JPS5818421A - Preparation of carbon fiber - Google Patents

Preparation of carbon fiber

Info

Publication number
JPS5818421A
JPS5818421A JP11747081A JP11747081A JPS5818421A JP S5818421 A JPS5818421 A JP S5818421A JP 11747081 A JP11747081 A JP 11747081A JP 11747081 A JP11747081 A JP 11747081A JP S5818421 A JPS5818421 A JP S5818421A
Authority
JP
Japan
Prior art keywords
fibers
carbonaceous material
pitch
temperature
mesophase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11747081A
Other languages
Japanese (ja)
Other versions
JPH0133568B2 (en
Inventor
Yasuhiro Yamada
泰弘 山田
Hidemasa Honda
本田 英昌
Tetsuya Inoue
哲也 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP11747081A priority Critical patent/JPS5818421A/en
Publication of JPS5818421A publication Critical patent/JPS5818421A/en
Publication of JPH0133568B2 publication Critical patent/JPH0133568B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain carbon fibers having improved mechanical strength, by spinning an optically isotropic carbonaceous material, etc., making the resultant fibers infusible, and carbonizing the infusible fibers to convert the optically isotropic mesophase carbonaceous material into an optically anisotropic mesophase carbonaceous material. CONSTITUTION:An optically isotropic mesophase carbonaceous material, e.g. formed by keeping coal tar pitch treated with tetrahydroquinoline at a pressure <=50mm.Hg and a temperature >=450 deg.C within 15min, is spun under such conditions as not to increase the amount of the mesophase carbonaceous material, and the resultant fibers are made infusible, e.g. by heating the fibers in an air flow at a heating rate 0.5-3 deg.C/min to 250-350 deg.C in an electric furnace, and keeping the fibers at the temperature for 5-30min, carbonized, e.g. by heating the infusible fibers in a nitrogen gas flow at a heating rate of 2-5 deg.C/min to 900-1,200 deg.C, and keeping the fibers at the temperature for 10-30min, and converted into an optically anisotropic mesophase carbonaceous material and give the aimed carbon fibers.

Description

【発明の詳細な説明】 本発明は、ピッチ状物質から炭素繊維を製造するための
新規な方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new method for producing carbon fibers from pitch-like materials.

さらに詳しくいえば、本発明は、光学的に等方性のプリ
メソフェース炭素質を原料としてこれを紡糸、不融化、
炭化処理して、高強度の炭素繊維を高収率で製造する方
法に関するものである。
More specifically, the present invention uses optically isotropic pre-mesophase carbonaceous material as a raw material, spins it, makes it infusible,
The present invention relates to a method for producing high-strength carbon fibers in high yield through carbonization treatment.

炭素繊維は、断熱性、耐熱性、耐薬品性、剛性、導電性
が優れているという特性を利用して断熱材、シール材、
電気機械部品、構造部材、摩擦材料、炭素電極などに広
く使用されている。
Carbon fiber is used as heat insulating materials, sealing materials, and
Widely used in electromechanical parts, structural members, friction materials, carbon electrodes, etc.

従来、炭素繊維は、アクリロニトリルやセルロースなど
の繊維を焼成することにより製造されていたが、これら
の原料はコストが高い上に、炭化収率が低いため工業的
に大量生産する場合にはあまり適当な方法とはいえ々い
Conventionally, carbon fibers have been produced by firing fibers such as acrylonitrile or cellulose, but these raw materials are expensive and have low carbonization yields, making them less suitable for industrial mass production. It is not a good method.

他方、大量に入手しうる各種ピッチを原料として炭素繊
維を製造する方法が提案されているが、軟化点、粘度な
どの点で紡糸が困難な上に、得られる炭素繊維の品質が
低いという欠点がある。このような欠点を改善するため
、これまで特定の縮合多環芳香族化合物を水素化処理又
は熱処理して得たピッチ状物質を用いる方法(特公昭4
5−28013号公報、特公昭49−8634号公報)
、石油系タールやピッチをルイス酸系触媒の存在下、第
1の熱処理を施こしたのち、触媒を除去して第2の熱処
理を施こして得たものを用いる方法(特公昭53−75
33号公報)、減圧下に所定のメソフェース含量をもつ
メソフェースピッチを形成すせ、これを原料として炭素
繊維を製造する方法(特開昭54−11330号公報、
特公昭54−1810慨)、特定め組成、特定の性質を
もつメソフェースピッチを用いる方法(特開昭54−5
5625号公報、米国特許第3.787,541号明細
書)などが提案されているが、これらの方法によっても
アクリロニトリルを原料としたものに匹敵する性質をも
つ炭儂繊維を得ることができないため、現在に至るまで
高性能グレードの炭素繊維をピッチ状物質から製造する
実用化可能な方法は知られていなかった。
On the other hand, methods have been proposed for producing carbon fibers using various pitches that can be obtained in large quantities as raw materials, but these have drawbacks such as difficulty in spinning due to softening point, viscosity, etc., and low quality of the resulting carbon fibers. There is. In order to improve these drawbacks, a method has been developed that uses a pitch-like material obtained by hydrogenating or heat treating specific condensed polycyclic aromatic compounds (Special Publications Publication No. 4).
Publication No. 5-28013, Japanese Patent Publication No. 49-8634)
, a method in which petroleum tar or pitch is subjected to a first heat treatment in the presence of a Lewis acid catalyst, and then the catalyst is removed and a second heat treatment is performed (Japanese Patent Publication No. 53-75
33 Publication), a method of forming mesoface pitch with a predetermined mesophase content under reduced pressure and producing carbon fiber using this as a raw material (Japanese Patent Application Laid-open No. 11330/1983),
Japanese Patent Publication No. 54-1810), a method using mesoface pitch having a specific composition and specific properties (Japanese Patent Publication No. 54-54)
No. 5625, U.S. Pat. No. 3,787,541), etc., but these methods are unable to obtain charcoal fibers with properties comparable to those made from acrylonitrile as a raw material. Until now, there has been no known practical method for producing high-performance grade carbon fibers from pitch-like materials.

本発明者らは、ピッチ状物質を原料として、アクリロニ
トリルから得られる炭素繊維に匹敵する性質特に機械的
強度を示す炭素繊維を容易に製造する方法を開発するた
めに鋭意研究を重ねだ結果、特定の方法により得られる
全く新規なピッチ状物質であるプリメソフェース炭素質
を原料として用いることにより、その目的を達成しうろ
ことを見出し、本発明をなすに至った。
The present inventors have conducted intensive research to develop a method for easily manufacturing carbon fibers that exhibit properties, especially mechanical strength, comparable to carbon fibers obtained from acrylonitrile using pitch-like materials as raw materials. The present inventors have discovered that the object can be achieved by using as a raw material a completely new pitch-like substance, primesophase carbonaceous material, obtained by the method described above, and have thus come to form the present invention.

本発明に従えば、光学的に等方性のプリメツフェース炭
素質又は光学的に等方性のプリメソフェース炭素質を主
体とするピッチ状物質を、実質的にメソフェース炭素質
量が増加しない条件下で紡糸し、次いで不融化処理した
のち、炭化処理して、プリメソフェース炭素質の実質的
に全部を光学的に異方性のメンフェース炭素質に変換さ
せることにより、優れた品質の炭素繊維を製造すること
ができる。
According to the present invention, an optically isotropic pre-methophase carbonaceous material or a pitch-like material mainly composed of an optically isotropic pre-methophase carbonaceous material is prepared under conditions where the mesophase carbon mass does not substantially increase. Excellent quality carbon is produced by spinning the fibers, followed by infusibility treatment, and then carbonization treatment to convert substantially all of the pre-mesophase carbonaceous material into optically anisotropic memphasic carbonaceous material. Fibers can be produced.

本発明において原料として使用するプリメソフェース炭
素質は、光学的に等方性であり、600℃以上に加熱す
ると光学的に異方性のメンフェース炭素質に変わるとい
う特徴を有するものである。
The pre-mesophase carbonaceous material used as a raw material in the present invention is optically isotropic, and has the characteristic that when heated to 600° C. or higher, it changes to an optically anisotropic memphithic carbonaceous material.

これまで、外力を加えると光学的異方性に変わる等方性
ピッチ、いわゆるドーマントメンフェースピッチは知ら
れている。しかしながら、本発明で用いるプリメン、フ
ェース炭素質は、外力を加えただけでは変化せず、加熱
によってはじめて等方性に変わるという点で、このドー
マントメソフェースピッチとは明らかに異なるものであ
る。
Until now, isotropic pitches that change to optical anisotropy when an external force is applied, so-called dormant face pitches, have been known. However, the prime and face carbonaceous material used in the present invention is clearly different from this dormant mesoface pitch in that it does not change merely by applying an external force, but changes to isotropy only by heating.

本発明方法において原料として用いるプリメソフェース
は、原料ピッチを、テトラヒドロキノリン単独による処
理、触媒の存在下キノリンと水素による処理あるいはナ
フタリンのような芳香族炭化水素と水素による処理など
から成る第1段処理を施した後、減圧熱処理から成る第
2段処理を施すことによって製造される。
Primesophase used as a raw material in the method of the present invention is produced in the first stage, which consists of treating the raw material pitch with tetrahydroquinoline alone, with quinoline and hydrogen in the presence of a catalyst, or with an aromatic hydrocarbon such as naphthalene and hydrogen. After the treatment, it is manufactured by performing a second stage treatment consisting of a reduced pressure heat treatment.

この際の原料ピッチとしてはコールタ豐ル、コールター
ルピッチ、石炭液化物などの石炭系重質油、石油の常圧
蒸留残油、減圧蒸留残油及びこれらの残油の熱処理によ
って副生ずるタールやピッチ、オイルサントビチューメ
ンなどの石油系重質油を用いることができるが、後続の
紡糸が容易であるという点で若干石炭系のものが有利で
ある。
In this case, the raw material pitches include coal tar, coal tar pitch, coal-based heavy oils such as coal liquefied products, residual oils from atmospheric distillation of petroleum, residual oils from vacuum distillation, and tars and tars produced by heat treatment of these residual oils. Although petroleum-based heavy oils such as pitch and oil sand bitumen can be used, coal-based oils are somewhat advantageous in terms of ease of subsequent spinning.

この原料ピッチをテトラヒドロキノリンで処理するには
、例えば原料ピッチioo重量部当シテトラヒドロキノ
リン30〜100重量部を加え300〜500℃、好ま
しくは340〜450℃で加熱する。この際テトラヒド
ロキノリンの代りにテトラヒドロキノリンとキノリンと
の混合物を用いてもよい。
To treat this raw material pitch with tetrahydroquinoline, for example, 30 to 100 parts by weight of tetrahydroquinoline per 10 parts by weight of raw material pitch is added and heated at 300 to 500°C, preferably 340 to 450°C. At this time, a mixture of tetrahydroquinoline and quinoline may be used instead of tetrahydroquinoline.

また、テトラヒドロキノリンによる処理の代りに触媒の
存在下、キノリンと水素で処理する場合には、例えば原
料ピッチ100重量部当りキノリン30〜100重量部
及び触媒5〜10重量部を加え、水素ガス雰囲気中、圧
力50〜200 Kglcry、 174度400℃以
上の条件下に10分間以上維持することによって行われ
る。この際の触媒としては、コバルト−モリブデン系、
酸化鉄系のものが好適である。まだ、前記したキノリン
単独に代えてキノリンとテトラヒドロキノリンの混合物
を用いることもできる。
In addition, when treating with quinoline and hydrogen in the presence of a catalyst instead of treatment with tetrahydroquinoline, for example, 30 to 100 parts by weight of quinoline and 5 to 10 parts by weight of catalyst are added per 100 parts by weight of raw material pitch, and a hydrogen gas atmosphere is added. The process is carried out by maintaining a pressure of 50 to 200 kglcry and a temperature of 174 degrees Celsius or higher than 400 degrees Celsius for 10 minutes or more. The catalyst used in this case is cobalt-molybdenum,
Iron oxide-based materials are preferred. However, a mixture of quinoline and tetrahydroquinoline can also be used in place of the above-mentioned quinoline alone.

このようにして処理して得た生成物は、ろ過したのち、
第2段処理に付される。
The product obtained by this treatment is filtered and then
Subjected to second stage processing.

次に芳香族炭化水素と水素ガスで処理する場合には、原
料ピッチ100重量部当シ芳香族炭化水素50重量部以
上を混合し、水素ガス雰囲気中、圧力50Kg/d以上
、温度430℃以上の条件下に約60分間維持すること
によって行われる。この際の芳香族炭化水素としては、
ナフタリン、アントラセン、フェナントレン、ピレンな
どが好適である。この場合、芳香族炭化水素100重量
部当りキノリン1重量部以上を混合したものを用いると
さらに有利である。
Next, when processing with aromatic hydrocarbon and hydrogen gas, mix 50 parts by weight or more of aromatic hydrocarbon per 100 parts by weight of raw material pitch in a hydrogen gas atmosphere at a pressure of 50 kg/d or more and a temperature of 430°C or more. This is done by maintaining the temperature under these conditions for about 60 minutes. The aromatic hydrocarbons in this case are:
Naphthalene, anthracene, phenanthrene, pyrene and the like are preferred. In this case, it is more advantageous to use a mixture of 1 part by weight or more of quinoline per 100 parts by weight of aromatic hydrocarbon.

以上のようにして第1段処理された原料ピッチは、次い
で減圧下、高温処理される。この処理は圧力50mmH
g以下、温度450℃以上の条件下に60分間以内維持
することによって行われる。この処理はできるだけ高温
の下で、短時間好ましくは15分以内行うのがよく、あ
まり長時間の加熱を行うと可紡性が失われる。
The raw material pitch that has been subjected to the first stage treatment as described above is then subjected to high temperature treatment under reduced pressure. This treatment is carried out at a pressure of 50 mmH.
g or less and maintained at a temperature of 450° C. or higher for 60 minutes or less. This treatment is preferably carried out at as high a temperature as possible for a short period of time, preferably within 15 minutes; if heating is carried out for too long, spinnability will be lost.

このように、ブリメソフェース炭素質を形成させるには
、2段階の処理が必要であるが、それは第1段処理で原
料ピッチ中の高分子量分を低分子化させ、次いで第2段
処理で低分子量分を除去するだめである。
In this way, two-step processing is required to form brimesophase carbonaceous material, and the first step is to reduce the high molecular weight content in the raw material pitch, and then the second step is to reduce the high molecular weight content in the raw material pitch. It is useless to remove low molecular weight components.

このようにして得られたプリメソフェース炭素質は、通
常軟化点300℃以下、固定炭素量87%以上で、キノ
リンには可溶である。
The thus obtained premethophase carbonaceous material usually has a softening point of 300° C. or less, a fixed carbon content of 87% or more, and is soluble in quinoline.

まだ、このプリメソフェース炭素質を反射偏光顕微鏡に
よ垢直交ニコル下で観察した場合、従来の炭素繊維の原
料ピッチとして慣用されていたメンフェースはニコルを
回転させると、45°を周期として暗黒色と白色の状態
が繰り返されるのに対し、このものは常に暗黒色であっ
て変化しない。
However, when this pre-mesophase carbonaceous material is observed with a reflective polarization microscope under crossed nicols, the membranous phase, which is commonly used as the raw material pitch for conventional carbon fibers, becomes dark with a period of 45 degrees when the nicols are rotated. Whereas the states of color and white are repeated, this one is always dark black and does not change.

このことから、前記のブリメソフェース炭素質は光学的
に等方性であることが分る。
This shows that the brimesophase carbonaceous material is optically isotropic.

本発明方法においては、原料ピッチとしてプリメソフェ
ース炭素質を用いるが、これは必ずしも単一体である必
要はなく、メンフェースとの混合物であってもよい。こ
の場合は、メソフェースとブリメソフェースの粘度をほ
ぼ等しくシ、かつメンフェースの混合割合を60重重量
板下にすることが必要である。これよりもメソフェース
の量が多くなると可紡性が低下し、90重重量板上では
糸切れが激しく、50m/分という低速を用いても連続
的な紡糸はほとんど不可能になるし、まだ紡糸できたと
しても得られた繊維は強度が著しく低いものとなシ実用
に供することができない。
In the method of the present invention, premesophase carbonaceous material is used as the raw material pitch, but it does not necessarily have to be a single substance, and may be a mixture with memphase. In this case, it is necessary to make the viscosity of mesoface and brimesoface almost equal and to make the mixing ratio of mesoface less than 60% by weight. If the amount of mesophase is larger than this, the spinnability will decrease, and yarn breakage will be severe on a 90-weight plate, and continuous spinning will be almost impossible even at a low speed of 50 m/min, and spinning will still be difficult. Even if it were possible to do so, the resulting fibers would have extremely low strength and cannot be put to practical use.

本発明方法におけるプリメソフェース炭素質の紡糸は、
溶融押出紡糸、遠心紡糸、吹込紡糸等これまで炭素繊維
の紡糸法として周知の方法に従って行うことができる。
The spinning of pre-methophase carbonaceous material in the method of the present invention is as follows:
It can be carried out according to conventionally known carbon fiber spinning methods such as melt extrusion spinning, centrifugal spinning, and blow spinning.

例えば、ブリメソフェース炭素質を、口径0.1〜0.
8 m+のノズルをもつ紡糸器に入れ、外部加熱によシ
その軟化点よりも50〜90℃高い温度に加熱し、窒素
ガスのような不活性ガスを用い0.2〜2 Kp / 
crlの圧力で押出し、ノズルより紡出してくるフィラ
メントを巻取速度50〜1000m/分で巻き取ること
により行うことができる。
For example, Brimesoface carbonaceous material with a diameter of 0.1 to 0.
It is placed in a spinning machine with an 8 m+ nozzle, heated to a temperature 50 to 90°C higher than its softening point by external heating, and 0.2 to 2 Kp / using an inert gas such as nitrogen gas.
This can be carried out by extruding at a pressure of crl and winding the filament spun out from a nozzle at a winding speed of 50 to 1000 m/min.

この際の可紡性は、ブリメソフェース炭素質の純度に関
係し、その中のメンフェース量が60重重量板下の場合
は、1000?Fl/分程度の高速で巻き取ることがで
きるが、それよシも多く含むものは低速にしないと連続
的な紡糸ができず、しばしば糸切れを生じる上に、生じ
た繊維が不均一となる。この紡糸に際し、生成したフィ
ラメント中のメソフェース量は、紡糸の前後において実
質的に変化しない。
The spinnability in this case is related to the purity of the brimesoface carbonaceous material, and if the amount of memphace in it is 60 yen, it is 1000? It is possible to wind up at a high speed of around Fl/min, but if the spinning speed is too high, continuous spinning is not possible unless the speed is slow, which often results in yarn breakage and the resulting fibers are non-uniform. . During this spinning, the amount of mesophase in the filaments produced does not substantially change before and after spinning.

次に、本発明方法の不融化処理は、前記のようにして得
たフィラメントを、例えば電気炉中に入れ空気気流中、
0.5〜b 〜350℃まで加熱し、5〜30分間維持することによ
って行われる。
Next, in the infusible treatment of the method of the present invention, the filament obtained as described above is placed in, for example, an electric furnace and heated in an air stream.
This is done by heating to 0.5-350°C and maintaining for 5-30 minutes.

このようにして不融化されたフィラメントは、次いでそ
の中のブリメソフェース炭素質をメソフェースに変える
ために炭化処理に付せられる。この炭化処理は、例えば
窒素ガスのような不活性ガス気流中、2〜b ℃の範囲内の温度まで加熱し、この温度に10〜30分
間維持することによって行われる。この処理によって、
光学的に等方性のブリメソフェース炭素質の実質的に全
てが、光学的に異方性のメソフェースに変換する。この
ようにして、繊維径20μ以下、引張強度150〜32
0 Kg/lnd、伸び率1.2〜1.6 %の炭素繊
維が原料に基づき88係もしくはそれ以上の収率で得ら
れる。
The filament thus made infusible is then subjected to a carbonization treatment to convert the brimesophase carbonaceous material therein into mesophase. This carbonization treatment is carried out, for example, by heating in a stream of inert gas, such as nitrogen gas, to a temperature within the range of 2 to b°C and maintaining this temperature for 10 to 30 minutes. With this process,
Substantially all of the optically isotropic brimesophase carbonaceous material converts to optically anisotropic mesophase. In this way, the fiber diameter is 20 μ or less, the tensile strength is 150 to 32
Carbon fibers with an elongation of 1.2 to 1.6% and a yield of 88% or higher can be obtained based on the raw materials.

本発明方法によると、従来のピッチやメソフエ−スを原
料として炭素繊維を製造する方法に比べ大きい紡糸速度
で、また高い炭素変換効率で、ポリアクリロニトリルか
ら得られるものに匹敵する強度をもつ炭素繊維を得るこ
とができる。
According to the method of the present invention, carbon fibers with strength comparable to that obtained from polyacrylonitrile can be produced at higher spinning speeds and with higher carbon conversion efficiency than conventional methods for producing carbon fibers using pitch or mesophase as raw materials. can be obtained.

次に実施例により本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.

各実施例中の炭素繊維の繊維径は走査型電子顕微鏡によ
る観察で測定した。また引張強度、伸び率は、J工S 
R7601r炭素繊維試験方法−1に従って測定した。
The fiber diameter of the carbon fibers in each example was measured by observation using a scanning electron microscope. In addition, the tensile strength and elongation rate are
Measured according to R7601r carbon fiber test method-1.

参考例1 コールタールピッチ2002と1.2,3.4−テトラ
ヒドロキノリンとキノリンとの混合物(テトラヒドロキ
ノリン濃度86,7係) 500 fを21容−オート
クレープに入れ、内部空気を窒素ガスで置換したのち密
封し、平均昇温速度3℃/分で450℃まで加熱し、こ
の温度に10分間保持した。次いで室温まで冷却後、ガ
ラスフィルター(扁4)を通して減圧濾過し、ろ液を圧
力10mHgのもとで、液温か200℃に達するまで蒸
留することによシテトラヒドロキノリンとキノリンを除
去しピッチAを得た。
Reference Example 1 A mixture of coal tar pitch 2002, 1.2,3.4-tetrahydroquinoline, and quinoline (tetrahydroquinoline concentration: 86.7 parts) 500 f was placed in a 21 volume autoclave, and the internal air was replaced with nitrogen gas. Thereafter, the container was sealed, heated to 450° C. at an average heating rate of 3° C./min, and held at this temperature for 10 minutes. Next, after cooling to room temperature, it was filtered under reduced pressure through a glass filter (flat 4), and the filtrate was distilled under a pressure of 10 mHg until the liquid temperature reached 200°C to remove the cytotrahydroquinoline and quinoline and produce pitch A. Obtained.

また、前記の450℃で10分間の熱処理の代りに40
0℃で30分間処理する以外は前記と全く同様に処理し
てピッチBを得た。
Also, instead of the heat treatment at 450°C for 10 minutes,
Pitch B was obtained by processing in exactly the same manner as above except that the processing was carried out at 0° C. for 30 minutes.

このようにして得たピッチA1 ピッチBの性状を原料
コールタールピッチのそれと共に第1表に示す。
The properties of pitch A1 and pitch B thus obtained are shown in Table 1 together with those of the raw material coal tar pitch.

第  1 表 このピッチA又はピッチBの約1002を、内容積30
0−のパイルックス製容器に入れ、あらかじめ500〜
530℃に加熱しておいた塩浴に浸した0真空ポンプに
連結し、徐々に減、圧し、最終的に10゜■聡の圧力と
した。この条件下に第2表に示す時間保持口だのち、室
温まで冷却し、ブリメソフェース炭素質を製造した。表
中の保持時間は、浴中に容器を浸したときからの時間で
ある。また、ピッチの実際の温度は、塩浴温度ぶりも約
20℃低かった。
Table 1 Approximately 1002 of this pitch A or pitch B is converted into an internal volume of 30
Place it in a 0-Pyrox container and add 500~
It was connected to a vacuum pump immersed in a salt bath heated to 530°C, and the pressure was gradually reduced to a final pressure of 10°C. After holding under these conditions for the time shown in Table 2, the mixture was cooled to room temperature to produce a brimethophase carbonaceous material. The retention time in the table is the time from when the container was immersed in the bath. Furthermore, the actual temperature of the pitch was about 20°C lower than the salt bath temperature.

このようにして得たプリメソフェース炭素質の収率及び
性状を第2表に示した。
The yield and properties of the primesophase carbonaceous material thus obtained are shown in Table 2.

参考例2 カフジ原油の減圧蒸留残油を窒素ガス気流中、420℃
において60分間熱処理した。残留ピッチの収率は58
重量%であシ、キノリンネ溶分6.8重量%含んでいた
Reference Example 2 Vacuum distillation residue of Kafji crude oil was heated at 420°C in a nitrogen gas stream.
The sample was heat-treated for 60 minutes. The yield of residual pitch is 58
It contained 6.8% by weight of Ashi and Quinoline solubles.

次にこの残留ピッチをキノリンに溶解し、濾過して不溶
分を除き、P液を蒸留しキノリンを除くことによってピ
ッチを得た。
Next, this residual pitch was dissolved in quinoline, filtered to remove insoluble matter, and P solution was distilled to remove quinoline to obtain pitch.

このピッチ2001を2を容−オートクレープに入れ、
テトラヒドロキノリンとキノリンの混合物(テトラヒド
ロキノリン濃度87.6%)50(lを加え、水素圧5
o Kg/crl (ゲージ圧)、温度450℃におい
て3時間処理した。次いで、減圧蒸留によってテトラヒ
ドロキノリンとキノリンを除去したのち、参考例1と同
様にして10 mm Hgの圧力下、490℃で10分
間処理し、  45.2%の収率でブリメソフェース炭
素質を得た。
Put this pitch 2001 into an autoclave.
Add 50 (l) of a mixture of tetrahydroquinoline and quinoline (tetrahydroquinoline concentration 87.6%) and reduce the hydrogen pressure to 5
o Kg/crl (gauge pressure) and a temperature of 450° C. for 3 hours. Next, after removing tetrahydroquinoline and quinoline by vacuum distillation, the mixture was treated in the same manner as in Reference Example 1 at 490°C for 10 minutes under a pressure of 10 mm Hg to obtain brimesophase carbonaceous material with a yield of 45.2%. Obtained.

このブリメソフェース炭素質は軟化点341℃、キノリ
ンネ溶分64.3%、固定炭素量87.6%であった。
This brimesophase carbonaceous material had a softening point of 341°C, a quinoline soluble content of 64.3%, and a fixed carbon content of 87.6%.

参考例3 ナフサタールピッチ3502を2を容−オー!・クレー
プに入れ、参考例2で回収したテトラヒドロキノリンと
キノリンの混合物(テトラヒドロキノリン濃度38.1
% )350fを加え、これに触媒として赤泥352加
えたのち、水素圧75に9/ci。
Reference example 3 Add naphthatal pitch 3502 to 2!・The mixture of tetrahydroquinoline and quinoline collected in Reference Example 2 was placed in a crepe (tetrahydroquinoline concentration 38.1
%) After adding 350f and adding red mud 352 as a catalyst, the hydrogen pressure was 75 and 9/ci.

温度450℃で60分間加熱処理した。次いでこの処理
物を濾過して赤泥を除去し、そのP液を減圧蒸留してテ
トラヒドロキノリンとキノリンとを除去した。
Heat treatment was performed at a temperature of 450° C. for 60 minutes. Next, this treated product was filtered to remove red mud, and the P liquid was distilled under reduced pressure to remove tetrahydroquinoline and quinoline.

このようにして得だピッチを参考例1と同様にして、l
ommHgの圧力下、480℃において10分間処理す
ることにより38.9%の収率でブリメソフェース炭素
質を得た。
In this way, the obtained pitch is set as in Reference Example 1, and l
By treating the mixture at 480° C. for 10 minutes under a pressure of ommHg, brimesophase carbonaceous material was obtained with a yield of 38.9%.

このブリメソフェース炭素質は、軟化点341℃、キノ
リンネ溶分53.6%、固定炭素量88.6%であった
This brimesophase carbonaceous material had a softening point of 341°C, a quinoline soluble content of 53.6%, and a fixed carbon content of 88.6%.

実施例1 参考例1で得た種々のブリメソフェース炭素質209を
、口径0.5mmのノズルをもつ内径20間、長さ15
0咽の真ちゅう製紡糸器に入れ、外部加熱によりそれぞ
れのピッチをその軟化点よりも約70℃高い温度になる
ように加熱し、窒素ガスで1〜/ CI (ゲージ圧)
に加圧して押出し、ノズルから紡出したフィラメントを
10100o分で巻き取った。
Example 1 Various Brimesoface carbonaceous materials 209 obtained in Reference Example 1 were prepared using a nozzle with an inner diameter of 20 mm and a length of 15 mm.
Place each pitch in a zero-throttle brass spinning machine, heat each pitch by external heating to a temperature approximately 70°C higher than its softening point, and heat it with nitrogen gas to a temperature of 1 to 1/CI (gauge pressure).
The filament was extruded under pressure and the filament spun from the nozzle was wound up at 10,100°.

このようにして訓整したフィラメントを電気炉中に入れ
、空気を約200d/分の割合で通じながら、1℃/分
の昇温速度で260℃又は300℃に加熱し、この温度
に15分間保持することにより不融化処理した。
The filament trained in this way is placed in an electric furnace and heated at a rate of 1°C/min to 260°C or 300°C while passing air at a rate of approximately 200 d/min, and maintained at this temperature for 15 minutes. Infusibility treatment was carried out by holding it.

次いでこのようにして得た処理フィラメントを、窒素ガ
ス気流中、5℃/分の昇温速度で1000℃まで加熱し
、15分間保持して炭化を行った。
Next, the treated filament thus obtained was heated to 1000° C. at a temperature increase rate of 5° C./min in a nitrogen gas stream and held for 15 minutes to perform carbonization.

このようにして得た炭素繊維の調製条件及び物性を第3
表に示す。
The preparation conditions and physical properties of the carbon fiber obtained in this way were described in the third section.
Shown in the table.

なお、表中のピッチ屋は参考例1におけるピッチ屋と同
じである。
Note that the pitcher in the table is the same as the pitcher in Reference Example 1.

比較例1 参考例1で用いた原料コールタールピッチをキノリンに
溶解し、フリーカーボンを濾過にょシ除いた。このよう
にして得たフリーカーボンを含まないピッチを参考例1
と同様にして減圧下、 500℃で15分間熱処理した
ところ、全体がコーキングし、加熱しても軟化、溶融さ
せることができなかった。
Comparative Example 1 The raw material coal tar pitch used in Reference Example 1 was dissolved in quinoline, and free carbon was removed by filtration. Reference example 1 is the pitch that does not contain free carbon obtained in this way.
When it was heat-treated at 500° C. for 15 minutes under reduced pressure in the same manner as above, the entire product was caulked and could not be softened or melted even by heating.

次に減圧下における熱処理を5001?、で5分間とし
たところ、キノリンネ溶分(メンフェース)を72.0
重量%含むピッチを得た。この際の収率は53.0重量
%であシ、ピッチの軟化点は370 ℃であった。この
ピッチを紡糸温度430℃で紡糸を試みたが、フィラメ
ントを得ることはできなかった。
Next, heat treatment under reduced pressure is performed at 5001? , for 5 minutes, the quinoline dissolved content (menface) was 72.0.
A pitch containing % by weight was obtained. The yield at this time was 53.0% by weight, and the softening point of pitch was 370°C. An attempt was made to spin this pitch at a spinning temperature of 430°C, but no filaments could be obtained.

比較例2 参考例1で示したピッチAを450’Cで1o分間処理
し、その生成物を減圧することなく5oo℃で60分間
処理した。このようにして収率58.2重量%で、軟化
点379℃、キノリ7不溶分72.9重量%のピッチを
得た。
Comparative Example 2 Pitch A shown in Reference Example 1 was treated at 450'C for 10 minutes, and the product was treated at 500C for 60 minutes without reducing the pressure. In this way, pitch was obtained with a yield of 58.2% by weight, a softening point of 379° C., and an insoluble content of Kinori 7 of 72.9% by weight.

このピッチを一約430℃で紡糸を試みたが、フィラメ
ントはほとんど得られなかった。    パ 次に、上
記のピッチをI Ot#MHgに減圧した条件下、42
0℃で18時間熱処理することにより、軟化点323℃
、キノリンネ溶分73.2重量%、固定炭素量82.9
重量%のピッチを婦だ。このものを380〜420℃の
範囲の紡糸温度で紡糸を試みたが、紡糸開始初期にわず
かにノズルから紡糸しただけで、はとんどフイ゛□ラメ
ントを形成することはできなかった。
An attempt was made to spin this pitch at about 430°C, but almost no filaments were obtained. Next, under the condition that the above pitch was reduced to I Ot#MHg, 42
By heat treatment at 0℃ for 18 hours, the softening point is 323℃.
, quinoline solubility 73.2% by weight, fixed carbon amount 82.9
Weight% pitch. Attempts were made to spin this product at a spinning temperature in the range of 380 to 420°C, but only a small amount of fiber was spun from the nozzle at the beginning of spinning, and it was not possible to form filaments at all.

実施例2 参考例2で得たプリメソフェース炭素質を実施例1と同
様にして、約410℃において紡糸した。
Example 2 The premethophase carbonaceous substance obtained in Reference Example 2 was spun at about 410° C. in the same manner as in Example 1.

次いで得られたフィラメントを、電気炉中、空気を吹き
込みながら、昇温速度1℃/分で300℃まで加熱し、
30分間この温度に保持して不融化した。この際の重量
増加率は3.5%であった。
Next, the obtained filament was heated to 300°C at a heating rate of 1°C/min in an electric furnace while blowing air.
It was kept at this temperature for 30 minutes to make it infusible. The weight increase rate at this time was 3.5%.

次に、この不融化したフィラメントを、平均昇温速度3
.3℃/分で1000℃まで加熱し、この温度に15分
間保持して炭化させ、炭素繊維を得た。
Next, this infusible filament is heated at an average heating rate of 3
.. It was heated to 1000°C at a rate of 3°C/min and maintained at this temperature for 15 minutes to carbonize, thereby obtaining carbon fibers.

この際の収率は、プリメソフェース炭素質に対して87
.4%であった。また、得られた炭素繊維の引張強度は
186に9/−1伸び率は1.2%、繊維径は18μm
であった。
The yield at this time was 87
.. It was 4%. In addition, the tensile strength of the obtained carbon fiber was 186, the elongation rate was 1.2%, and the fiber diameter was 18 μm.
Met.

実施例3 参考例3で得たプリメソフェース炭素質を、実施例1と
同様にして紡糸温度400〜420 ’Cで紡糸したの
ち、空気中260 ℃で15分間不融化処理した。
Example 3 The premethophase carbonaceous material obtained in Reference Example 3 was spun at a spinning temperature of 400 to 420'C in the same manner as in Example 1, and then subjected to infusibility treatment in air at 260C for 15 minutes.

次に不融化処理したフィラメントを窒素ガス気流中、昇
温速度2℃/分で1000 ′cまで加熱し、この温度
に15分間保持して炭化させることによシ87.3%の
収率で、引張強度216KLi/−1伸び率1.1%、
繊維径16μmの炭素繊維を得た。
Next, the infusible filament was heated in a nitrogen gas flow at a heating rate of 2°C/min to 1000'C, and held at this temperature for 15 minutes to carbonize, resulting in a yield of 87.3%. , tensile strength 216KLi/-1 elongation rate 1.1%,
Carbon fibers with a fiber diameter of 16 μm were obtained.

参考例4 紡糸用ピッチ中の光学的に等方性なキノリン可溶分が紡
糸とその不融化処理では光学的等方性であシ、その紡糸
した繊維を炭化することによってメソフェースに全面的
に転換することは次の実験によって証明した。
Reference Example 4 The optically isotropic quinoline soluble content in the spinning pitch is optically isotropic during spinning and its infusibility treatment, and by carbonizing the spun fiber, it is completely converted into mesophase. The conversion was proved by the following experiment.

コールタールピッチとテトラヒドロキノリンを密閉容器
中、450℃で10分間処理した後、遠心沈澱法によっ
て、コールタールピッチ中のフリーカーボンを除去し、
ついで、減圧蒸留を行ってテトラヒドロキノリンとキノ
リンを除去した。得られたピッチl0cIを300−の
重合フラスコに入れ、あらかじめ500℃に加熱した塩
浴中に投入した。
After treating coal tar pitch and tetrahydroquinoline in a closed container at 450°C for 10 minutes, free carbon in the coal tar pitch was removed by centrifugal sedimentation,
Then, vacuum distillation was performed to remove tetrahydroquinoline and quinoline. The obtained pitch 10cI was placed in a 300-cm polymerization flask and placed in a salt bath preheated to 500°C.

投入後ただちに減圧系に接続し、徐々に減圧させながら
、留出する油分をトラップに導いた。投入後約4分間で
ピッチの温度が480 ℃に達し、この温度で5分間保
持した。なお、最終の減圧は1゜tHRHgである。時
間経過後、ただちにフラスコを塩浴から取出し、室温ま
で冷却した。
Immediately after charging, it was connected to a pressure reduction system, and the distilled oil was guided to the trap while gradually reducing the pressure. The temperature of the pitch reached 480°C approximately 4 minutes after the addition, and was maintained at this temperature for 5 minutes. Note that the final reduced pressure is 1°tHRHg. Immediately after the time elapsed, the flask was removed from the salt bath and cooled to room temperature.

フラスコ残として得られた紡糸用ピッチは36.82で
あった。このピッチの軟化点は171℃、固定炭素量8
6.6%、キノリンネ溶分0.8%であった。
The spinning pitch obtained as flask residue was 36.82. The softening point of this pitch is 171℃, and the amount of fixed carbon is 8
6.6%, and the quinoline dissolved content was 0.8%.

反射偏光顕微鏡で組織を観察しだところ、約1μmの球
径を持つメソフェース小球体が散在しているのが認めら
れ、それ以外の部分は光学的等方性であった。
When the structure was observed using a reflective polarizing microscope, it was found that mesophase spherules with a diameter of about 1 μm were scattered, and the rest of the structure was optically isotropic.

0.5fiの孔径を持つノズルをつけた紡糸器にピッチ
を入れ、約250℃に加熱した後、窒素ガスによって、
約0.5 Kp/m加圧して紡糸した。紡糸はかなり容
易で、巻取速度約300 m /−で数分間、糸切れな
く巻取ることができた。
Pitch was put into a spinning machine equipped with a nozzle with a hole diameter of 0.5 fi, heated to about 250°C, and then heated with nitrogen gas.
Spinning was carried out under pressure of about 0.5 Kp/m. Spinning was quite easy, and the yarn could be wound for several minutes at a winding speed of about 300 m/- without any breakage.

紡糸した繊維の不融化はピッチの軟化点が低いため、か
なり困難であり、空気酸化だけでは完全な不融化処理が
できなかった。とくに、約20μmの太い繊維は不融化
処理によって溶融するようで、繊維形状は保持している
が、かたくてもろいものであった。
It is quite difficult to make the spun fibers infusible due to the low softening point of pitch, and complete infusibility cannot be achieved by air oxidation alone. Particularly, the thick fibers of about 20 μm seemed to be melted by the infusibility treatment, and although they retained their fiber shape, they were hard and brittle.

不融化処理後の繊維を窒素ガス気流中、5℃7んの昇温
速度で1000℃まで加熱し、15分保持して炭化した
The fibers after the infusibility treatment were heated to 1,000° C. at a temperature increase rate of 5° C. and 7 ml in a nitrogen gas flow and held for 15 minutes to carbonize.

このようにして炭化した繊維、紡糸および不融化処理し
た繊維を樹脂に埋込み、研摩した後、反射偏光顕微鏡に
よって直交ニコル下で組織を観察した。その組織写真を
第1図に示す。第1図a。
The carbonized fibers, spun, and infusible fibers were embedded in resin and polished, and then their structures were observed under crossed Nicols using a reflective polarization microscope. A photograph of the structure is shown in Figure 1. Figure 1a.

bは紡糸した繊維であり、同図C2dは炭化処理した繊
維である。aとCは偏光板にコル)の振動方向に対して
、繊維軸が平行または垂直(直交ニコルであるだめ)方
向であり、bとdは45°の対角位である。aの紡糸し
た繊維は暗黒色であり、その中に数個の輝く小球体(球
径1μm位)が存在する。これを45°右方向に回転さ
せ、対角位にしてもこの状態は変らない(b)。これに
石こう検板(大板)をそう人して観察しても、小球体は
右方向45°に回転させると色の変化が認められるが、
暗黒色は赤色であり、変化しない。すなわち、繊維中に
わずかに存在する小球体は光学的異方性であシ、その他
の大部分は光学的等方性であってメンフェースではない
。この状態はメンフェース小球体を含む紡糸用ピッチと
同様であり、かつ、不融化処理繊維でも同様であった。
b is a spun fiber, and C2d in the figure is a carbonized fiber. In a and C, the fiber axes are parallel or perpendicular (not perpendicular Nicols) to the vibration direction of the polarizing plate, and b and d are diagonal at 45°. The spun fiber of a is dark black, and several shining small spheres (spherical diameter approximately 1 μm) are present within it. This state does not change even if this is rotated 45 degrees to the right and placed in a diagonal position (b). In addition, when observing the gypsum test plate (large plate) in person, it is observed that the color of the small sphere changes when rotated 45 degrees to the right.
Dark black is red and does not change. In other words, a small number of small spheres present in the fiber are optically anisotropic, and most of the other particles are optically isotropic and not membranous. This condition was the same as that of the spinning pitch containing memphis spherules, and was also the same with the infusible treated fibers.

しかし、炭化した繊維はCでは暗黒色であるが、45°
右回転C対角位)では繊維全体が白色に輝く。さらに4
5°右回転(全体で90°回転)で暗黒色、さらに45
°回転(全体で135°回転)で白色と、45°毎に暗
黒色と白色をく9返す。さらに石こう検板をそう人して
観察すると、Cで赤色、dでは青色となる。この青色の
流れの方向は繊維軸方向と一致している0この観察結果
から、炭化した繊維内の炭素層面はほとんど繊維軸方向
と一致していることがわかる。
However, the carbonized fibers are dark black at C, but at 45°
When rotated to the right (C diagonal position), the entire fiber shines white. 4 more
Rotate 5 degrees to the right (rotate 90 degrees in total) to darken the black color, and then turn 45
Rotate by 9 degrees (total rotation of 135 degrees) to turn white, and every 45 degrees to turn dark black and white. Furthermore, when observing the gypsum test plate in this way, the color C is red and the color d is blue. The direction of this blue flow coincides with the fiber axis direction. From this observation result, it can be seen that the carbon layer surface within the carbonized fiber almost coincides with the fiber axis direction.

上述のように、紡糸用ピッチは繊維の形にするだけでは
光学的等方性であるが、これを炭化処理によって、初め
て光学的異方性Qノフェース)に転換できるものである
ことがわかる。紡糸用ピッチを繊維の形にせず、そのま
ま加熱すれば、当然のことながら、ピッチ全体がメンフ
ェースに転換する。しかし、約10〜20μmの非常に
狭い繊維内において、メンフェースの生成、生長がスム
ースに進展しないことはよく知られている。繊維の炭化
は液相反応でなく、むしろ固相反応に近いためである。
As mentioned above, spinning pitch is optically isotropic when it is simply formed into fibers, but it is understood that it can be converted into optically anisotropic (Q-no-face) only by carbonization treatment. If pitch for spinning is heated as it is without forming it into fibers, the entire pitch will of course be converted to membrane face. However, it is well known that the production and growth of membranes does not proceed smoothly within a very narrow fiber of about 10 to 20 μm. This is because carbonization of fibers is not a liquid phase reaction but rather a solid phase reaction.

したがって、従来はメソフェースを含むピッチを紡糸し
ない限り、光学的に異方性の炭素繊維は得られ力いと考
えられていたので1本発明のように光学的に等方性のフ
ィラメントの炭化により光学的に異方性の炭素繊維が得
られたことは全く予想外のことというべきである。
Therefore, in the past, it was thought that optically anisotropic carbon fiber could only be obtained unless a pitch containing mesophase was spun. It should be said that it was completely unexpected that carbon fibers with anisotropic properties were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a)とb)は、紡糸したブリメソフェース炭素質
の偏光顕微鏡写真図、第1図C)とd)はそれを炭化処
理した後の偏光顕微鏡写真図である。 特許出願人  工業技術院長  石 坂 誠 −図面の
浄書(内容に変更なし) a、)               b)c)   
            a)手 続 捕 正 書 (
方式) 2、発明の名称  炭素繊維の製造方法3、補正をする
者 事件との関係  特許出願人 東京都千代田区霞が関1丁目3番1号 (114)工業技術院長 石 坂 誠 −昭和57年1
月5日(発送日:昭和57年1月26日)6、補正によ
り増加する発明の数   07、補正の対象  図面 8、補正の内容  別紙添付図面のとおり訂正します。
Figures 1 a) and b) are polarized light micrographs of spun brimesophase carbonaceous material, and Figure 1 C) and d) are polarized light micrographs of the spun carbonaceous substance. Patent applicant: Makoto Ishizaka, Director of the Agency of Industrial Science and Technology - Engraving of drawings (no changes in content) a,) b) c)
a) Procedural rectification letter (
Method) 2. Name of the invention Method for manufacturing carbon fiber 3. Relationship with the amended person's case Patent applicant Makoto Ishizaka, Director of the Agency of Industrial Science and Technology, 1-3-1 Kasumigaseki, Chiyoda-ku, Tokyo (114) - 1981
May 5th (Delivery date: January 26, 1980) 6. Number of inventions increased by amendment 07. Subject of amendment Drawing 8. Contents of amendment The amendments are made as shown in the attached drawing.

Claims (1)

【特許請求の範囲】[Claims] 1 光学的に等方性のプリメソフェース炭素質又は光学
的に等方性のプリメソフェース炭素質を主体とするピッ
チ状物質を、実質的にメソフェース炭素質量が増加しな
い条件下で紡糸し、次いで不融化処理したのち、炭化処
理して、プリメソフェース炭素質の実質的に全部を光学
的に異方性のメンフェース炭素質に変換させることを特
徴とする炭素繊維の製造方法。
1. Spinning an optically isotropic pre-mesophase carbonaceous material or a pitch-like material mainly composed of an optically isotropic pre-mesophase carbonaceous material under conditions where the mesophase carbon mass does not substantially increase, 1. A method for producing carbon fibers, characterized in that the fibers are then subjected to an infusibility treatment and then a carbonization treatment to convert substantially all of the pre-mesophase carbonaceous material into optically anisotropic memphasic carbonaceous material.
JP11747081A 1981-07-27 1981-07-27 Preparation of carbon fiber Granted JPS5818421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11747081A JPS5818421A (en) 1981-07-27 1981-07-27 Preparation of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11747081A JPS5818421A (en) 1981-07-27 1981-07-27 Preparation of carbon fiber

Publications (2)

Publication Number Publication Date
JPS5818421A true JPS5818421A (en) 1983-02-03
JPH0133568B2 JPH0133568B2 (en) 1989-07-13

Family

ID=14712475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11747081A Granted JPS5818421A (en) 1981-07-27 1981-07-27 Preparation of carbon fiber

Country Status (1)

Country Link
JP (1) JPS5818421A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58144127A (en) * 1982-02-10 1983-08-27 Dainippon Ink & Chem Inc Preparation of carbon fiber
JPS58144126A (en) * 1982-02-10 1983-08-27 Dainippon Ink & Chem Inc Preparation of carbon fiber
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS5988923A (en) * 1982-11-12 1984-05-23 Agency Of Ind Science & Technol Manufacture of carbon fiber
JPS59155493A (en) * 1983-02-23 1984-09-04 Mitsubishi Petrochem Co Ltd Preparation of meso phase pitch
JPS60190492A (en) * 1984-03-10 1985-09-27 Kawasaki Steel Corp Preparation of precursor pitch for carbon fiber
JPS6183318A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Production of carbon fiber
JPS6183319A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Carbon fiber and its production
JPS6183317A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Carbon fiber and its production
US4590055A (en) * 1982-08-24 1986-05-20 Director-General Of The Agency Of Industrial Science And Technology Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
JPS62276021A (en) * 1986-05-23 1987-11-30 Nitto Boseki Co Ltd Production of carbon fiber
JPS63120136A (en) * 1986-11-07 1988-05-24 株式会社ペトカ Pitch type carbon fiber three-dimensional fabric
US4840762A (en) * 1984-01-24 1989-06-20 Teijin Ltd. Process for preparation of high-performance grade carbon fibers
US4923648A (en) * 1984-06-26 1990-05-08 Mitsubishi Kasei Corporation Process for the production of pitch-type carbon fibers
US4925547A (en) * 1988-08-25 1990-05-15 Maruzen Petrochemical Co., Ltd. Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers
US5182010A (en) * 1989-11-29 1993-01-26 Mitsubishi Gas Chemical Company, Inc. Mesophase pitch for use in the making of carbon materials
US5356574A (en) * 1992-09-22 1994-10-18 Petoca, Ltd. Process for producing pitch based activated carbon fibers and carbon fibers

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152244B2 (en) * 1982-02-10 1986-11-12 Dainippon Inki Kagaku Kogyo Kk
JPS58144126A (en) * 1982-02-10 1983-08-27 Dainippon Ink & Chem Inc Preparation of carbon fiber
JPS58144127A (en) * 1982-02-10 1983-08-27 Dainippon Ink & Chem Inc Preparation of carbon fiber
US4590055A (en) * 1982-08-24 1986-05-20 Director-General Of The Agency Of Industrial Science And Technology Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6327447B2 (en) * 1982-09-16 1988-06-03 Kogyo Gijutsu Incho
JPS5988923A (en) * 1982-11-12 1984-05-23 Agency Of Ind Science & Technol Manufacture of carbon fiber
JPS59155493A (en) * 1983-02-23 1984-09-04 Mitsubishi Petrochem Co Ltd Preparation of meso phase pitch
JPH0328473B2 (en) * 1983-02-23 1991-04-19 Mitsubishi Petrochemical Co
US4840762A (en) * 1984-01-24 1989-06-20 Teijin Ltd. Process for preparation of high-performance grade carbon fibers
JPS60190492A (en) * 1984-03-10 1985-09-27 Kawasaki Steel Corp Preparation of precursor pitch for carbon fiber
US4923648A (en) * 1984-06-26 1990-05-08 Mitsubishi Kasei Corporation Process for the production of pitch-type carbon fibers
JPS6183317A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Carbon fiber and its production
JPS6183319A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Carbon fiber and its production
JPS6183318A (en) * 1984-09-14 1986-04-26 Kureha Chem Ind Co Ltd Production of carbon fiber
JPS62276021A (en) * 1986-05-23 1987-11-30 Nitto Boseki Co Ltd Production of carbon fiber
JPS63120136A (en) * 1986-11-07 1988-05-24 株式会社ペトカ Pitch type carbon fiber three-dimensional fabric
US4925547A (en) * 1988-08-25 1990-05-15 Maruzen Petrochemical Co., Ltd. Process for producing pitch for the manufacture of high-performance carbon fibers together with pitch for the manufacture of general-purpose carbon fibers
US5182010A (en) * 1989-11-29 1993-01-26 Mitsubishi Gas Chemical Company, Inc. Mesophase pitch for use in the making of carbon materials
US5356574A (en) * 1992-09-22 1994-10-18 Petoca, Ltd. Process for producing pitch based activated carbon fibers and carbon fibers

Also Published As

Publication number Publication date
JPH0133568B2 (en) 1989-07-13

Similar Documents

Publication Publication Date Title
JPS5818421A (en) Preparation of carbon fiber
US4016247A (en) Production of carbon shaped articles having high anisotropy
US4590055A (en) Pitch-based carbon fibers and pitch compositions and precursor fibers therefor
KR860001156B1 (en) A process for the production of carbon fibers
US4115527A (en) Production of carbon fibers having high anisotropy
CN111718740A (en) Spinnable mesophase pitch prepared by solvent synergistic hydrogenation, preparation method and application
KR910005574B1 (en) Process for producing pitch for carbon
JPS602352B2 (en) Production method of Primesoface carbonaceous material
JPS6065090A (en) Preparation of pitch for carbon fiber spinning
JPS60170694A (en) Preparation of precursor pitch of carbon fiber
JPS59136383A (en) Preparation of pitch for producing carbon fiber
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JPS5834569B2 (en) Carbon fiber manufacturing method
JPH03279422A (en) Production of hollow carbon fiber
JPS6183319A (en) Carbon fiber and its production
JPH0455237B2 (en)
JPH03227396A (en) Production of optically anisotropic pitch
JPS5988923A (en) Manufacture of carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH0811844B2 (en) Method for producing pitch-based carbon fiber
JPS61138721A (en) Production of carbon fiber
JPH03167291A (en) Optically anisotropic pitch and its manufacture
JPS6183317A (en) Carbon fiber and its production
JPS59116421A (en) Manufacture of pitch-based carbon fiber
JPH0617320A (en) High-compressive strength pitch-based carbon fiber