spherulites coalesce and grow, and The state in which a phase is formed is called a bulk mesophase. In this state, isotropic components are distributed like islands.

)を呈することが必須の要件となる。) is an essential requirement.

このメソフェーズ含有量及びベンゼン不溶分量の調製は
、前述のメソフェーズ化処理により得られたメソフェー
ズ含有量95容量%以上、好ましくは、偏光顕微鏡下で
観察した時に全面異方性を呈する異方性ピッチに、新た
に調製された光学的等方性ピッチを添加することにより
行なわれる。
The mesophase content and benzene-insoluble content are adjusted so that the mesophase content obtained by the above-mentioned mesophase treatment is 95% by volume or more, preferably an anisotropic pitch that exhibits overall anisotropy when observed under a polarizing microscope. , by adding freshly prepared optically isotropic pitch.

本発明においては、この光学的等方性ピッチの添加によ
り、異方性ピッチをメソフェーズ含有量60〜95容量
%、好ましくは80〜90容弓%、ベンゼン不溶分量8
0〜95重量%、好ましくは80〜90重量%に調製し
、紡糸用ピッチとして用いると効果的である。メソフェ
ーズ含有量が60容旬%以下になると、偏光顕微鏡下で
、ピッチの異方性成分は球晶となり、母相の等方性成分
と紡糸時に相分離を起こすため、安定した紡糸が出来な
くなる。また、メソフェーズ含有攬が95容邑%以上で
は、メソフェーズ化処L!I! 後の異方性ピッチと性
状が類似し、本発明の効果は(1られない。
In the present invention, by adding this optically isotropic pitch, the anisotropic pitch has a mesophase content of 60 to 95% by volume, preferably 80 to 90% by volume, and a benzene insoluble content of 8%.
It is effective to adjust the content to 0 to 95% by weight, preferably 80 to 90% by weight, and use it as a spinning pitch. When the mesophase content is less than 60%, the anisotropic component of the pitch turns into spherulites under a polarizing microscope, which causes phase separation from the isotropic component of the matrix during spinning, making stable spinning impossible. . In addition, if the mesophase content is 95% or more, mesophase treatment L! I! The properties are similar to the later anisotropic pitch, and the effects of the present invention cannot be achieved.

光学的等方性ピッチとしては、コールタールピッチまた
は石油ピッチ、SRCのいずれの原料を用いてもよく、
これらの原料ピッチを減圧蒸溜または溶剤抽出により調
製し、処理温度450℃以下、好ましくは400℃以下
、更に好ましくは320〜380℃にて、180分以下
、好ましくは30分以下で処理することによって得られ
た、ベンゼン不溶分子fi30重徂%以上、軟化点15
0℃以上のピッチが特に本発明の効果を得るためには好
ましい。かかるピッチの添加量は、異方性ピッチを偏光
顕微鏡下で観察した時に、母相がバルクメソフェーズを
呈している範囲、即ら、光学的メソフェーズ含有量60
〜95容弓%の範囲で添加すれば良い。また、光学的等
方性ピッチの添加及び混合は、室温Fで異方性ピッチと
粉砕混合、またはブロック状のまま300〜370℃の
温度範囲で溶融混合してもよい。
As the optically isotropic pitch, any raw material such as coal tar pitch, petroleum pitch, or SRC may be used,
These raw pitches are prepared by vacuum distillation or solvent extraction, and treated at a treatment temperature of 450°C or less, preferably 400°C or less, more preferably 320 to 380°C, for 180 minutes or less, preferably 30 minutes or less. The obtained benzene insoluble molecules fi 30% by weight or more, softening point 15
A pitch of 0° C. or higher is particularly preferable in order to obtain the effects of the present invention. The amount of pitch added is determined to be within the range where the matrix exhibits a bulk mesophase when the anisotropic pitch is observed under a polarizing microscope, that is, the optical mesophase content is 60%.
It may be added in a range of ~95%. Further, the optically isotropic pitch may be added and mixed by pulverizing and mixing with the anisotropic pitch at room temperature F, or by melting and mixing in the temperature range of 300 to 370° C. while maintaining the block shape.

この様にして調製された、紡糸用ピッチは、次いで溶融
紡糸されるが、本発明でいう溶融紡糸とは、ピッチ類か
ら、炭素繊維を製造する場合に常用される方法のことで
ある。
The spinning pitch thus prepared is then melt-spun, and melt-spinning in the present invention refers to a method commonly used for producing carbon fibers from pitches.

即ち、紡糸用ピッチを300〜400℃の温度範囲で溶
融し、次いで、この溶融ピッチを不活性気体により、加
圧または、計徂ポンプによる押し出しによりノズル孔を
経て、紡糸する。特に、紡糸温度は、ピンチの熱分解の
起こる様な高温では、発生ガスによる気泡が生じ、紡糸
時の切断の原因となるので、好ましくは300〜380
℃の温度範囲が紡糸温度として採用される。紡糸ノズル
孔から押し出されたピッチは、200m/分以上、好ま
しくは400m/分以上の高速で紡糸され、ピッチ繊維
の繊維径は、ピッチの流出量と、紡糸速度により制御を
容易に行うことが出来る。また、本発明に63いては、
200ホ一ル以上のマルチフィラメントの紡糸も可能で
ある。
That is, the pitch for spinning is melted at a temperature in the range of 300 to 400°C, and then the molten pitch is spun through a nozzle hole by pressurization with an inert gas or by extrusion using a metering pump. In particular, the spinning temperature is preferably 300 to 380, because at high temperatures where pinch thermal decomposition occurs, bubbles are generated by the generated gas and cause breakage during spinning.
A temperature range of °C is taken as the spinning temperature. The pitch extruded from the spinning nozzle hole is spun at a high speed of 200 m/min or more, preferably 400 m/min or more, and the fiber diameter of the pitch fiber can be easily controlled by the amount of pitch flowing out and the spinning speed. I can do it. In addition, the present invention includes 63:
Multifilament spinning of 200 holes or more is also possible.

紡糸されたピッチ繊維は、次いで不融化処理するが、こ
れは、空気または酸素、オゾン、窒素酸化物など酸化性
雰囲気中において、昇温速度10℃/分以下、好ましく
は2〜b 〜380℃、好ましくは240〜350℃の温度まで加
熱し、この温度に300分以下、好ましくは1〜30分
保持することによって行なわれる。
The spun pitch fibers are then subjected to infusibility treatment, which is carried out in air or in an oxidizing atmosphere such as oxygen, ozone, nitrogen oxide, etc., at a heating rate of 10°C/min or less, preferably from 2 to 380°C. , preferably by heating to a temperature of 240 to 350° C. and maintaining this temperature for 300 minutes or less, preferably 1 to 30 minutes.

不融化温度が200℃以下では、不融化が十分進行せず
、次の炭化処理において、軟化または融着が起り、良好
な炭素繊維を1′7ることが出来ない。
If the infusibility temperature is below 200° C., the infusibility will not proceed sufficiently, and softening or fusion will occur in the subsequent carbonization treatment, making it impossible to form good carbon fibers.

また、不融化温度380℃以上、または保持時間が30
0分以上になると、m維の酸化状態が過剰となり、高強
度な炭素繊維を得ることが出来なくなる。また、不融化
昇温速度が10℃/分以上では、繊維間の融着が生じ、
良好な炭素繊維は得られなくなる。
In addition, the infusibility temperature is 380°C or higher, or the holding time is 30°C.
When the time is longer than 0 minutes, the oxidation state of the m-fibers becomes excessive, making it impossible to obtain high-strength carbon fibers. Furthermore, if the infusibility temperature increase rate is 10°C/min or more, fusion between fibers occurs,
Good carbon fibers cannot be obtained.

不融化処理された繊維は、次いで不活性気体雰囲気中で
炭化処理される。この炭化処理は、通常30℃/分以下
の昇温速度、好ましくは、15℃/分以下で、800℃
以上、好ましくは1000〜1500℃まで加熱し、こ
の温度に5分以上、好ましくは10〜30分保持するこ
とによって行なわれる。炭化温度が、800℃以下では
、繊維の炭化が十分進行せず、高性能炭素繊維としての
性能が発現されない。また、昇温速度が30℃/分以上
では、繊維同志が融着し、良好な炭素繊維が得られない
The infusible fibers are then carbonized in an inert gas atmosphere. This carbonization treatment is usually carried out at a heating rate of 30°C/min or less, preferably 15°C/min or less, to 800°C.
The above is preferably carried out by heating to 1000 to 1500°C and maintaining this temperature for 5 minutes or more, preferably 10 to 30 minutes. If the carbonization temperature is 800° C. or lower, the carbonization of the fibers will not proceed sufficiently and the performance as a high-performance carbon fiber will not be exhibited. Furthermore, if the temperature increase rate is 30° C./min or more, the fibers will fuse together, making it impossible to obtain good carbon fibers.

ざらに、炭化処理された繊維は、必要に応じて黒鉛化処
理を施すこともできる。この黒鉛化は、不活性気体雰囲
気中、1800〜3000℃に加熱することによって行
なわれる。
Furthermore, the carbonized fibers can also be graphitized if necessary. This graphitization is performed by heating to 1800 to 3000°C in an inert gas atmosphere.

本発明に於いては、上記の構成を経て、始めて、繊維表
面に開裂の入らない構造を有する高性能炭素繊維が製造
される。その理由は明らかではないが、紡糸用ピッチ中
の光学的等方性成分が繊維軸方向に配向したメソフェー
ズ層面になんらかの作用をしているものと推定される。
In the present invention, a high-performance carbon fiber having a structure in which the fiber surface does not undergo cleavage is manufactured only after the above-described configuration is completed. Although the reason for this is not clear, it is presumed that the optically isotropic component in the spinning pitch has some effect on the mesophase layer surface oriented in the fiber axis direction.

また、第2図および第3図に示ず様に、等方性成分の添
加により繊維断面の表層部に平滑な層が形成され、この
層が表面開裂を抑制しているものと推定される。
Furthermore, as shown in Figures 2 and 3, the addition of the isotropic component forms a smooth layer on the surface layer of the fiber cross section, and it is presumed that this layer suppresses surface cleavage. .

以下、実施例により本発明をさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

なお、実施例中の測定方法は以下に示す方法による。In addition, the measurement method in Examples is based on the method shown below.

「光学的等方性成分帛(メソフェーズ含有fli)1試
料を、あらかじめ寸法既知の円筒アルミセルに入れ、窒
素雰囲気中370°Cで溶融し、急冷固化したものをア
ルミセルごとエポキシ樹脂中に包埋した後、円筒アルミ
セルを直径方向に切断、研磨し、偏光顕微鏡にて、光学
的異方性成分の円筒断面における存在量を面積で求め、
次いで、体積換算した時の等方性成分との体積比より求
めた。
``One sample of optically isotropic component fabric (mesophase-containing fli) was placed in a cylindrical aluminum cell of known dimensions in advance, melted at 370°C in a nitrogen atmosphere, rapidly solidified, and embedded in epoxy resin together with the aluminum cell. After that, the cylindrical aluminum cell was cut in the diameter direction and polished, and the amount of optically anisotropic components present in the cylindrical cross section was determined by area using a polarizing microscope.
Next, it was calculated from the volume ratio with the isotropic component when converted into volume.

[強度測定コ J l5−R−7601に規定される方法に準じた。i
ii維の直径は、強度測定部に隣接した部分を測微計を
用いて測定した。
[According to the method specified in Strength Measurement Co., Ltd. J15-R-7601. i
The diameter of the ii fiber was measured using a micrometer at a portion adjacent to the strength measurement section.

[軟化点] アジア理化蒸製軟化点測定器AMK型を用いて測定した
[Softening Point] Measured using a softening point meter manufactured by Asia Chemical Steaming Model AMK.

実施例1 ベンゼン不溶分30.733Nt1%、軟化点88.8
℃、固定炭素56.4重量%の性状を有する市販のコー
ルタールピッチ1巾m部に対し、テ1〜ラワン2虫退部
を、オートクレーブ中N2ガス雰囲気の自生圧下、43
0℃で30分間水素化処理を行い、フリーカーボンを含
むデトラリン不溶分を除去後、溶剤を回収し、水素化ピ
ッチを得た。さらに、この水素化ピッチを6 Torr
の減圧下、3℃/分の昇温速度で、N2ガスを吹き込み
ながら490℃迄界温しメソフェーズ化を行いピッチを
得た。このピッチのブロックを偏光顕微鏡で観察したと
ころ全面異方性であった。この異方性ピッチは、キノリ
ンネ溶分33.5ffiffi%、ベンゼン不溶分91
.3重量%、軟化点276℃であった。
Example 1 Benzene insoluble content 30.733Nt1%, softening point 88.8
℃, 1 m width part of commercially available coal tar pitch having properties of 56.4% by weight of fixed carbon was subjected to Te 1 to Lauan 2 insect removal in an autoclave under autogenous pressure in N2 gas atmosphere at 43°C.
Hydrogenation treatment was performed at 0° C. for 30 minutes to remove insoluble portions of detralin including free carbon, and then the solvent was recovered to obtain hydrogenated pitch. Furthermore, this hydrogenated pitch was heated to 6 Torr.
Under reduced pressure, the temperature was raised to 490° C. at a heating rate of 3° C./min while blowing N2 gas to form a mesophase, and pitch was obtained. When a block with this pitch was observed with a polarizing microscope, it was found to be entirely anisotropic. This anisotropic pitch has a quinoline soluble content of 33.5% and a benzene insoluble content of 91%.
.. 3% by weight, and the softening point was 276°C.

この異方性ピッチに、ベンゼン不溶分56.9重色%、
軟化点231℃の等方性ピッチを19.1重量%添加し
、N2ガス雰囲気下370℃で溶融混合し、紡糸用ピッ
チとした。この、紡糸用ピッチは、ベンゼン不溶分85
.2重間%、軟化点271℃であった。また、このピッ
チのブロックを偏光顕微鏡で観察したところ、母相がバ
ルクメソフェーズであり、等方性部は島状に分布し、メ
ソフェーズ含有量は約85容最%であった。
This anisotropic pitch has a benzene insoluble content of 56.9%,
19.1% by weight of isotropic pitch with a softening point of 231°C was added, and the mixture was melted and mixed at 370°C in an N2 gas atmosphere to obtain pitch for spinning. This spinning pitch has a benzene insoluble content of 85
.. % double weight and a softening point of 271°C. Further, when this pitch block was observed with a polarizing microscope, it was found that the parent phase was a bulk mesophase, the isotropic parts were distributed like islands, and the mesophase content was about 85% by volume.

この紡糸用ピッチを、0.2#のノズル口径を有する真
ちゅう製の紡糸装置にて溶融し、N2ガス加圧によりピ
ッチ温度340℃で紡糸した。ピッチ繊維は、平ドラム
に400m/分の速度で巻き取り、繊維径10.5μの
l維を無切断で得た。
This spinning pitch was melted in a brass spinning device having a nozzle diameter of 0.2 #, and spun at a pitch temperature of 340° C. by pressurizing N2 gas. The pitch fibers were wound around a flat drum at a speed of 400 m/min to obtain l fibers with a fiber diameter of 10.5 μm without cutting.

前記ピッチ繊維を、酸素気流中3℃/分で、350℃迄
昇渇し、10分間保持して不融化を完了した。この不融
化繊維を、さらにアルゴン気流中15℃/分で1100
℃迄昇温し、30分間保持して炭素繊維を得た。
The pitch fibers were heated to 350° C. at a rate of 3° C./min in an oxygen stream and held for 10 minutes to complete infusibility. This infusible fiber was further heated at 1100°C at 15°C/min in an argon stream.
The temperature was raised to .degree. C. and held for 30 minutes to obtain carbon fibers.

この炭素繊維は、表面が平滑な光学的等方性成分層であ
り、かつその中心部分が不鮮明なラジアル構造を呈する
成分から成っており、その表面成分は、繊維半径の10
%の厚みを有していた。このような二層構造を有する炭
素繊維は、その表面に全く開裂はなく、引張り強度は2
50 K9/ trvt+2、弾性率は14 、 Ot
on/g2を示した。
This carbon fiber is an optically isotropic component layer with a smooth surface and a component exhibiting an indistinct radial structure at the center.
% thickness. Carbon fiber with such a two-layer structure has no cleavage on its surface and has a tensile strength of 2.
50 K9/trvt+2, elastic modulus is 14, Ot
on/g2.

比較例1 実施例1で得た全面異方性ピッチに等方性ピッチを添加
せずに、そのまま実施例1と同様に340℃で紡糸した
ところ、11.0μの繊維が、無切断で、ピッチがなく
なるまで得られた。
Comparative Example 1 When the entire anisotropic pitch obtained in Example 1 was spun at 340°C in the same manner as in Example 1 without adding isotropic pitch, 11.0μ fibers were obtained without cutting. I got until I ran out of pitches.

このピッチI!維を、実施例1と同様に不融化、炭化処
理し、炭素繊維とした。この炭素m雑は、引張り強度1
50Kg/#2、弾性率1凱Q ton/履2の性能を
有し、電子顕微鏡による!1ift断面の観察では、典
型的なラジアル構造を呈し、繊維表面の開裂が確認され
た。繊維表面の開裂のため、炭素繊維の引張り強度は低
い値を示した。
This pitch I! The fibers were made infusible and carbonized in the same manner as in Example 1 to obtain carbon fibers. This carbon material has a tensile strength of 1
It has a performance of 50Kg/#2 and an elastic modulus of 1 Kai Q ton/2, as determined by an electron microscope! Observation of a 1ift cross section revealed a typical radial structure, and cleavage on the fiber surface was confirmed. The tensile strength of the carbon fibers showed a low value due to the cleavage of the fiber surface.

比較例2 実施例1で19だ全面異方性ピッチに、実施例1で用い
た等方性ピッチを28.2ffiffi%添加し、溶融
混合して紡糸用ピッチを得た。
Comparative Example 2 28.2 ffiffi% of the isotropic pitch used in Example 1 was added to the fully anisotropic pitch of 19 in Example 1, and the mixture was melt-mixed to obtain spinning pitch.

この紡糸用ピッチは、ベンゼン不溶分81.7型苗%、
軟化点266℃であり、ブロックの偏光顕微鏡観察の結
果、相転換を起こしていた。即ち、母相が等方性成分で
あり、メソフェーズは球晶となった。メソフェーズ含有
量は75容a%であった。
This spinning pitch has a benzene insoluble content of 81.7%,
The softening point was 266°C, and as a result of observing the block under a polarizing microscope, a phase transformation had occurred. That is, the parent phase was an isotropic component, and the mesophase was a spherulite. The mesophase content was 75% by volume a.

この紡糸用ピッチを実施例1と同様な方法で紡糸したと
ころ、紡糸温度340°Cにて、10.0μの繊維を紡
糸したが、紡糸開始後10分で繊維の切断が起こり、そ
の後も繊維の切断が多かった。
When this spinning pitch was spun in the same manner as in Example 1, fibers of 10.0μ were spun at a spinning temperature of 340°C, but fiber breakage occurred 10 minutes after the start of spinning, and even after that, fibers of 10.0 μm were spun. There were many amputations.

得られたピッチ繊維を、実施例1と同様に不融化、炭化
処理し、炭素繊維にした。この炭素繊維は、引張り強度
185Kg/rnM2、弾性率12.0ton/m2の
性能を有し、電子顕微鏡による繊維断面の観察の結果、
図−3に示す様に、中心部がわずかながら不鮮明なラジ
アル構造を早し、表層部は繊維半径の30%に及ぶ平滑
な層となった。
The obtained pitch fibers were made infusible and carbonized in the same manner as in Example 1 to obtain carbon fibers. This carbon fiber has a tensile strength of 185 Kg/rnM2 and an elastic modulus of 12.0 ton/m2, and as a result of observing the fiber cross section with an electron microscope,
As shown in Figure 3, the radial structure was slightly unclear in the center, and the surface layer became a smooth layer covering 30% of the fiber radius.

実施例2 実施例1で得た水素化ピッチを、5 TOrrの減圧下
、3℃/分の昇温速度で、N2ガスを吹き込みながら、
470℃にて20分間メソフェーズ化を行い異方性ピッ
チを得た。
Example 2 The hydrogenated pitch obtained in Example 1 was heated under a reduced pressure of 5 Torr at a temperature increase rate of 3° C./min while blowing N2 gas.
Mesophase formation was performed at 470° C. for 20 minutes to obtain anisotropic pitch.

この異方性ピッチは、キノリンネ溶分33.0重量%、
ベンゼン不溶分91.8重量%、軟化点268℃であっ
た。また、この異方性ピッチのブロックを偏光顕微鏡で
観察したところ全面異方性であった。
This anisotropic pitch has a quinoline soluble content of 33.0% by weight,
The benzene insoluble content was 91.8% by weight, and the softening point was 268°C. Furthermore, when this anisotropic pitch block was observed with a polarizing microscope, it was found to be entirely anisotropic.

この異方性ピッチに、ベンゼン不溶分54.9型組%、
軟化点223°Cの等方性ピッチを20.0重量%添加
し、N2ガス雰囲気下、370℃で溶融混合して紡糸用
ピッチを得た。この紡糸用ピッチは、ベンゼン不溶分8
4.8重量%、軟化点263℃であった。また、このピ
ッチのブロックを偏光顕微鏡で観察したところ、母相が
バルクメソフェーズであり、等方性部は島状に分イロし
、メソフェーズ含有量は約80容量%であった。
This anisotropic pitch has a benzene insoluble content of 54.9%,
20.0% by weight of isotropic pitch with a softening point of 223°C was added and melted and mixed at 370°C in an N2 gas atmosphere to obtain spinning pitch. This spinning pitch has a benzene insoluble content of 8
It was 4.8% by weight, and the softening point was 263°C. Further, when this pitch block was observed with a polarizing microscope, it was found that the matrix was a bulk mesophase, the isotropic part was divided into islands, and the mesophase content was about 80% by volume.

この紡糸用ピッチを、0.2mのノズル口径が円周状に
200ホ一ル配列した真ちゅう製の紡糸装置にて溶融し
、N2ガス加圧によりピッチ温度345℃で紡糸した。
This spinning pitch was melted in a brass spinning device having 200 holes arranged circumferentially with a nozzle diameter of 0.2 m, and spun at a pitch temperature of 345° C. by pressurizing N2 gas.

ピッチ繊維は平ドラムに450771/分の速度で巻き
取り、m維径9.2μの繊維を得た。
The pitch fibers were wound around a flat drum at a speed of 450,771/min to obtain fibers with an m-fiber diameter of 9.2 μm.

次いで、得られたピッチ繊維を実施例1と同様に不融化
、炭化処理し、炭素繊維にした。
Next, the obtained pitch fibers were subjected to infusibility and carbonization treatment in the same manner as in Example 1 to obtain carbon fibers.

得られた炭素繊維は、実施例1と全く同じ構造をjiシ
、引張り強度は220に9/mIn2、弾性率は13.
7℃On、/IfUII2であった。この炭素繊維を、
電子顕微鏡によって観察した結果、光学的等方性成分か
ら成る表面層には、全く開裂が存在していなかった。
The obtained carbon fiber had exactly the same structure as in Example 1, had a tensile strength of 220.9/mIn2, and an elastic modulus of 13.
It was on at 7°C and /IfUII2. This carbon fiber
As a result of observation using an electron microscope, there was no cleavage at all in the surface layer consisting of optically isotropic components.

比較例3 ベンゼン不溶分30.7重量%、軟化点88.8℃、固
定炭素56.4重量%の性状を右する市販のコールター
ルピッチ1重世部に対し、アントラセン油2川最部を混
合し、溶剤不溶分を除去後、溶剤を回収した。残ピッチ
を常圧下3℃/分のR濡速度で、N2ガスを吹き込みな
がら、380℃迄??溜、し、15分保持し、熱処理を
完了した。得られたピッチは、ベンゼン不溶分56.9
重量%、軟化点231℃で、ピッチのブロックを偏光顕
微鏡で観察したところ全面等方性成分であった。
Comparative Example 3 Two layers of anthracene oil were added to one layer of commercially available coal tar pitch, which has properties such as benzene insoluble content of 30.7% by weight, softening point of 88.8°C, and fixed carbon of 56.4% by weight. After mixing and removing solvent-insoluble components, the solvent was collected. The remaining pitch is heated to 380℃ under normal pressure at an R wetting rate of 3℃/min while blowing N2 gas. ? The mixture was collected and held for 15 minutes to complete the heat treatment. The resulting pitch had a benzene insoluble content of 56.9
When the pitch block was observed with a polarizing microscope at a softening point of 231° C., it was found to be an isotropic component on the entire surface.

このビツヂを実施例1で用いた紡糸V2置にて、300
℃で紡糸した。ピッチ繊維は平ドラムに400TrLZ
分の速度で巻き取り、9.8μの繊維を得た。ピッチ繊
維は酸素気流中1℃/分で350℃迄胃温し昇温0分間
保持して、不融化を完了した。この不融化繊維をさらに
、アルゴン気流中15℃/分で、1100℃迄!F?渇
し、30分保持して、炭素繊維を得た。この炭素繊維は
引張り強度95Kg/H、弾性率5.3℃On/mm2
の性能を有し、電子顕微鏡による繊維断面の観察では、
繊維断面は極めて平滑であり、繊維表面の開裂は確認さ
れなかった。
This bit was used in the spinning machine V2 used in Example 1 for 300
Spun at ℃. Pitch fiber is 400TrLZ on flat drum
The fibers were wound at a speed of 1 minute to obtain a fiber of 9.8μ. The pitch fibers were heated to 350° C. at 1° C./min in an oxygen stream, and the temperature was maintained for 0 minutes to complete infusibility. This infusible fiber is further heated to 1100°C at 15°C/min in an argon stream! F? After drying and holding for 30 minutes, carbon fibers were obtained. This carbon fiber has a tensile strength of 95 kg/H and an elastic modulus of 5.3°C On/mm2.
When observing the fiber cross section using an electron microscope,
The fiber cross section was extremely smooth, and no cleavage on the fiber surface was observed.

比較例4 実施例1で得た水素化ピッチを常圧下3℃/分のn温速
度で、N2ガスを吹き込みながら480°C迄胃温し、
昇温に420″C迄降温し、この温度で80分保持して
、メソフェーズ化を行った。
Comparative Example 4 The hydrogenated pitch obtained in Example 1 was stomach-warmed to 480°C under normal pressure at a temperature rate of 3°C/min while blowing N2 gas,
The temperature was raised to 420''C and kept at this temperature for 80 minutes to form a mesophase.

得られたピッチは、キノリンネ溶分24.01吊%、ベ
ンゼン不溶分84.9車ff1%、軟化点262℃であ
った。また、このピッチのブロックを偏光顕微鏡で観察
したところ母相はメソフェーズであり、等方性成分は島
状に分布していた。メソフェーズ含有量は約85容量%
であった。
The obtained pitch had a quinoline soluble content of 24.01%, a benzene insoluble content of 84.9%, and a softening point of 262°C. Furthermore, when this pitch block was observed using a polarizing microscope, it was found that the parent phase was a mesophase, and the isotropic components were distributed in an island shape. Mesophase content is approximately 85% by volume
Met.

このピッチを実施例1と同様な方法で紡糸を行い、10
.9μのピッチ繊維を得た。このピッチ繊維を実施例1
と同様な方法で、不融化、炭化処理を行い炭素繊維を得
た。この炭素m雑は、引張り強度、190 K9/mm
2、弾性率17.2ton/ll112の性能を有し、
電子顕微鏡による繊維断面の観察では、典型的なラジア
ル構造を呈し、繊維表面の開裂が確認された。
This pitch was spun in the same manner as in Example 1, and
.. A pitch fiber of 9μ was obtained. This pitch fiber was used in Example 1.
Carbon fibers were obtained by performing infusibility and carbonization treatment in the same manner as above. This carbon material has a tensile strength of 190 K9/mm.
2. Has a performance of elastic modulus of 17.2 tons/ll112,
Observation of the cross section of the fiber using an electron microscope showed that it had a typical radial structure, and cleavage on the fiber surface was confirmed.

発明の効果 本発明による炭素繊維は、ピッチ調整工程に於て、光学
的異方性ピッチに光学的等方性ピッチを添加、混合する
ことにより、その表面層が光学的等方性成分、および、
その中心部分が光学的置方性成分からなる、二層構造を
持っている。表面層が、光学的等方性成分から形成され
ているため、繊維表面には、炭素繊維の引張り強度を下
げる原因となる開裂を全く存在さt!′ない様にできる
。従来技術によるラジアル構造を有し、m帷表面に開裂
がある炭素繊維の引張り強度が、150〜160に91
mm2であるのに対し、本発明による繊維表面に開裂の
全く存在しない炭素繊維の引張り強度は、200〜25
0 Kぴ7mm2を示し、引張り強度は、30〜50%
程度大きくなっている。
Effects of the Invention In the carbon fiber according to the present invention, by adding and mixing optically isotropic pitch to optically anisotropic pitch in the pitch adjustment step, the surface layer has optically isotropic components and ,
It has a two-layer structure in which the central part consists of optically oriented components. Since the surface layer is formed from an optically isotropic component, there is no cleavage on the fiber surface that would reduce the tensile strength of the carbon fiber! ’ You can make it so that it doesn’t happen. The tensile strength of carbon fiber with radial structure and cleavage on the surface of m-thickness according to the conventional technology is 91 to 150 to 160.
mm2, whereas the tensile strength of the carbon fiber according to the present invention with no cleavage on the fiber surface is 200 to 25 mm2.
0 K pi 7mm2, tensile strength is 30-50%
It has become somewhat larger.

J1紺表面に開裂の入らない+rtな炭素繊維の製造方
法では、紡糸用ピッチの溶融紡糸温度を比較的高めの温
度に設定せざるを得ず、その結果、溶融ピッチが、発泡
分解し、この現象が、ピッチを溶融紡糸するときに、ピ
ッチ繊維の切断の原因となったり、溶融ピッチ中に発生
する泡が、ピッチ中に取り込まれるなど、ピッチ繊維を
安定に紡糸するのをさまたげていた。それ故、ピッチ繊
維を、多ホールを有するノズルで紡糸するのが殆んど不
可能であったが、本発明のピッチを用いる溶融紡 4゜
糸工程では、紡糸ピッチが熱的に不安定な状態を呈する
360℃以上での紡糸を避けることができる。上記温度
以下で紡糸されたピッチm帷は、通常のピッチを用いた
場合には、はぼラジアル構造を取るため、繊維表面には
必然的に開裂が入ってしまうが、本発明のピッチ調整方
法によると、比較的低い温度で溶融紡糸ができるので、
溶融ピッチが発泡分解を全く起さない。従って、ピッチ
の変質による切断は、紡糸時には全く見られずピッチ繊
維紡糸の多ホール化が、非常に容易になった。
In the manufacturing method of +rt carbon fiber that does not cause cleavage on the J1 dark blue surface, it is necessary to set the melt spinning temperature of the spinning pitch to a relatively high temperature, and as a result, the molten pitch foams and decomposes, and this These phenomena have hindered the stable spinning of pitch fibers, such as causing the pitch fibers to break when pitch is melt-spun, and bubbles generated in the molten pitch being incorporated into the pitch. Therefore, it has been almost impossible to spin pitch fibers with a nozzle having multiple holes, but in the melt spinning 4° yarn process using the pitch of the present invention, the spinning pitch is thermally unstable. It is possible to avoid spinning at a temperature of 360° C. or higher, which would cause conditions. If a normal pitch is used, the pitch m-thread spun at a temperature below the above temperature will have a radial structure, so the fiber surface will inevitably have cleavage, but the pitch adjustment method of the present invention According to , melt spinning can be performed at relatively low temperatures,
The molten pitch does not cause any foaming decomposition. Therefore, no breakage due to pitch deterioration was observed during spinning, making it extremely easy to spin pitch fibers into multiple holes.

更に、本発明のピッチ調整方法では、光学的等方性ピッ
チが、溶融紡糸をするときの紡糸張力によって、チキソ
トロピー的な性質を示す為に、溶融ピッチがコーンを形
成するとき、光学的等方性ピッチがコーンの表面に移動
する。その結果、ピッチ繊維の表面が、光学的等方性ピ
ッチ層でおおわれるので、繊維の表面に全く開裂の存在
しない炭素繊維を得ることが比較的低い温度でも可能と
なった。
Furthermore, in the pitch adjustment method of the present invention, since the optically isotropic pitch exhibits thixotropic properties depending on the spinning tension during melt spinning, when the molten pitch forms a cone, the optically isotropic pitch The sexual pitch moves to the surface of the cone. As a result, the surface of the pitch fiber is covered with an optically isotropic pitch layer, making it possible to obtain carbon fiber with no cleavage on the fiber surface even at relatively low temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のコールタールピッチ系HP炭素繊維の
、典型的な繊維断面構造の略図である。 (イ)はラジアル構造で、繊維表面の開裂を表わしてい
る。(ロ)はランダム構造、(ハ)はオニオン構造であ
る。 第2図および第3図は、本発明により得られた炭素繊維
の繊維断面構造である。第2図は、不鮮明なラジアル構
造を示している。 第3図は、中心部が不鮮明ラジアル構造であり表層部の
色つきの層は平滑な層を表わしている。
FIG. 1 is a schematic diagram of a typical fiber cross-sectional structure of a conventional coal tar pitch-based HP carbon fiber. (A) shows a radial structure, which shows the cleavage of the fiber surface. (b) is a random structure, and (c) is an onion structure. FIGS. 2 and 3 show the cross-sectional structure of carbon fibers obtained according to the present invention. Figure 2 shows a blurred radial structure. In FIG. 3, the central part has an indistinct radial structure, and the colored layers at the surface represent smooth layers.

Claims (3)

【特許請求の範囲】[Claims] (1)繊維断面の外周部が光学的等方性成分で形成され
、その中心部が光学的異方性成分もしくは光学的等方性
成分を部分的に含む光学的異方性成分からなり、繊維表
面の開裂が全く存在しない、新規な構造を有する炭素繊
維。
(1) The outer peripheral part of the fiber cross section is formed of an optically isotropic component, and the center part is made of an optically anisotropic component or an optically anisotropic component partially containing an optically isotropic component, A carbon fiber with a novel structure in which there is no cleavage on the fiber surface.
(2)コールタールピッチより調製された光学的異方性
ピッチを溶融紡糸し、次いで、ピッチ繊維を不融化処理
および炭化処理または更に黒鉛化処理することから成る
炭素繊維の製造方法において、光学的異方性ピッチに新
たに調製された光学的等方性ピッチを添加することによ
り、紡糸用ピッチがメソフェーズ含有量60〜95容量
%、ベンゼン不溶分量80〜95重量%、かつ、偏光顕
微鏡下で観察した時に、母相がバルクメソフェーズを呈
することを特徴とする、炭素繊維の製造方法。
(2) A method for producing carbon fibers, which comprises melt-spinning optically anisotropic pitch prepared from coal tar pitch, and then subjecting the pitch fibers to infusibility treatment and carbonization treatment, or further graphitization treatment. By adding newly prepared optically isotropic pitch to the anisotropic pitch, the spinning pitch has a mesophase content of 60 to 95% by volume, a benzene insoluble content of 80 to 95% by weight, and a A method for producing carbon fiber, characterized in that the matrix exhibits a bulk mesophase when observed.
(3)光学的等方性ピッチが、ベンゼン不溶分量30重
量%以上、軟化点150℃以上である、特許請求の範囲
第2項記載の炭素繊維の製造方法。
(3) The method for producing carbon fiber according to claim 2, wherein the optically isotropic pitch has a benzene insoluble content of 30% by weight or more and a softening point of 150° C. or more.
JP1152986A 1986-01-22 1986-01-22 Carbon fiber and production thereof Pending JPS62170528A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1152986A JPS62170528A (en) 1986-01-22 1986-01-22 Carbon fiber and production thereof
DE19873701631 DE3701631A1 (en) 1986-01-22 1987-01-21 Carbon fibre, and process for the production thereof
US07/234,164 US5037697A (en) 1986-01-22 1988-08-19 Carbon fiber and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1152986A JPS62170528A (en) 1986-01-22 1986-01-22 Carbon fiber and production thereof

Publications (1)

Publication Number Publication Date
JPS62170528A true JPS62170528A (en) 1987-07-27

Family

ID=11780493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1152986A Pending JPS62170528A (en) 1986-01-22 1986-01-22 Carbon fiber and production thereof

Country Status (2)

Country Link
JP (1) JPS62170528A (en)
DE (1) DE3701631A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356574A (en) * 1992-09-22 1994-10-18 Petoca, Ltd. Process for producing pitch based activated carbon fibers and carbon fibers
WO2018096908A1 (en) * 2016-11-28 2018-05-31 ダイキン工業株式会社 Resin composition

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0245035B1 (en) * 1986-05-02 1992-11-11 Toa Nenryo Kogyo Kabushiki Kaisha High modulus pitch-based carbon fiber and method for preparing same
JPH0781210B2 (en) * 1990-05-22 1995-08-30 工業技術院長 Method for producing short carbon fibers
US5183603A (en) * 1990-10-24 1993-02-02 Koa Oil Company Limited Process for producing a coil-shaped carbon fiber bundle
JP3125062B2 (en) * 1993-02-24 2001-01-15 株式会社ペトカ Carbon fiber production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH586666A5 (en) * 1973-09-11 1977-04-15 Ciba Geigy Ag

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356574A (en) * 1992-09-22 1994-10-18 Petoca, Ltd. Process for producing pitch based activated carbon fibers and carbon fibers
WO2018096908A1 (en) * 2016-11-28 2018-05-31 ダイキン工業株式会社 Resin composition
JP2018087271A (en) * 2016-11-28 2018-06-07 ダイキン工業株式会社 Resin composition

Also Published As

Publication number Publication date
DE3701631C2 (en) 1991-05-29
DE3701631A1 (en) 1987-07-23

Similar Documents

Publication Publication Date Title
JPS5930192B2 (en) Potential anisotropic pitch
US4470960A (en) Process for the production of pitch-derived carbon fibers
US4469667A (en) Process for production of pitch-derived carbon fibers
US5037697A (en) Carbon fiber and process for producing the same
JPS5818421A (en) Preparation of carbon fiber
JPS62170528A (en) Carbon fiber and production thereof
JPH10298829A (en) Production of pitch-based carbon fiber
JPS6327447B2 (en)
JPH0781211B2 (en) Carbon fiber manufacturing method
JPS60252723A (en) Production of pitch based carbon fiber
JPS6175821A (en) Production of pitch carbon fiber
JPH0382820A (en) Activated carbon fiber, its production and pitch fiber for activated carbon fiber
US20240141559A1 (en) Fabrication of carbon fibers with high mechanical properties
JPS5936726A (en) Precursor pitch fiber for carbon fiber
US5540905A (en) Optically anisotropic pitch for manufacturing high compressive strength carbon fibers and method of manufacturing high compressive strength carbon fibers
JPS60259631A (en) Production of pitch carbon fiber
JPS59168115A (en) Melt spinning for pitch
JPS6278220A (en) Production of ribbon-like carbon fiber
JPH03279422A (en) Production of hollow carbon fiber
JPS59136383A (en) Preparation of pitch for producing carbon fiber
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber
JPH026620A (en) Pitch-based carbon fiber and production thereof
JPS62170527A (en) Production of pitch-based carbon fiber
JPH04316612A (en) Production of graphite fiber
JPS6240445B2 (en)