JPS5936726A - Precursor pitch fiber for carbon fiber - Google Patents

Precursor pitch fiber for carbon fiber

Info

Publication number
JPS5936726A
JPS5936726A JP14703882A JP14703882A JPS5936726A JP S5936726 A JPS5936726 A JP S5936726A JP 14703882 A JP14703882 A JP 14703882A JP 14703882 A JP14703882 A JP 14703882A JP S5936726 A JPS5936726 A JP S5936726A
Authority
JP
Japan
Prior art keywords
pitch
fibers
fiber
quinoline
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14703882A
Other languages
Japanese (ja)
Other versions
JPH036248B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Takeshi Imamura
健 今村
Hidemasa Honda
本田 英昌
Toru Sawaki
透 佐脇
Hideharu Sasaki
佐々木 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP14703882A priority Critical patent/JPS5936726A/en
Priority to US06/525,702 priority patent/US4590055A/en
Priority to FR8313618A priority patent/FR2532322B1/en
Priority to GB08322788A priority patent/GB2129825B/en
Priority to DE19833330575 priority patent/DE3330575A1/en
Publication of JPS5936726A publication Critical patent/JPS5936726A/en
Publication of JPH036248B2 publication Critical patent/JPH036248B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:The titled pitch fibers, having specific values of orientation angle, crystal size, layer spacing in X-ray diffraction and strength after calcination, and capable of preventing the enlargement of crystals in calcination and giving carbon fibers having a high strength and modulus by the calcination. CONSTITUTION:Precursor pitch fibers for carbon fibers, having 30-50Angstrom , preferably 35-45Angstrom , orientation angle measured by the X-ray diffraction, 25- 40Angstrom , preferably 27-37Angstrom , crystal size and 3.43-3.50Angstrom layer spacing measured by the X-ray diffraction and >=200kg/mm.<2> strength in calcination at 1,500 deg.C. Preferably, a pitch containing >=30wt% preferably 50-70wt%, quinoline-soluble component is used. Preferably, the fibers contain an optically isotropic component dispersed in the fiber axis direction in many streaky or fibrillar forms in an optically isotropic and quinoline soluble matrix of the fibers.

Description

【発明の詳細な説明】 本発明は新規な炭素繊維前駆体ピンチ繊維に関するもの
である。更に詳しくは、不融化−焼成(炭化)処理を施
すことにより高強度高モジュラスの炭素繊維となるピン
チ繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel carbon fiber precursor pinch fiber. More specifically, it relates to pinch fibers that become high-strength, high-modulus carbon fibers by being subjected to infusibility-firing (carbonization) treatment.

現在、炭素繊維としては、主として、ポリアクリロ、−
トリル(1’AN) M維を原料とするPAN系炭素絨
維と石炭系又れ石油系のピッチを原料とするピンチ系炭
素繊維が生産されている。しかし7、主として複合I料
において樹脂の補強材としで使用される高強度高モジュ
ラスの炭素繊維はPAN系が主流であり、ピンチ系は強
度200Kg/ ma以下の比較的低強度のものしか製
造されていない。
Currently, carbon fibers mainly include polyacrylo, -
Trill (1'AN) PAN-based carbon fibers made from M fibers and pinch-based carbon fibers made from coal-based and petroleum-based pitches are produced. However, the mainstream of high-strength, high-modulus carbon fibers used primarily as reinforcing materials for resins in composite I materials is PAN-based fibers, and pinch-based fibers are only produced with a relatively low strength of less than 200 kg/ma. Not yet.

最近、かかるピンチ系炭素繊維において、より高性能の
繊維を製造しようとする試みがなされており、これ迄に
も、炭素繊維の製造忙当り、次のようなピッチを使用す
る方法が提案されている1、 (a)  特定の縮合多項芳香族化合物を水素処理又は
熱処理したピッチを用いる方法(特公昭45−2801
3号、特公昭49−11634号)。
Recently, attempts have been made to produce higher performance fibers in such pinch-based carbon fibers, and the following methods of using pitch have been proposed so far in the busy manufacturing process of carbon fibers. 1, (a) A method using pitch obtained by hydrogen-treating or heat-treating a specific condensed polynomial aromatic compound (Japanese Patent Publication No. 45-2801
No. 3, Special Publication No. 49-11634).

(0石油系のタールやピッチをルイス酸触媒の存在下で
第1の熱処理を施した後、該触媒を除去して第2の熱処
理を施したメソフェースピッチを使用する方法(特公昭
53−7533号)1(c)  ピッチを不活性ガスの
流通下又は減圧下に加熱して所定のメソフェース含縫を
もつメソフェースピッチを使用する方法(特開昭53−
86717号、特開昭53−86718号)1(d) 
 ラし学的等方性ピンチを溶剤(ベンゼン、トルエン、
ヘプタン等)で処理し、不溶部を加熱して形成させたネ
オメソフェースを使用する方法(特開昭54−1604
27号、特開昭55−58287号、特開昭55−13
0809号)。
(A method in which petroleum-based tar or pitch is subjected to a first heat treatment in the presence of a Lewis acid catalyst, and then the catalyst is removed and a second heat treatment is performed to use mesoface pitch. No. 7533) 1(c) A method of using mesoface pitch with a predetermined mesoface inclusion by heating the pitch under an inert gas flow or under reduced pressure (Japanese Unexamined Patent Application Publication No. 1983-1999)
No. 86717, JP-A-53-86718) 1(d)
Solvents (benzene, toluene,
A method of using neomesoface formed by treating it with heptane, etc.) and heating the insoluble part (Japanese Patent Laid-Open No. 54-1604
No. 27, JP-A-55-58287, JP-A-55-13
No. 0809).

しかしながら、これらの方法によっても、PAN系炭素
炭素繊維敵する高度な性能をもつ炭素繊維を得ることが
できない為、現在に至るまでピッチ系炭素繊維は、例え
ばアスベスト代替品のような強雁が低くてもすむような
分野で用いられているのが実情である。
However, even with these methods, it is not possible to obtain carbon fibers with advanced performance comparable to that of PAN-based carbon fibers, so to date, pitch-based carbon fibers have low performance, such as asbestos substitutes. The reality is that it is used in fields where it is acceptable.

本発明者らは、上述の如きピッチ系炭素繊維の現状に鑑
み、ピッチ類を原料として1−ぐれた品質をもつ炭素繊
維を製造する方法を開発すべく研究を重ね、さきに、紡
糸後の不融化・炭化処理段階で光学的異方性のメンフェ
ースに転換する特異なブリメソフェースピッチを用いる
新規な炭素繊維の製造方法t−提案した(特願昭56−
117470号)。
In view of the current state of pitch-based carbon fibers as described above, the present inventors have conducted research to develop a method for producing carbon fibers with superior quality using pitches as raw materials. We have proposed a new method for manufacturing carbon fiber using a unique brimesoface pitch that converts into an optically anisotropic membrane during the infusibility/carbonization process (Patent Application 1983-
No. 117470).

本発明者らは、この知見を基に更に研究を重ねた結果、
高性能の炭素繊維を形成するには、ピンチを溶融紡糸し
て介取った段階、即ち炭素繊維前駆体ピッチ繊維の微#
18構造及び該ピッチの化学的特性が重要であり、これ
らをコントロールすることによって、従来のピッチ系炭
素繊維には期待できない、すぐれた性1jヒをもつ炭素
#a維が形成されるという事実を見い出し、本発明に到
達したものである。
As a result of further research based on this knowledge, the present inventors found that
In order to form high-performance carbon fibers, the process of melt-spinning and intervening the pinch, that is, the fine number of carbon fiber precursor pitch fibers, is required.
18 structure and the chemical properties of the pitch are important, and by controlling these, carbon #a fibers with excellent properties that cannot be expected from conventional pitch-based carbon fibers can be formed. This is the heading that led to the present invention.

すなわち、本発明の炭素繊維前駆体ピンチ繊維は、X線
回折によって求めた配向角が30〜50Xであシ、結晶
サイズが25〜40X1層間隔が3.43〜3.50父
であって、且つ1500℃で焼成したときの強度が20
0Kg/−以上であることを特徴とするものである。
That is, the carbon fiber precursor pinch fiber of the present invention has an orientation angle of 30 to 50X determined by X-ray diffraction, a crystal size of 25 to 40X, a layer spacing of 3.43 to 3.50X, and Moreover, the strength when fired at 1500℃ is 20
It is characterized by being 0 kg/- or more.

従来、メソフェースピッチを用いて高強度高モジュラス
繊維を得る場合、紡糸直後の前駆体ピッチ繊維は、高度
に配向したものが好ましいとされてきた。しかし、高度
に配向した前駆体ピッチ繊維から製造した炭素繊維杜、
繊維軸方向忙配向した結晶のサイズ(IJC)が大きく
なり、黒鉛化特性としての高い熱伝導性及び電気伝導性
は発現し得るものの、繊維としての機械物性(強伸度)
が、 PAN系炭素炭素繊維較し不十分なものであった
。この原因としては、黒鉛化構造を追求するあまりの高
配向化が、逆に繊維内部に微細な不均質化をもたらし、
これが繊維の縦割れ等をひき起し、強度劣化につながっ
ていると考えられる。
Conventionally, when obtaining high-strength, high-modulus fibers using mesophase pitch, it has been said that it is preferable that the precursor pitch fibers immediately after spinning be highly oriented. However, carbon fiber duri produced from highly oriented precursor pitch fibers,
The size of crystals oriented in the fiber axis direction (IJC) increases, and although high thermal conductivity and electrical conductivity as graphitization characteristics can be exhibited, the mechanical properties (strength and elongation) as a fiber are
However, it was insufficient compared to PAN-based carbon fiber. The reason for this is that excessively high orientation in pursuit of a graphitized structure results in fine inhomogeneity within the fibers.
It is thought that this causes vertical cracks in the fibers, leading to deterioration in strength.

本発明の炭素繊維前駆体ピッチ繊維は、上述の如く、X
線回折によって求められる構造パラメーターを適度の範
囲にt1整すること((よシ、焼成(炭化)時の結晶の
肥大化を防ぎ、繊維軸方向に生ずるクラックの発生を防
止することを可能にしたものである。
As described above, the carbon fiber precursor pitch fiber of the present invention is
By adjusting the structural parameters determined by line diffraction to a suitable range (t1), it is possible to prevent the enlargement of crystals during sintering (carbonization) and to prevent the occurrence of cracks in the fiber axis direction. It is something.

即ち、配′向角(OA)が30’未満の高度に配向した
ピンチ繊維は、炭化(焼成)段階で繊維内部の結晶が粗
大なラジアル構造をとp易く、クラックが発生しゃすい
っ一方、配向角が50’を牌えると、炭化(焼成)段階
での巧配列が不可能となp高強度高モジュラスが発現し
雌い。
In other words, highly oriented pinch fibers with an orientation angle (OA) of less than 30' tend to have a coarse radial structure in the crystals inside the fibers during the carbonization (sintering) stage, and cracks are less likely to occur. When the corner reaches 50', fine alignment during the carbonization (firing) stage is impossible, and high strength and high modulus are developed.

結晶サイズすなわち見掛けの微結晶厚さくLO)、層間
隔(doom)は、配向角と相関があり、配向角が小さ
いと結晶サイズは大きくなり層間隔は小さくなるが、高
張IW高モジュラスの炭素繊維を得る−には、配向角(
OA)、結晶サイズ(LQ)、層間隔(dqqt)の3
つの47q造パラメータのバンンスが重要であり、これ
らが全て下記範囲内にあるものが良好な旨性能炭素繊維
となり得る。
The crystal size, that is, the apparent microcrystalline thickness (LO) and the interlayer spacing (DOOM), are correlated with the orientation angle; when the orientation angle is small, the crystal size increases and the interlayer spacing decreases; To obtain −, the orientation angle (
OA), crystal size (LQ), and layer spacing (dqqt)
The balance of the four 47Q structural parameters is important, and a carbon fiber with good performance can be obtained if all of these parameters are within the following ranges.

・配向角(OA )・・・30〜soX、好峻しくは、
35〜45A ・結晶サイズ(Lc)・・・25〜40X、好ましくは
27〜37A ・層間隔(doOり・・・3.43〜3.5OAここで
いう配向角(OA ) 、結晶サイズ(Lc)及び層間
隔(doOs)は、広角X線回折により、繊維の状態で
通常行われている方法で測定される値である。
・Orientation angle (OA)...30~soX, preferably steep,
35-45A ・Crystal size (Lc)...25-40X, preferably 27-37A ・Layer spacing (DOO...3.43-3.5OA) Orientation angle (OA), crystal size (Lc) ) and interlayer spacing (doOs) are values measured by wide-angle X-ray diffraction, a method commonly used in the state of fibers.

即ち、繊維を一束にし、X線ビームに垂1αに装着して
、方位角2θを0〜90°スキーVンし、(002)帯
(約26°近傍)の強度分布のAt犬値の1/2の位置
における全幅(半価幅)B1及び方位角2θより下記の
式でLc 、 d、ootが算出さノしる、(但しK 
= 0.9 、 b = 0.0017rPLd、λ=
1.5418A)λ 2 sinθ また、(002)帯のi蛍度分布の最大値を示す方位角
の位置において繊維束をx7!ビームの手直面内におい
て180°回転することにより、(002)帯の強度分
布をとり、強度最大値の1/2の点における半1i[1
i幅を配向角とする。
That is, a bundle of fibers is attached to the X-ray beam perpendicularly to 1α, the azimuth angle 2θ is skimmed from 0 to 90°, and the At value of the intensity distribution in the (002) band (approximately 26°) is calculated. From the full width (half width) B1 at the 1/2 position and the azimuth 2θ, Lc, d, and oot are calculated using the following formulas (however, K
= 0.9, b = 0.0017rPLd, λ=
1.5418A) λ 2 sin θ Also, the fiber bundle is x7! at the azimuth position where the i-fluorescence distribution of the (002) band has the maximum value. By rotating the beam by 180° in the hand plane, the intensity distribution of the (002) band is taken, and half 1i[1
Let i width be the orientation angle.

本発明の炭素繊維前駆体ピッチ繊維は、少くとも30重
珀1%以上、特に50〜70重量%のキノリン可溶性成
分を含むものが好ましい。キノリンネ溶性成分が301
1未満のもの、換言すればキノリンネ溶性成分が70重
9%を越えるものは、生成する炭素繊維構造がラジアル
状を呈し易い。
The carbon fiber precursor pitch fiber of the present invention preferably contains at least 1% or more, particularly 50 to 70% by weight of a quinoline-soluble component. Quinoline soluble component is 301
When the carbon fiber structure is less than 1, in other words, when the quinoline-soluble component exceeds 70% by weight and 9%, the resulting carbon fiber structure tends to have a radial shape.

とりわけ、キノリン可溶性成分が50〜70重:η、チ
を占め、光学的に等方性のキノ1)ンH(溶性成分のマ
) IJンクス中に、光学的に異方性の成6〕が微細な
すし状又はフィブリル状に分散している47・Y造をも
つものは、炭化(焼成)過程で、微;nilに分散した
光学的異方性成分を核として結晶が生成し、炭素繊維に
おいて理想的な結晶の大きさと配列状態が実現される。
In particular, the quinoline soluble component occupies 50 to 70 parts by weight, and the optically isotropic quinone H (major of the soluble component). In the case of a 47-Y structure in which carbon is dispersed in the form of fine sushi or fibrils, crystals are formed in the carbonization (firing) process with the optically anisotropic component dispersed in fine nil as the core. Ideal crystal size and arrangement are achieved in the fiber.

この光学的異方性成分は、球晶状態で存在するのではな
く、あくまで繊維軸方向に配向していることが重要であ
り、すじ状又はフィブリル状に伸びた異方性領域の幅は
1μ以丁であシ、長さは105以上(通常は10〜10
0μ)である。
It is important that this optically anisotropic component does not exist in a spherulite state but is oriented in the direction of the fiber axis, and the width of the anisotropic region extending in the form of stripes or fibrils is 1μ. The length is 105 or more (usually 10-10
0μ).

第1図は、この好ましい態様を模式的に示す繊維の一部
切欠拡大図である。図において、l□は光学的等方性で
且つキノリン可溶性成分からなるマトリックス部であり
、直交ニコル下で暗視野である。2は微細なすし状又は
フィブリル□状に分散している光学的異方性成分であり
、直交ニコル下で光って見える部分である。
FIG. 1 is a partially cutaway enlarged view of a fiber schematically showing this preferred embodiment. In the figure, l□ is a matrix portion that is optically isotropic and consists of a quinoline-soluble component, and is a dark field under crossed Nicols. 2 is an optically anisotropic component that is dispersed in a fine sushi-like or fibril-like shape, and is a portion that appears to shine under crossed Nicols.

マ) IJツクス部を構成する光学的に等方性で且つキ
ノリン可溶性の成分は、本発明者らがさきに「ブリメソ
フェース」と名句けたピンチであることが好ましく、な
かでも、数平均分子呈。
M) The optically isotropic and quinoline-soluble component constituting the IJ tux moiety is preferably a pinch which the present inventors named "brimethoface" earlier, and in particular, a number-average molecule. Presentation.

700〜170G(特に1000〜1500)のものが
好ましい。また繊維を構成するピンチ+i、20℃にお
ける比重1.29〜1.40 (特に1.30〜1.3
5)、芳香化度0.45〜0.9である、多項縮合化合
物を主体とするピッチが最適である。
700-170G (especially 1000-1500) is preferable. In addition, pinch +i constituting the fiber, specific gravity at 20°C 1.29 to 1.40 (particularly 1.30 to 1.3
5) A pitch mainly composed of polynomial condensation compounds having a degree of aromatization of 0.45 to 0.9 is optimal.

また、このピンチは、Hloが0.50〜0.65のき
わめて限られた範囲にあるものがよい。
Moreover, this pinch is preferably one in which Hlo is within a very limited range of 0.50 to 0.65.

更に、前、記キノリン可溶性成分は、’H−NMRにお
いて、溶媒を除く全検出水素に対するテトラメチルシラ
ン(TMS)基準のケミカルシフト5〜7. ppmの
水75 HA の割合が4.5〜xOnであり、且つ3
〜4 ppmの水素HB  の割合が2.5〜7.5%
であるものが好ま17い。
Furthermore, the above-mentioned quinoline-soluble component has a chemical shift of 5 to 7 on the basis of tetramethylsilane (TMS) with respect to all detected hydrogen excluding the solvent in 'H-NMR. The proportion of ppm water 75HA is 4.5~xOn, and 3
The proportion of ~4 ppm hydrogen HB is 2.5-7.5%
I prefer one that is 17.

これらの糸件を満足するピンチは、縮合環数4〜6のt
t’l造単位が2〜10個側鎖を介してつながっており
、各構造単位の芳香核は部分水添され、分子の平面構造
は歪んだものとなっている。このため、該ピンチ組成物
を溶融紡糸することによって、すでに述べた如き特殊な
微細構造を形成し易い。
The pinch that satisfies these threads is t with 4 to 6 condensed rings.
Two to ten t'l structural units are connected via side chains, the aromatic nucleus of each structural unit is partially hydrogenated, and the planar structure of the molecule is distorted. Therefore, by melt-spinning the pinch composition, it is easy to form the special microstructure as described above.

なお、ここでいう、数千均分子分、芳香化度、’ H−
NMR,u/aの測定は次のように行われる、(1) 
 数平均分子量 ピリジンを溶媒としてvpoを使用して0り定Ov、p
oハ、蒸気圧オスモメーターとしてKnauner D
ampfdruck Ostometer  を用い、
溶媒としてピリジン、標準vJ貝としてベンジルを使用
In addition, here, several thousand equivalent molecular weight, degree of aromatization, 'H-
Measurement of NMR, u/a is performed as follows, (1)
0 constant Ov, p using vpo with number average molecular weight pyridine as a solvent.
Knauner D as a vapor pressure osmometer
Using ampfdruck Ostometer,
Pyridine was used as the solvent and benzyl was used as the standard vJ shell.

(2)  芳香化度 KBr錠剤法で測定したIRより、下記式により算出す
る。
(2) Aromatization degree Calculated from the IR measured by the KBr tablet method using the following formula.

芳香イBL= 3050cm−’強度/ (aoso、
rm−’強に+ 2925cm−’強1りなお、工R測
定装置は、島津製作所製工R−27G型を使用。
Aromatic BL=3050cm-'Intensity/(aoso,
rm-' Strong + 2925 cm-' Strong 1 Note that the R-measurement device used was the R-27G model manufactured by Shimadzu Corporation.

(3)  ’H−NMR 測定装置として日本電子製ps−too型スペクトロメ
ーターを用い、ケミカルシフトはTMSを内標準として
δ値で表わした。NMRスペクトルは溶媒に縦ピリジン
を用いて測定しζ。
(3) 'H-NMR A JEOL ps-too type spectrometer was used as the measuring device, and the chemical shift was expressed as a δ value using TMS as an internal standard. NMR spectra were measured using vertical pyridine as a solvent.

(4)   Hlo 515M−8813に従って測定した元素分析より次式
に従って作出するう xs/c−(H分析値/1)/(O分析値/12)本発
明者らの研究によれば、この条件を満足するピッチは、
多環縮合化合物の核が部分水添されており、分子の平面
性が歪んだ構造を有しているため、分子量が比較的大き
いにも拘らず十分力流動性を備えており、しかもキノリ
ン可溶性成分と不溶性成分との相溶性も良好である。
(4) Uxs/c-(H analysis value/1)/(O analysis value/12) created according to the following formula from elemental analysis measured according to Hlo 515M-8813 According to the research of the present inventors, this condition The pitch that satisfies
The nucleus of the polycyclic condensed compound is partially hydrogenated, and the planarity of the molecule is distorted, so it has sufficient force fluidity despite its relatively large molecular weight, and is soluble in quinoline. The compatibility between the components and insoluble components is also good.

そして、このピッチは、不融化過程で部分水添されたと
ころが迅速に酸化され短時間で不融化が可能であり、更
に不融化−炸成過程で水素が除去されることによって分
子の平面性が回復し、メソフェース化して良好な結晶を
生成する1以上の如く構成されている本発明の炭素繊維
前駆体ピッチ繊維は、公知の方法によシf融化し、焼成
することによって、高強度高モジュラスの炭素繊維とな
る。そして1500℃で焼成したものの強度は少くとも
200K(/aJ、モジュラスは10 ton /−以
上に達し、好適な態様のものは1500℃で焼成後の強
度が、250h/−以上、モジュラス15 tr)n以
上となる、かかる本発明に係る炭素繊維前駆体ピンチ繊
維は、例えば次の如き方法により製造される。
This pitch is partially hydrogenated during the infusibility process, and is rapidly oxidized, making it possible to become infusible in a short time.Furthermore, hydrogen is removed during the infusibility-explosion process, which improves the planarity of the molecules. The carbon fiber precursor pitch fiber of the present invention, which is composed of one or more of the above-mentioned materials that can be recovered and mesophased to produce good crystals, can be made into a high-strength, high-modulus fiber by being melted and fired by a known method. carbon fiber. The strength of the product fired at 1500℃ is at least 200K (/aJ, modulus is 10 ton/- or more, and the strength after firing at 1500℃ is 250h/- or more, modulus 15 tr). The carbon fiber precursor pinch fiber according to the present invention having a fiber length of n or more is produced, for example, by the following method.

〔紡糸用ピンチ組、成物の製造〕[Pinch set for spinning, manufacturing of products]

原料ピッチとしては、コールタール、コールタールピッ
チ、石炭液化物などの石炭系取り1油、石油の常圧残留
油、減圧蒸留残油及びこれらの残油の熱処理によって副
生ずるタールやピッチ、オイルサンド、ピチューメンな
どの石油系重質油を用いることができるが、コールター
ルピッチが本発明のピンチ組成物を製造し易いので好ま
しい。
Raw material pitches include coal tar, coal tar pitch, coal-based oils such as coal liquefied products, normal pressure residual oil of petroleum, vacuum distillation residual oil, and tar, pitch, and oil sand produced by heat treatment of these residual oils. Although petroleum-based heavy oils such as , pitumen, and the like can be used, coal tar pitch is preferred because it facilitates the preparation of the pinch composition of the present invention.

本発明のピンチ組成物は、前記原料ピンチを精製後、特
定の水素化溶媒下で加熱する第1段処理と、前記溶媒を
除去したのち、あるいは、除去しつつ病温に加熱する第
2段処理とを施すことによって#遺される。
The pinch composition of the present invention includes a first stage treatment in which the raw material pinch is heated in a specific hydrogenation solvent after being purified, and a second stage in which the raw material pinch is heated to a disease temperature after or while removing the solvent. It is left behind by applying processing.

第1段処理で使用する水素化溶媒としては、テトラヒド
ロキノリン(以下THQ、と略称する)が最適であるが
、キノリンとTI(Q、との混合物を使用してもよく、
また、触媒(コバルト−モリブデン系、酸化鉄系)の存
在下で水轡・)と:も可i+Bである。水素化溶媒とし
てTI(Qをm−る場合は、原料ピッチ100重量部当
り’JHQ、130〜10011L景部を加え300〜
500℃、好ましくは340〜450℃で10〜60分
間加熱する。このように処理した生成物は、次のpl)
2段処理に付される。
Tetrahydroquinoline (hereinafter abbreviated as THQ) is optimal as the hydrogenation solvent used in the first stage treatment, but a mixture of quinoline and TI (Q) may also be used.
In addition, in the presence of a catalyst (cobalt-molybdenum type, iron oxide type), it is also possible to i+B. TI as a hydrogenation solvent (when Q is m-, add JHQ, 130 to 10011 parts by weight per 100 parts by weight of raw material pitch, and add 300 to
Heat at 500°C, preferably 340-450°C, for 10-60 minutes. The product thus treated is the following pl)
Subjected to two-stage processing.

142段処理では、THQ処理ピンチは減圧下、例えば
圧力50ヨ11g以下で、450℃以上、好ましくは4
50〜550℃で5〜60分間保持する。この場合、こ
のような減圧処理の代りに、THQ、を除去したのち常
圧下で450〜550℃にて5〜60分間保持してもよ
く、また、THQを除去したのち片圧下で−たん出−℃
より高い温度まで昇温後400i−430℃まで低下さ
せ、この温度に15L−180分間保持してもよい。
In the 142-stage process, the THQ processing pinch is performed under reduced pressure, for example, at a pressure of 50 to 11 g or less, at 450°C or higher, preferably at 4
Hold at 50-550°C for 5-60 minutes. In this case, instead of such a vacuum treatment, THQ may be removed and then held at 450 to 550°C for 5 to 60 minutes under normal pressure. −℃
After raising the temperature to a higher temperature, it may be lowered to 400i-430°C and held at this temperature for 15L-180 minutes.

とのよつな2段処理に於て、原料ピッチの組成や性質に
応じて処理条件を上記範囲内で適宜選定することによっ
て、好ましい紡糸用ピッチ組成物とすることができる。
In the two-stage treatment, a preferable spinning pitch composition can be obtained by appropriately selecting treatment conditions within the above range depending on the composition and properties of the raw material pitch.

溶融紡糸性はきわめて良好である、 〔ピッチ繊絣の製造〕 ピッチ組成物の溶融紡糸は、それ自体公却の方法で行う
ことができる。例えに本発明のピッチ組成物を孔径0.
1〜0.8門の紡糸孔をもつ口金から軟化点よシ50〜
100℃高い温度で押出し、紡糸口金から吐出したフィ
ラメントを急冷条件下で紡糸(巻取)速度300〜15
00 m 7分で巻取ることにより容易に本発明のピン
チ繊維とすることができる。
The melt-spinning property is very good. [Production of pitch fiber kasuri] Melt-spinning of the pitch composition can be performed by a method known per se. For example, if the pitch composition of the present invention has a pore size of 0.
From a spinneret with 1 to 0.8 holes, the softening point is 50 to
The filament extruded at a temperature higher than 100°C and discharged from the spinneret is spun (take-up) at a speed of 300 to 15% under quenching conditions.
The pinch fiber of the present invention can be easily obtained by winding the fiber in 7 minutes.

本発明のピッチ繊維は、次いで酸素の存在下K O,I
s〜3℃/分の昇温速度で250〜350℃までan熱
し、5〜30分間m持するととKよって不融化処理し、
これを更に、不活性ガス中で2〜b 1000〜150.0℃まで加熱し、この温度に10〜
30分間維持することによって炭化(焼成)処理を行う
The pitch fibers of the present invention are then heated to K O,I in the presence of oxygen.
Heat to 250 to 350°C at a heating rate of s to 3°C/min, hold for 5 to 30 minutes, and infusible with K.
This is further heated in an inert gas to 2-b 1000-150.0°C, and then heated to this temperature for 10-150.0°C.
Carbonization (firing) treatment is performed by maintaining the temperature for 30 minutes.

本発明のピッチ繊維は、この炭化(焼成)処理の過桿e
こおいて完全なメンフェースとなり、充分に配向し且つ
巨大なドメインを含まない緻密な構造の炭素繊維を形成
する。
The pitch fiber of the present invention can be obtained by the carbonization (calcination) treatment.
At this point, the carbon fiber becomes a complete membrane, fully oriented, and has a dense structure that does not contain large domains.

得られる炭素P#、維は2ooKf/−以上の高強度と
10’tOn/−以上のモジュラスを有し、特に好まし
い態様では強度zsogf/−以上、モジュラス15 
ton /−以上と外り、きわめて性能のすぐれたもの
となる。
The obtained carbon P# fiber has a high strength of 2ooKf/- or more and a modulus of 10'tOn/- or more, and in a particularly preferred embodiment, a strength of zsogf/- or more and a modulus of 15
ton/- or more, resulting in extremely excellent performance.

次に、実施例及び比較例により本発明を更に詳f111
に説明する。
Next, the present invention will be explained in further detail by Examples and Comparative Examples.
Explain.

なお、各実施例中の炭素繊維の繊維径(糸径)は引張強
度、伸度、モジュラスはJ工SR7601F炭素繊維試
験方法」に従って測定した。
In addition, the fiber diameter (thread diameter), tensile strength, elongation, and modulus of the carbon fibers in each example were measured according to the "J-Ko SR7601F Carbon Fiber Test Method".

なお、繊維径はヘリウム−ネオンレーザ−を使用して測
定した。
Note that the fiber diameter was measured using a helium-neon laser.

また、粘度の測定は、高化式7 rJ−テスターを用い
、下記条件下での降下量より見掛粘度を測定した、 シリンダー断面積:tc、4 ノズヘ’ ”/ D = OJ rrrm/ O−3間
荷重:50〜重 L (cm)・・・ノズルランド長 P(〜tVty4)・・・荷重 Q(c14/5eC)・・・吐出量 ま産、光学的異方性部分の分数状態は、ピッチ繊維をエ
ポキシ樹脂のマトリンジス中KWめて固定し、繊維の側
面を削り出して、該側面を偏光顕微鏡によって観察する
ことKより行った。
In addition, the viscosity was measured using a Koka formula 7 rJ-tester, and the apparent viscosity was measured from the amount of drop under the following conditions: Cylinder cross-sectional area: tc, 4 nozzles'''/D = OJ rrrm/O- Load between 3: 50 to heavy L (cm)...Nozzle land length P (~tVty4)...Load Q (c14/5eC)...Discharge amount and fractional state of the optically anisotropic part is The pitch fibers were fixed in an epoxy resin matrix, the side surfaces of the fibers were cut out, and the side surfaces were observed using a polarizing microscope.

NK、ピッチ繊維中のキノリン可溶性成分の含有量の測
定は、 JIS K−2425によって行った、。
The content of quinoline-soluble components in NK and pitch fibers was measured according to JIS K-2425.

実施例1 市JI12コールタール中ピッチ134fとTHQ4o
2f′!!″電磁誘導回転攪拌妓置を備えたRUB−3
16Jqltオートクレーブに仕込み、窒素で充分置換
後、内、王をOKq / ty!l ()とし、密閉後
攪拌しながら430℃まで昇温し430℃に達した後、
さらに15分間維持したつ しかる後室温まで冷却し、内容物を、G4ガラスフィル
ターを用いて濾過し不溶物を除去した。p液を最終29
0℃r  10 rrrrnlIg absまで減圧蒸
留し、未反応T)IQ及び反応して生じたキノリンを主
とする揮発成分を留去し、炭素繊維原料ピンチ組成物を
得た。該原料ピッチ組成物を465℃ 10 魔11g
abe 15分間N %雰囲気中で熱処理L、炭素繊維
紡糸用ピッチを潤製した。
Example 1 City JI12 coal tar medium pitch 134f and THQ4o
2f′! ! ``RUB-3 equipped with electromagnetic induction rotating stirring station
After putting it into a 16Jqlt autoclave and replacing it with nitrogen, the inner and outer parts are OKq/ty! l (), and after sealing, raise the temperature to 430°C while stirring, and after reaching 430°C,
The mixture was maintained for an additional 15 minutes, then cooled to room temperature, and the contents were filtered using a G4 glass filter to remove insoluble materials. P liquid final 29
The mixture was distilled under reduced pressure to 0° C. r 10 rrrrnlIg abs to remove volatile components mainly consisting of unreacted T)IQ and quinoline produced by the reaction, to obtain a carbon fiber raw material pinch composition. 11g of the raw material pitch composition at 465°C
After heat treatment in an N% atmosphere for 15 minutes, pitch for carbon fiber spinning was prepared.

得られたピンチの比重(20℃)は、1,323゜キノ
リンネ溶分は40.3重11A・%、トルエン不溶部は
84.9重量%、320℃での粘度は1430ボイズで
あった。キノリン可溶成分の数平均分子61は980.
圧用(20℃)r、J:1.3o6であり、またピンチ
の芳香化度i13であった。
The specific gravity (20° C.) of the obtained pinch was 1,323°, the quinoline soluble portion was 40.3 weight 11A·%, the toluene insoluble portion was 84.9 weight %, and the viscosity at 320° C. was 1430 voids. The number average molecule 61 of the quinoline soluble component is 980.
Pressure (20°C) r, J: 1.3o6, and pinch aromatization degree i13.

該紡糸用ピング−を1600mθehのフィルター及び
L/D=0,110,1 (闘/M)ホール数(H) 
= 1の[j金をそなえた押し出し型シリンダーを用い
て紡糸温度360℃、吐出速度8.4 m / yp;
* 、巻取速度60 o m 7分で室温空気中へ紡糸
し、炭素繊維前駆体ピンチ繊維を得た。得られたピッチ
繊維の配向角は36.1°、結晶サイズ、即ち見掛けの
、微結晶高さくLc)は34.5 A 、層間隔(do
ot)は3.47 Aであった。同じピッチ繊維をエポ
キシマトリックスに埋め、側面をけずυ出し偏光顕微@
観察をすると、光学的異方性成分が繊維軸方向に微細な
すし状に分散しているのが確認された。(第1図参照) 同じ炭素繊維前駆体ピッチ繊維を、不融化炉中空気雰囲
気下無緊張状態で200℃から300℃まで2℃/分の
昇温速度で熱処理し、引続き300℃で3()分間熱処
理を行なって不融化させた。ついで焼成炉中、N!雰囲
気下200℃から1500℃まで10℃/分の昇温速度
で加熱し引続き1500℃で15分間熱処理をして炭化
させた。
The spinning pin was filtered with a filter of 1600 mθeh and L/D=0,110,1 (T/M) number of holes (H)
= 1 [j using an extruded cylinder equipped with gold, spinning temperature 360°C, discharge speed 8.4 m/yp;
*The carbon fiber precursor pinch fibers were obtained by spinning into air at room temperature at a winding speed of 60 .mu.m for 7 minutes. The orientation angle of the obtained pitch fibers was 36.1°, the crystal size (apparent, microcrystal height Lc) was 34.5 A, and the interlayer spacing (do
ot) was 3.47 A. The same pitch fibers were buried in an epoxy matrix and the sides were cut out and polarized light microscopy @
Upon observation, it was confirmed that the optically anisotropic component was dispersed in a fine sushi-like shape in the fiber axis direction. (See Figure 1) The same carbon fiber precursor pitch fiber was heat-treated in an infusibility furnace under an air atmosphere at a temperature increase rate of 2°C/min from 200°C to 300°C, and then heated at 300°C for 3 ( ) to make it infusible. Then, in the firing furnace, N! The material was heated in an atmosphere from 200° C. to 1500° C. at a rate of temperature increase of 10° C./min, followed by heat treatment at 1500° C. for 15 minutes to carbonize it.

得られた炭素PIi維の糸径はl018μ9強度は24
 s K4 /ea r伸度1.4%、モジュラスは1
7.5ton /−であった。
The diameter of the obtained carbon PIi fiber is 1018 μ9, and the strength is 24
s K4 /ear elongation 1.4%, modulus is 1
It was 7.5 tons/-.

実施例2〜5 市販コールタール中ピッチ354 f! トTHQ10
53Fを草、磁誘導回転攪拌装置を備えたSUS −3
16?i 3 tオートクレーブに仕込み窒ネで充分置
換後、内圧をOh / ctl aとし、密閉後攪拌し
ながら450℃まで昇温し、450℃に惰した後さらに
15分間維持した。
Examples 2-5 Commercially available coal tar pitch 354 f! THQ10
53F, SUS-3 with magnetic induction rotary stirring device
16? After the autoclave was charged into an i3t autoclave and the autoclave was sufficiently replaced with nitrogen, the internal pressure was set to Oh/ctla, and after the autoclave was sealed, the temperature was raised to 450°C with stirring, and after the autoclave was allowed to rise to 450°C, it was maintained for an additional 15 minutes.

しかる後室温まで冷却し内容物を04ガラスフイルター
を用いてPiPAし不溶物を除去した、F液を最終29
0℃ 10カTorrまで減圧蒸留し、未反応THQ及
び反応して生じたキノリンを主とする揮発成分を留去し
炭素繊維原料ピッチ組成物を得た。
Thereafter, the contents were cooled to room temperature and subjected to PiPA using a 04 glass filter to remove insoluble materials.
Distillation was carried out under reduced pressure at 0° C. and 10 Torr to remove volatile components mainly consisting of unreacted THQ and quinoline produced by the reaction, to obtain a carbon fiber raw material pitch composition.

該原料ピンチ組成物を465℃、io工Torr。The raw material pinch composition was heated at 465° C. and io torr.

15分間NNゴス気中で熱処理し炭素繊維紡糸用ピンチ
を調製した。
A pinch for carbon fiber spinning was prepared by heat treatment in NN Goss air for 15 minutes.

得られたピッチの比重(20℃)は1,332゜キノリ
ンネ溶分は57.6重量襞、トルエン不溶部は89.0
重量%、320Cでの粘度は245゜ボイズであった。
The specific gravity (at 20°C) of the obtained pitch is 1,332°; the quinoline-soluble portion is 57.6 weight folds, and the toluene-insoluble portion is 89.0.
The viscosity in weight percent at 320C was 245° voids.

キノリン可溶成分の数平均分子量は983で比重1.3
11であり、また該ピッチの芳香化度は0.54であっ
た。
The number average molecular weight of the quinoline soluble component is 983 and the specific gravity is 1.3.
11, and the degree of aromatization of the pitch was 0.54.

該紡糸用ピッチを1600meshのフィルター及びL
/D−0,1/ 0.1 (17間)、H=1の口金を
そなえた押し出し型シリンダーを用いて紡糸温度380
℃、吐出速度s、4m/分一定で、巻取速度を変更して
室温、空気中へ紡糸し、各種の炭素繊維前駆体ピッチ繊
維を得た。それぞれの前駆体ピッチ繊維のX線41セ造
パラメーターを表−1に示す。
The spinning pitch was changed to a 1600 mesh filter and L
/D-0,1/ 0.1 (17 hours), spinning temperature 380 using an extruded cylinder equipped with a nozzle of H=1.
℃, constant discharge speed s, 4 m/min, and changing the winding speed, spinning was carried out at room temperature in air to obtain various carbon fiber precursor pitch fibers. Table 1 shows the X-ray 41 formation parameters of each precursor pitch fiber.

同じ炭素繊維前駆体ピッチ繊維を、不融化炉を用い空気
雰囲気下、無緊張状態で200℃から300℃まで昇温
速度2℃/分で加熱し、ついて300℃で30分間熱処
理を行なった。
The same carbon fiber precursor pitch fiber was heated from 200° C. to 300° C. at a temperature increase rate of 2° C./min in an air atmosphere in an air atmosphere without tension using an infusibility furnace, and then heat-treated at 300° C. for 30 minutes.

次に、焼成炉中、N!雰囲気下、200℃から1500
℃虜で昇温速度15℃/分で加熱し、引続き1500℃
で15分間熱処理をした。
Next, in the firing furnace, N! Under atmosphere, from 200℃ to 1500℃
Heating at a heating rate of 15°C/min in a ℃ holder, and then heating to 1500°C.
Heat treatment was performed for 15 minutes.

得られた炭素繊維の物性を表−2に示した。The physical properties of the obtained carbon fibers are shown in Table 2.

表−2炭素繊維の物性 実施例6〜9 実施例2で用いたと同じ紡糸用ビッヂを1600メツシ
ユのフィルター及びL/D=0.370,3(17″’
/m/m) p H= 1の口金をソfx 、t fc
 押L 出り型シリンダーを用いて紡糸温度380℃、
巻取速度600 % 7分に固定し、ド之7ト率を変更
して溶融紡糸を実施1−た。
Table 2 Physical properties of carbon fiber Examples 6 to 9 The same spinning bits used in Example 2 were used with a 1600 mesh filter and L/D = 0.370,3 (17''
/m/m) pH = 1 caps fx, t fc
Spinning temperature 380℃ using extrusion cylinder
Melt spinning was carried out by fixing the winding speed to 600% and 7 minutes and changing the dot ratio.

得られた前駆体ピッチ繊維のXS構造パラメーターを表
−3に示した。
The XS structural parameters of the obtained precursor pitch fibers are shown in Table 3.

表−3ピンチ繊維の紡糸条件及び物性 各炭素繊維前駆体ピッチ繊維を、不融化炉を用い空気雰
囲気下、無緊張状態で200℃から3oocまで昇温速
度2℃/分で加熱し引続き300℃で30分間熱処理を
行なった。
Table 3 Spinning conditions and physical properties of pinch fibers Each carbon fiber precursor pitch fiber was heated from 200°C to 300°C under no tension in an air atmosphere using an infusibility furnace at a heating rate of 2°C/min, and then heated to 300°C. Heat treatment was performed for 30 minutes.

ついで焼成炉中、Nt′11.囲気下200℃から15
00℃゛まで昇温速度15℃/分で加熱し続いて150
0℃で15分間熱処理をした。
Then, in a firing furnace, Nt'11. 15 from 200℃ under ambient atmosphere
Heating at a heating rate of 15°C/min to 00°C, followed by heating at 150°C.
Heat treatment was performed at 0°C for 15 minutes.

得られた炭素繊維の物性を表−4に示した、表−4炭素
繊維の物性 比較例1 実施例1と同様の紡糸用ピッチを1600メツシユのフ
ィルター及びL / D = 0 、1 / 0 、1
(myl’my+)+ホール数−1の口金をそなえた押
し出し型シリンダーを用いて紡糸温度330℃、吐出速
度8.4 m /分1巻取速度a o on/分の条件
で溶融紡糸した。この際口金直下に長さ2Qcmの紡糸
筒を設け、筒内温度を300℃に保持した。
The physical properties of the obtained carbon fibers are shown in Table 4. Table 4 Physical Properties Comparative Example 1 of Carbon Fibers The same spinning pitch as in Example 1 was used with a filter of 1600 mesh and L / D = 0, 1 / 0, 1
Melt spinning was carried out using an extrusion type cylinder equipped with a nozzle having (myl'my+) + number of holes - 1 at a spinning temperature of 330° C., a discharge rate of 8.4 m/min, and a winding speed of a o on/min. At this time, a spinning tube with a length of 2 Qcm was provided directly below the spinneret, and the temperature inside the tube was maintained at 300°C.

得られた炭素繊維前躯体ピッチ繊維の配向角は27.8
°、結晶サイズ(Lc)は42.lλ、ノー間隔(do
es) tj、 3.45 Xであった。このピッチN
It維を、不−−(化炉中空気〆囲気下無緊張状態で2
00℃から300℃まで昇温速鹿り℃/分、引続き30
0℃で30分間熱処理を行なった。ついで焼成炉中N!
雰囲気下、200℃から1500℃まで昇温速度10℃
/分、引続き1500℃で15分間熱処理をした。得ら
れた炭素繊維は走査型電子顕微鏡で破断面を観察すると
結晶配列がラジアル状で第2リクランクが生じており織
許物性は、強度81.3h/ IIIJ !伸度0.7
6%、モジュラスけ10゜eton/−であった。
The orientation angle of the obtained carbon fiber precursor pitch fiber was 27.8
°, crystal size (Lc) is 42. lλ, no interval (do
es) tj, 3.45X. This pitch N
It fibers were heated under no tension under air in a chemical furnace for 2 hours.
Temperature increase rate from 00°C to 300°C/min, then 30°C
Heat treatment was performed at 0°C for 30 minutes. Next, N in the firing furnace!
Under atmosphere, heating rate 10℃ from 200℃ to 1500℃
/min, followed by heat treatment at 1500°C for 15 minutes. When the fractured surface of the obtained carbon fiber was observed using a scanning electron microscope, the crystal alignment was radial and a second re-crank had occurred, and the weaving properties were 81.3h/IIIJ! Elongation 0.7
6%, and the modulus was 10° eton/-.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の炭素繊維前駆体ピッチ繊維の好適な
一態様を示す一部切欠断面図であり、図中の1はキノリ
ン可溶性で且つ光学的に等方fl (7) −q ) 
IJツクス部、2け光学異方性のフィブリル部を示す。 指定代理人 光用工業技術試験所長 林  幀j−,1
茅 1 図 −136−
FIG. 1 is a partially cutaway sectional view showing a preferred embodiment of the carbon fiber precursor pitch fiber of the present invention, and 1 in the figure is quinoline-soluble and optically isotropic fl (7) -q )
The IJ tux part and the fibril part with double-digit optical anisotropy are shown. Designated agent: Director of Optical Industrial Technology Testing Institute Hayashi Hori, 1
Thatch 1 Figure-136-

Claims (1)

【特許請求の範囲】 1、  X線回折によって求めた配向角が30〜50゜
であシ、結晶サイズが25〜40に、層間隔が3.43
〜3.50χであって、且つ1500℃で焼成したとき
の強度が2oob/−以上であることを特徴とする炭素
繊維前駆体ピッチ繊維。 2、キノリン可溶性成分を30重t%以上含有するピッ
チからなる特許請求の範V!A ?i 1項記載の炭素
繊維前駆体ピッチ繊維。 3、 キノリン可溶性成分を50〜7.0 重、’A2
%A2中るピンチからなるIl?#’F mW求の範囲
第2項記載の炭素繊維前駆体ピンチ繊維。 4、光学的に等方性で且つキノリン可溶性のマトリック
ス中に、光学的に異方性の成分が繊維軸方向に伸びた多
数のすし状又伏フィブリル状に分散している特許請求の
範囲第3項記載の炭素繊維前駆体ピッチ繊維。
[Claims] 1. The orientation angle determined by X-ray diffraction is 30 to 50 degrees, the crystal size is 25 to 40 degrees, and the interlayer spacing is 3.43 degrees.
-3.50[chi], and has a strength of 20ob/- or more when fired at 1500C. 2. Claim V consisting of a pitch containing 30% by weight or more of a quinoline soluble component! A? i The carbon fiber precursor pitch fiber according to item 1. 3. 50 to 7.0 weight of quinoline soluble component, 'A2
Il consisting of a pinch in %A2? #'F mW range The carbon fiber precursor pinch fiber according to item 2. 4. The optically anisotropic component is dispersed in the optically isotropic and quinoline-soluble matrix in the form of a large number of sushi-like or folded fibrils extending in the fiber axis direction. Carbon fiber precursor pitch fiber according to item 3.
JP14703882A 1982-08-24 1982-08-24 Precursor pitch fiber for carbon fiber Granted JPS5936726A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14703882A JPS5936726A (en) 1982-08-24 1982-08-24 Precursor pitch fiber for carbon fiber
US06/525,702 US4590055A (en) 1982-08-24 1983-08-23 Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
FR8313618A FR2532322B1 (en) 1982-08-24 1983-08-23 PITCH COMPOSITIONS, PROCESSES FOR THE PREPARATION OF SUCH COMPOSITIONS, PIT FILAMENT, PROCESS FOR THE PREPARATION OF THE SAME, CARBON FIBER BASED ON PIT AND PROCESS FOR THE PREPARATION OF THE SAME
GB08322788A GB2129825B (en) 1982-08-24 1983-08-24 Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
DE19833330575 DE3330575A1 (en) 1982-08-24 1983-08-24 CARBON FIBERS BASED ON PECH, COMPOSITION AND FIBER PREPRODUCT HERE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14703882A JPS5936726A (en) 1982-08-24 1982-08-24 Precursor pitch fiber for carbon fiber

Publications (2)

Publication Number Publication Date
JPS5936726A true JPS5936726A (en) 1984-02-29
JPH036248B2 JPH036248B2 (en) 1991-01-29

Family

ID=15421111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14703882A Granted JPS5936726A (en) 1982-08-24 1982-08-24 Precursor pitch fiber for carbon fiber

Country Status (1)

Country Link
JP (1) JPS5936726A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6183317A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Carbon fiber and its production
JPH01118622A (en) * 1987-10-28 1989-05-11 Ube Ind Ltd High-strength and high-modulus carbon fiber
JPH0437622U (en) * 1990-07-20 1992-03-30

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100186A (en) * 1980-12-15 1982-06-22 Fuji Standard Res Kk Latently anisotropic pitch
JPS57101025A (en) * 1980-12-12 1982-06-23 Nippon Carbon Co Ltd Preparation of carbon fiber
JPS5841914A (en) * 1981-08-29 1983-03-11 Mitsui Cokes Kogyo Kk Preparation of high-strength and high-modulus carbon fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57101025A (en) * 1980-12-12 1982-06-23 Nippon Carbon Co Ltd Preparation of carbon fiber
JPS57100186A (en) * 1980-12-15 1982-06-22 Fuji Standard Res Kk Latently anisotropic pitch
JPS5841914A (en) * 1981-08-29 1983-03-11 Mitsui Cokes Kogyo Kk Preparation of high-strength and high-modulus carbon fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6327447B2 (en) * 1982-09-16 1988-06-03 Kogyo Gijutsu Incho
JPS6183317A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Carbon fiber and its production
JPH01118622A (en) * 1987-10-28 1989-05-11 Ube Ind Ltd High-strength and high-modulus carbon fiber
JPH0437622U (en) * 1990-07-20 1992-03-30

Also Published As

Publication number Publication date
JPH036248B2 (en) 1991-01-29

Similar Documents

Publication Publication Date Title
US4016247A (en) Production of carbon shaped articles having high anisotropy
US4590055A (en) Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
US4818612A (en) Process for the production of pitch-type carbon fibers
KR960007714B1 (en) Ultra-high modulus and high tensile strength carbon fibers and their production
JPH0133568B2 (en)
US4913889A (en) High strength high modulus carbon fibers
US5968435A (en) Process for manufacturing pitch-type carbon fiber
JPS5936726A (en) Precursor pitch fiber for carbon fiber
JPS5953717A (en) Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6065090A (en) Preparation of pitch for carbon fiber spinning
JPH0561367B2 (en)
JPH0133572B2 (en)
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPS61186520A (en) Production of pitch carbon yarn
JPH0545685B2 (en)
JPS62170528A (en) Carbon fiber and production thereof
JPS60239520A (en) Carbon fiber
JPS6112919A (en) Production of pitch carbon fiber
JPS626919A (en) Pitch-based carbon fiber having high strength and high modulus
JP2780231B2 (en) Carbon fiber production method
JPH042687B2 (en)
JPS61258024A (en) Production of pitch carbon yarn
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH0518922B2 (en)
JPS60259631A (en) Production of pitch carbon fiber