JPS6183319A - Carbon fiber and its production - Google Patents

Carbon fiber and its production

Info

Publication number
JPS6183319A
JPS6183319A JP19324784A JP19324784A JPS6183319A JP S6183319 A JPS6183319 A JP S6183319A JP 19324784 A JP19324784 A JP 19324784A JP 19324784 A JP19324784 A JP 19324784A JP S6183319 A JPS6183319 A JP S6183319A
Authority
JP
Japan
Prior art keywords
pitch
heating
carbon fiber
catalyst
naphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19324784A
Other languages
Japanese (ja)
Other versions
JPH0633530B2 (en
Inventor
Ikuo Seo
瀬尾 郁夫
Yasuo Sakaguchi
坂口 泰雄
Takeshi Kashitate
柏舘 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP59193247A priority Critical patent/JPH0633530B2/en
Priority to CA000490155A priority patent/CA1262007A/en
Priority to GB08522741A priority patent/GB2164351B/en
Priority to DE19853532785 priority patent/DE3532785A1/en
Priority to FR8513616A priority patent/FR2570395B1/en
Priority to DE3546613A priority patent/DE3546613C2/de
Publication of JPS6183319A publication Critical patent/JPS6183319A/en
Priority to US07/293,563 priority patent/US4863708A/en
Publication of JPH0633530B2 publication Critical patent/JPH0633530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a carbon fiber having high strength and modulus, by thermally polymerizing naphthalene in the presence of a Lewis acid, removing the catalyst, heating the polymer in an inert gas stream to remove the component having low molecular weight, and subjecting the obtained isotropic pitch to spinning, infusibilization, carbonization and high-temperature treatment. CONSTITUTION:Naphthalene is polymerized by heating at <=330 deg.C, preferably 100-300 deg.C for 0.5-100hr in the presence of a Lewis acid catalyst, the catalyst is removed from the product, and the components having low molecular weight are removed by heating the polymer in an inert gas stream at 330-440 deg.C under normal or reduced pressure to obtain an optically isotropic pitch having a softening point of 180-200 deg.C, an H/C ratio of 0.6-0.8, an average molecular weight of 800-1,500, and a benzene-insoluble content of 35-45wt%, and free from quinoline-insoluble component. The objective carbon fiber having an orientation degree (2Z deg.) of <30 deg. determined by X-ray diffraction, an apparent crsytallite size [Cl(002)] of 80-200Angstrom , and an interlayer spacing (d002) of 3.371-3.440Angstrom can be produced by spinning, infusibilizing and carbonizing the above pitch, and heating the fiber at >2,000 deg.C in an inert gas atmosphere.

Description

【発明の詳細な説明】 本発明は、新規なピッチ系炭素繊維及びその製造方法に
関するものである。更に詳しくは、本発明は、ナフタリ
ンを原料とし、PAN系炭素炭素繊維敵する特性を有す
る新規な炭素繊維とその炭素繊維の製造方法ζこ関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel pitch-based carbon fiber and a method for producing the same. More specifically, the present invention relates to a novel carbon fiber that uses naphthalene as a raw material and has properties comparable to those of PAN-based carbon fibers, and a method for producing the carbon fiber.

現在市販されている炭素繊維は、ポリアクリルニトリル
(PAN)を原料とするPAN系炭素炭素繊維ピッチ類
を原料とするピッチ系炭素繊維とに原料によって分類さ
れており、一般的にPAN系炭素炭素繊維ッチ系炭素繊
維に比較して、特に引張強さの点において、優れた特性
を有するために、高強度、高弾性率の高性能の炭素繊維
としてはこれまでPAN系炭素炭素繊維の主流となって
いた。
Carbon fibers currently on the market are classified by raw material into PAN-based carbon fibers made from polyacrylonitrile (PAN), pitch-based carbon fibers made from pitches, and are generally classified into PAN-based carbon fibers. Since it has superior properties, especially in terms of tensile strength, compared to fiber-based carbon fibers, PAN-based carbon fibers have been the mainstream as high-strength, high-modulus, high-performance carbon fibers. It became.

しかしながら、PAN系炭素炭素繊維、原料が高価であ
り目、つ炭化収率も悪いので、経済性の点で優位に立ち
得るピッチを原料として、PAN系炭素炭素繊維等の引
張強さ及び引張弾性率を有するピッチ系炭素繊維を製造
する方法の研究がなされ、いくつかの方法が提案されて
いる。
However, since the raw material for PAN-based carbon fibers is expensive and the carbonization yield is poor, using pitch as a raw material, which has an advantage in terms of economic efficiency, the tensile strength and tensile elasticity of PAN-based carbon fibers, etc. Research has been conducted on methods for producing pitch-based carbon fibers having a high pitch ratio, and several methods have been proposed.

例えば、石油系ピッチ、コールタールピッチ及びアセナ
フチレン上0ツチを350〜500℃で、約40〜90
重量%のメン相が生ずるのに十分なIj存jlJj加熱
し、紡糸温度で非チキンドロー−性で10〜200 +
if’イズの粘度を有する炭素質ピッチを紡糸し、この
紡糸繊維を酸未含有雰17M気中で250〜400℃で
不融化し、ついで得られた不融解性繊維を不活性雰囲気
中で少なくとも2000℃に加熱し、ついで約2500
°C以上lこ加熱することによって、(112)クロス
格子線及び(100)と(101)線の存在によって特
徴づけられるX線回折パターン、すなわち高度の三次元
構造を1掛は積層寸法(La)及び100OA以上の見
掛は積層高さく r、 c )を有する黒鉛繊維が製造
されることが報告されている(特開昭49−19127
)。
For example, petroleum pitch, coal tar pitch, and acenaphthylene are heated at 350 to 500°C to approximately 40 to 90%
Heating is sufficient to produce % by weight of the men's phase, and the spinning temperature is 10-200 +
carbonaceous pitch having a viscosity of if' Heat to 2000℃, then about 2500℃
By heating above 1°C, an X-ray diffraction pattern characterized by the presence of (112) crossed lattice lines and (100) and (101) lines, i.e. a highly three-dimensional structure, can be obtained by increasing the stacking dimension (La ) and an apparent lamination height r, c) of 100 OA or more has been reported to be produced (Japanese Patent Application Laid-Open No. 19127-1983).
).

上述の特開昭49−19127の開示のように、従来、
ピッチ系の高性能炭素u1.維を製造するためには、メ
ソフェーズピッチを用いることが必須であるとされてい
た。これは分子配向を有するメンフェーズピッチを溶融
紡糸する占、微結晶が繊維軸に平行Jこ配列しやすいと
いうためであった。しかしながらメンフェーズピッチは
、一般に軟化点が高いので、溶融紡糸湯度が高くなり、
熱的に不安定となる欠点がある。またメソフェーズ上0
ツチは等方性ピッチとピッチ液晶が混在する不均一な混
合物であるので、均一なピッチ繊維を得ることが困難で
あるとされていた。
As disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 49-19127, conventionally,
Pitch-based high performance carbon u1. In order to manufacture fibers, it was considered essential to use mesophase pitch. This is because when melt-spinning menphase pitch with molecular orientation, microcrystals tend to be aligned parallel to the fiber axis. However, since menphase pitch generally has a high softening point, the melt spinning temperature is high,
It has the disadvantage of being thermally unstable. Also, 0 on the mesophase
Since pitch is a non-uniform mixture of isotropic pitch and pitch liquid crystal, it was considered difficult to obtain uniform pitch fibers.

上述の欠点を解決するために、紡糸Jg料ピッチの段階
で必ずしも光学的に異方性ではないが、紡糸性1こ攪れ
ており、紡糸あるいは焼成段階で光学的に異方性に変換
する紡糸原料ピッチ及びそれを用いた炭水繊維の製造方
法が提案されている。
In order to solve the above-mentioned drawbacks, the spinning material is not necessarily optically anisotropic at the pitch stage, but the spinnability is agitated, and it is converted to optically anisotropic at the spinning or firing stage. A spinning raw material pitch and a method for producing a hydrocarbon fiber using the same have been proposed.

例えば、光学的に等方性のプリメソフェーズ炭素質又は
光学的に等方性のプリメソフェーズ炭素質を主体とする
ピッチ状物質を実質的にメンフェーズ炭*質掛が増加し
ない条件で紡糸し、次いで不融化処理したのち、炭化処
理して、プリメソフェーズ炭素質を含むピッチ状物質の
全部を実質的に光学的に異方性のメソフェーズ炭素質に
変換させる方法(%開明58−18421)及びメソフ
ェーズピッチに存在する多環多核の炭化水素が部分的に
水素化された構造の、実質的にキノリン可溶性多環多核
骨格の炭化水素を潜在的異方性形成成分としてき有し、
溶融状態ではメンフェーズを実質的に形成しないで、全
体的に均質でかつ光学的に等方性の単−相を形成し、外
力を加えるとその方向への配向性を示す、H/Cが0.
55〜1.2の潜在的異方性ピッチ(%、開昭57−1
00186)が報告されている。しかし、いずれも水添
処理が必須とされている。また前者の場合、シリメソフ
ェーズピッチすなわちキノリン可溶なピッチ単独による
炭素繊維製造の実施例がなく、紡糸用ピッチはキノリン
不溶分を含有するものとなっている。
For example, spinning an optically isotropic pre-mesophase carbonaceous material or a pitch-like material mainly composed of an optically isotropic pre-mesophase carbonaceous material under conditions that do not substantially increase the menphase carbon* pawn, Then, after infusibility treatment, carbonization treatment is performed to convert all of the pitch-like material containing pre-mesophase carbonaceous material into substantially optically anisotropic mesophase carbonaceous material (% Kaimei 58-18421) and mesophase The polycyclic polynuclear hydrocarbon present in the pitch has a partially hydrogenated structure and substantially has a quinoline-soluble polycyclic polynuclear skeleton hydrocarbon as a potential anisotropy-forming component,
In the molten state, H/C does not substantially form a menphase, but forms a homogeneous and optically isotropic single phase as a whole, and exhibits orientation in that direction when external force is applied. 0.
Potential anisotropic pitch of 55-1.2 (%, 1986-1
00186) has been reported. However, hydrogenation treatment is essential in both cases. In the former case, there is no example of carbon fiber production using only silimesophase pitch, ie, quinoline-soluble pitch, and the spinning pitch contains quinoline-insoluble matter.

更に、コールタール、コールタールピッチ、石油系重質
油、石油の常圧残留油、減圧蒸留及びこれらの残油の熱
処理によって副生するタールやピッチ、オイルサント9
又はビーチューメンの原料に水素化溶媒を添加し?:3
00〜500℃に10〜60分間加熱し、次いで減圧下
で450℃以上の温度に5〜60分間加熱してプリメソ
フェーズ含有ピッチを作り、得られた紡糸用ピッチを粘
性変化温度よりも高い温度まで外淵した後、紡糸し、急
冷した後250〜350℃の温度で不融化処理し、不融
化処理された繊維を不活性ガス中で2000〜1500
℃の温度に加熱するこきによって製造される。X線回折
より求めた配向角が30〜5(f1結晶サイズ(Lc)
が12〜80A1層間隔(dno2)が3.4〜3.6
Aで、引張強度が少なくとも200kyf/龍2、モジ
ュラスが20000 kl、t /正2である1ツチ系
炭素繊維が報告されている(特開昭59−53717)
Furthermore, coal tar, coal tar pitch, heavy petroleum oil, atmospheric residual petroleum oil, tar, pitch, and oil sant by-produced by vacuum distillation and heat treatment of these residual oils.
Or add hydrogenated solvent to the raw material of beetumen? :3
00 to 500 °C for 10 to 60 minutes, then heated to a temperature of 450 °C or higher for 5 to 60 minutes under reduced pressure to produce pitch containing premesophase, and the resulting spinning pitch was heated at a temperature higher than the viscosity change temperature. After spinning, the fibers are spun, rapidly cooled, and then infusible at a temperature of 250 to 350°C.
Produced by a wood-fired wood that is heated to a temperature of 30°F. The orientation angle determined by X-ray diffraction is 30 to 5 (f1 crystal size (Lc)
is 12~80A, 1 layer spacing (dno2) is 3.4~3.6
A has been reported to have a tensile strength of at least 200 kyf/ryu2 and a modulus of 20000 kl, t/sho2 (Japanese Patent Laid-Open No. 59-53717).
.

特に、配向角が30° より小さく微結晶の見用けの大
きさが80xより大きい多結晶黒鉛の三次元構造を有し
ているメソフェーズピッチ系炭素繊維は、高い熱伝導性
及び電気伝導性を示すが、繊維としての機械特性がPA
N系炭素繊維に劣っていると報告されている。
In particular, mesophase pitch-based carbon fibers, which have a three-dimensional structure of polycrystalline graphite with an orientation angle of less than 30° and an apparent size of microcrystals of more than 80x, have high thermal and electrical conductivity. However, the mechanical properties as a fiber are PA
It is reported that it is inferior to N-based carbon fiber.

一般に、炭素繊維の機械的特性は、高次構造に支配され
る。例えば、高い弾性率は事判vb配拘−七及−等繊維
構造を有し、且つ高い配向性を持っていることが不可欠
である。従来、高弾性のピッチ系炭素繊維を作るために
は、紡糸用原料ピッチとしてコールタール、コールター
ルぎツチ等の原料を加熱重合し、次いで品質化したメソ
フェーズピッチ、あるいは潜在的メソフェーズピッチ又
はプリメソフェーズピッチを用いることが必要であった
0 」二線した方法によるヒ0ッチ系炭素繊維は、いずれも
PAN系炭素繊#、16に比較して黒鉛化特性は優れて
いるが、llR維としての引張強さにおいてはまだ劣っ
ており、PAN系炭素繊維と同等の機械特性を治するピ
ッチ系炭素繊維を提供する才でに到っていないのが実情
である。
Generally, the mechanical properties of carbon fibers are controlled by higher-order structure. For example, in order to obtain a high elastic modulus, it is essential that the material has a fiber structure such as fiber structure and high orientation. Conventionally, in order to make highly elastic pitch-based carbon fibers, raw materials such as coal tar and coal tar gitsuchi are heated and polymerized as raw material pitch for spinning, and then qualityified mesophase pitch, latent mesophase pitch, or pre-mesophase is used. The carbon fibers produced using the two-wire method, which required the use of pitch, have superior graphitization properties compared to PAN-based carbon fibers # and 16, but as llR fibers, However, the tensile strength of pitch-based carbon fibers is still inferior, and the reality is that we have not yet reached the point where we can provide pitch-based carbon fibers that have mechanical properties equivalent to those of PAN-based carbon fibers.

本発明者らは、引張強さ、引張弾性率及び破断伸びなど
の機械的特性において、PAN系炭素繊維に匹敵するか
、またはそれ以上に優れたピッチ系炭素繊維を開発する
ために鋭意研究を行なった結果、ナフタリンを原料とし
て特定の条件下で加熱重合し、軽質分を除去して得た均
質で適4gな分子構造と分子量を有する光学的等方性ピ
ッチを紡糸原料ピッチとして用いて、紡糸、不融化、炭
化焼成及び高温処理するこきにより得られるピッチ系炭
素繊維は、配向角が30°未満であり且つ微結晶の見掛
けの大きさが80Xよりも大き(−1更に驚くべきこと
に、炭素網面が選択的に繊維軸方向に配夕1ルた繊維構
造が賦与されているにもかかわらず、従来のメソフェー
ズピッチ系黒鉛化繊維Jこ特有の三次元構造を有するこ
となく、その結果に基づいて本発明を成すに至った。
The present inventors have conducted extensive research to develop pitch-based carbon fibers that are comparable to or even superior to PAN-based carbon fibers in mechanical properties such as tensile strength, tensile modulus, and elongation at break. As a result, using naphthalene as a raw material, heating and polymerizing it under specific conditions and removing light components, optically isotropic pitch having a homogeneous and appropriate molecular structure and molecular weight of 4 g was used as the spinning raw material pitch. The pitch-based carbon fiber obtained by spinning, infusibility, carbonization firing, and high-temperature treatment has an orientation angle of less than 30° and an apparent size of microcrystals larger than 80X (-1). Despite being endowed with a fiber structure in which the carbon network surface is selectively aligned in the fiber axis direction, it does not have the three-dimensional structure unique to conventional mesophase pitch graphitized fibers. Based on the results, the present invention was completed.

すなわち、本発明は、X線回折により求めた配向角(2
Z°)が30°未満であり、微結晶の見掛けの大きさく
 L (! (002))が80Xを超え且つ200A
以下であり、層間隔(doo2)が3.371 〜3.
44OAを示すナフタリンを原料として2000℃以上
で処理されたピッチ系炭素繊維を提供することをその目
的としている。本発明の他の目的は、ナフタリンをルイ
ス酸触媒の存在下で330’C以下で0.5〜100時
間加熱重合し、触媒を除去した後、常圧下又は減圧上不
活性ガスを流通しながら330〜440℃に加熱して軽
質分を除去し、軟化点が180〜200℃で、H/Cが
0.6〜0.8、平均分子量が800〜15001ベン
ゼン不溶分が35〜45重量%であり且つキノリン不溶
分を含んでいない光学的等方性の炭素質ピッチを生成し
、生成した炭素質ピッチを常法により紡糸、不融化及び
炭化焼成した後、2ooo℃以上の温度で且つ不活性ガ
ス雰囲気下で処理することによる、上述の特性を有する
ピッチ系炭素繊維の製造方法を提供することである。
That is, the present invention provides an orientation angle (2) determined by X-ray diffraction.
Z°) is less than 30°, the apparent size of the microcrystal L (! (002)) exceeds 80X, and 200A
The layer spacing (doo2) is 3.371-3.
The purpose is to provide a pitch-based carbon fiber treated at 2000° C. or higher using naphthalene exhibiting 44OA as a raw material. Another object of the present invention is to polymerize naphthalene by heating at 330'C or less for 0.5 to 100 hours in the presence of a Lewis acid catalyst, and after removing the catalyst, under normal pressure or reduced pressure while flowing an inert gas. Light components are removed by heating to 330-440°C, softening point is 180-200°C, H/C is 0.6-0.8, average molecular weight is 800-15001, benzene insoluble content is 35-45% by weight. An optically isotropic carbonaceous pitch containing no quinoline-insoluble matter is produced, and the produced carbonaceous pitch is spun, infusible, and carbonized by a conventional method, and then heated at a temperature of 200°C or higher and insoluble. An object of the present invention is to provide a method for producing pitch-based carbon fibers having the above-mentioned characteristics by processing in an active gas atmosphere.

本発明の炭素繊維は、X線回折により求められる配向角
(2Z)が30°未満、好しくは15〜25°であり、
微結晶の見掛けの大きさく L +1!(002))が
80Xを超え且つ200X以下、好しくけ9゜〜170
xであり、4間[(aoo2)カ3.371〜3.44
0X、好しくは3.390〜3.430^である。
The carbon fiber of the present invention has an orientation angle (2Z) determined by X-ray diffraction of less than 30°, preferably 15 to 25°,
Apparent size of microcrystal L +1! (002)) is more than 80X and less than 200X, preferably 9° to 170
x, and 4 [(aoo2) Ka 3.371 to 3.44
0X, preferably 3.390 to 3.430^.

上述したような配向角、微結晶の見掛けの大きさ及び層
間隔を有し、結晶が均質に配列している構造を有する本
発明の炭素繊維は従来のピッチ系炭素繊維よりも優れた
機械的強さを示すものである。
The carbon fiber of the present invention, which has the orientation angle, apparent size of microcrystals, and layer spacing as described above, and has a structure in which the crystals are homogeneously arranged, has superior mechanical properties to conventional pitch-based carbon fibers. It shows strength.

本発明の炭素繊維は、少なくとも300 klf/mw
r2の引張強さと、少なくとも20000kff/闘2
の引張弾性率を有している。
The carbon fibers of the present invention have at least 300 klf/mw
r2 tensile strength and at least 20000kff/t2
It has a tensile modulus of elasticity of

ナフタリンを原料として特定の方法で製造された光学的
等方性の炭素質ピッチは、メソフェーズピッチの紡糸温
度と比較して、より低温で溶融紡糸が可能であり、紡糸
時lこ特定の紡糸条件を採用することなく、均質なピッ
チ繊維を得ることができる。更に、ピッチ繊維の基本配
列がメンフェースhoツチから刊られるピッチ繊維構、
強固でないため、不融化の際、表層部で不融化反応が進
むことによって、微細なモザイク状組織が形成され、中
心部では不融化反応lこよって分子の好ましいヰ配列が
乱されることなく優れた繊維構造が賦与される。
Optically isotropic carbonaceous pitch produced by a specific method using naphthalene as a raw material can be melt-spun at a lower temperature than the spinning temperature of mesophase pitch. Homogeneous pitch fibers can be obtained without employing. Furthermore, the basic arrangement of pitch fibers is published by Menface Hotsuchi,
Because it is not strong, when it becomes infusible, the infusibility reaction progresses at the surface layer, forming a fine mosaic-like structure, and the infusibility reaction occurs at the center without disturbing the preferred arrangement of molecules. A fibrous structure is imparted.

次に、本発明の製造方法について説明をする。Next, the manufacturing method of the present invention will be explained.

原料であるナフタリンをルイス酸触媒の存在下で330
℃以下、好ましくは100〜300℃に0.5〜100
時間加熱して重合する。
The raw material naphthalene is heated to 330% in the presence of a Lewis acid catalyst.
below ℃, preferably 0.5 to 100 at 100 to 300℃
Polymerize by heating for a period of time.

ここで使用するルイス酸触媒としては、AeClh。The Lewis acid catalyst used here is AeClh.

BF5等を例示し得るが、AlCl3が好才しい。ルイ
ス酸触媒はナフタリン100重量部に対して5〜50重
量部使用し得るが8〜20重量部が好ましい。尚、加熱
温度が330℃を超えると、メソフェーズピッチが生成
するため、キノリン不溶分が存在するようになるので好
しくない。またルイス酸触媒を50重量部以上用いても
、重合効率はあまり変らず且つ触媒の除去などが煩雑と
なり、経済的ではない。
Examples include BF5, but AlCl3 is preferred. The Lewis acid catalyst may be used in an amount of 5 to 50 parts by weight per 100 parts by weight of naphthalene, but preferably 8 to 20 parts by weight. It should be noted that if the heating temperature exceeds 330° C., mesophase pitch will be generated and quinoline insoluble matter will be present, which is not preferable. Furthermore, even if 50 parts by weight or more of the Lewis acid catalyst is used, the polymerization efficiency does not change much and removal of the catalyst becomes complicated, which is not economical.

重合されたナフタリンから触媒を除去した後、常圧下又
は減圧下不活性ガスを流通しながら330〜440℃、
好ましくは350〜420℃に加熱して軽質外を除去し
、光学的に等方性の炭素質ピッチを製造する。加熱温度
が440℃を超えると、メンフェーズピッチが生成し、
キノリン不溶分が存在するようlこなるので好ましくな
い。
After removing the catalyst from the polymerized naphthalene, it is heated at 330 to 440°C while passing an inert gas under normal pressure or reduced pressure.
Preferably, it is heated to 350 to 420° C. to remove light particles to produce optically isotropic carbonaceous pitch. When the heating temperature exceeds 440℃, menphase pitch is generated,
This is not preferable because it may cause the presence of quinoline-insoluble components.

かようにして得られた炭素質ピッチ(紡糸原料ピッチ)
は、軟化点が180〜200℃で、H/Cが0.6〜0
.8、平均分子量がSOO〜1500゜ばンゼン不溶分
が35〜45重量%であり、且つキノリン不溶分を含有
せず且つ偏光顕微鏡によって観察すると等方性を示す。
Carbonaceous pitch thus obtained (spinning raw material pitch)
has a softening point of 180 to 200°C and a H/C of 0.6 to 0.
.. 8. The average molecular weight is SOO~1500°, the Banzen insoluble content is 35~45% by weight, there is no quinoline insoluble content, and it shows isotropy when observed with a polarizing microscope.

本発明の優れた機械特性を有する炭素繊維を製造するた
めの紡糸原料ピッチとしては、上述の諸性質を満足する
炭素質ピッチであることが必要である。
The spinning raw material pitch for producing the carbon fibers having excellent mechanical properties of the present invention needs to be a carbonaceous pitch that satisfies the above-mentioned properties.

得られた炭素質ピッチを常法Iこより紡糸及び不融化処
理する。例えば、紡糸は、紡糸口金から吐出する時の炭
素質ピッチの温度を炭素質ピッチの軟化点よりも70〜
90℃高い温度に設定して、0、5〜2.0 k% /
crl−aの圧力をかけて吐出し、300〜1ooo 
m/分の捲取り速度で捲取ることによっておこなわれる
。また不融化処理は、酸化性ガス雰囲気下で、0.5〜
b 〜300℃まで加熱し、そのまま30〜60分間維持す
ることによって不融化処理される。
The obtained carbonaceous pitch is spun and infusible by conventional method I. For example, during spinning, the temperature of carbonaceous pitch when discharged from a spinneret is 70 to 70°C higher than the softening point of carbonaceous pitch.
Set the temperature 90℃ higher, 0.5~2.0k%/
Discharge with crl-a pressure, 300~1ooo
This is done by winding at a winding speed of m/min. In addition, the infusibility treatment is carried out in an oxidizing gas atmosphere with a
b) Infusible treatment is performed by heating to ~300°C and maintaining that temperature for 30 to 60 minutes.

このように不融化処理した繊維は、次に不活性ガス、例
えばN2ガス中で、5〜15°C/分の昇温速度で90
0℃まで加熱し、次いで例えばアルゴンガス中で200
0℃以上の所定の温度で処理すること1こより高い炭化
収率で炭素繊維を得ることができる。
The thus infusible fibers are then heated to 90 °C in an inert gas, for example N2 gas, at a heating rate of 5 to 15 °C/min.
heated to 0°C and then heated to 200°C for example in argon gas.
By processing at a predetermined temperature of 0° C. or higher, carbon fibers can be obtained with a carbonization yield higher than 1.

次に、本発明における繊維及びピッチの特性を表わす各
指標について説明する。
Next, each index representing the characteristics of fiber and pitch in the present invention will be explained.

(1)構造関連因子 配向角(2z0)、微結晶のC軸方向の見掛けの大きさ
くLlり及び層間@(aoo2) は広角X線回折図形
から求められる繊維の高次構造を表わす構造関連因子で
ある。配向角(2Z’)は微結晶の繊維軸方向に対する
配向の程度を示すもので、この角度が小さい程配向が進
んでいることを意味する。微結晶の見掛けの大きさくL
c )は炭素微結晶の見掛けの積層高さを表わし、層間
隔(doo2 )は微結晶の炭素網面間の層間隔を表わ
す。
(1) Structure-related factors The orientation angle (2z0), the apparent size of the microcrystal in the C-axis direction (Ll), and the interlayer @ (aoo2) are structure-related factors that represent the higher-order structure of the fiber determined from the wide-angle X-ray diffraction pattern. It is. The orientation angle (2Z') indicates the degree of orientation of the microcrystals with respect to the fiber axis direction, and the smaller this angle is, the more advanced the orientation is. Apparent size of microcrystal L
c) represents the apparent stacking height of carbon microcrystals, and layer spacing (doo2) represents the layer spacing between carbon mesh planes of the microcrystals.

微結晶の見掛けの大きさくLc )の測定は単振法(日
本学術振会第117委員会、炭素、扁36.5.196
3)による。
The apparent size of microcrystals (Lc) is measured using the simple vibration method (Japan Society for the Promotion of Science, 117th Committee, Carbon, 36.5.196
According to 3).

配向角(2Z’)は(002)回折強度の最大値を示す
回折角の位置において構成繊維を平行に揃えた繊維束を
X線ビームの垂直面内において180 回転することに
より、(002)回折環にそっての強度分布を測定し、
強度最大値の↓ぎの点における半価幅として規定する。
The orientation angle (2Z') is determined by (002) diffraction by rotating the fiber bundle in which the constituent fibers are aligned in parallel by 180 degrees in the plane perpendicular to the X-ray beam at the position of the diffraction angle that indicates the maximum value of the (002) diffraction intensity. Measure the intensity distribution along the ring,
It is defined as the half-width at the point below the maximum intensity value.

(2)  ピッチの特性を示すパラメーターa)分子量 ピリジンを溶媒として、蒸気圧オスモメーター(vpo
)を使用して測定する。vpoとしては、(コロナ製 
117型分子量測定装置)を用い、溶媒さしてピリジン
、標準物質としてベンジルを使用する。
(2) Parameters indicating pitch characteristics a) Molecular weight Pyridine was used as a solvent, and vapor pressure osmometer (vpo
) to measure. As a VPO, (made by Corona)
117 type molecular weight measuring device), using pyridine as a solvent and benzyl as a standard substance.

b)  H/C JIS  M−8813に従って測定した元素分析より
次式に従って算出する。
b) H/C Calculated according to the following formula from elemental analysis measured according to JIS M-8813.

C)軟化点 高化式フローテスタ(高車製作7N)を用い、加熱体セ
ル(内径10關、ノズル径1龍)に100メツシユ以下
に粉砕したピッチをII入れ、上部より10に17dの
荷重をかけ、昇温速度6℃/分で昇温し可塑化曲線の変
曲点の温度をもって軟化点とする。
C) Using a flow tester with a high softening point (7N manufactured by Koguruma), put pitch II crushed to 100 mesh or less into a heating cell (inner diameter 10mm, nozzle diameter 1mm), and apply a load of 17d to 10mm from the top. The temperature was increased at a heating rate of 6° C./min, and the temperature at the inflection point of the plasticization curve was defined as the softening point.

d)溶剤不溶分JIS−に−2425に準拠して測定し
た。
d) Solvent-insoluble content Measured in accordance with JIS-2425.

(3)炭素繊維の物性 炭素繊維の繊維直径、引張強さ、伸び、引張弾性率はJ
IS  R−7601r炭素繊維試験方法」に従って測
定する。尚、繊維直径の測定は断面積法を採用する。
(3) Physical properties of carbon fiber The fiber diameter, tensile strength, elongation, and tensile modulus of carbon fiber are J
Measured according to IS R-7601r Carbon Fiber Test Method. Note that the cross-sectional area method is used to measure the fiber diameter.

以下、実施例を挙げて本発明を説明する。尚、これらの
実施例は単に例示的なもので、本発明を限定するもので
はないことを付言する。
The present invention will be explained below with reference to Examples. It should be noted that these examples are merely illustrative and do not limit the present invention.

実施例 1 ナフタリン(関東化学株式会社製 1級試薬)2000
gと触媒としてAlC15(関東化学株式会社製 1級
試薬)100gを攪拌機付ガラス製三ロフラスコに仕込
み、210℃、60時間重合した。重合終了後触媒除去
のため水洗、口過(孔■ 径0.2μm)を行いピッチ得た。得られたピッチを4
00℃、15十g+’、!、15分間N2流通下で加熱
して軽質分を除去した。
Example 1 Naphthalene (1st class reagent manufactured by Kanto Kagaku Co., Ltd.) 2000
g and 100 g of AlC15 (first class reagent manufactured by Kanto Kagaku Co., Ltd.) as a catalyst were charged into a glass three-ring flask equipped with a stirrer, and polymerized at 210° C. for 60 hours. After the polymerization was completed, pitch was obtained by washing with water and filtering (pore diameter: 0.2 μm) to remove the catalyst. The resulting pitch is 4
00℃, 150g+',! The light components were removed by heating under N2 flow for 15 minutes.

かようにして得られた炭素質ピッチは、偏光顕微鏡下で
観察したところ光学的に等方性であり、かつその特性は
第1表の通りである。
The carbonaceous pitch thus obtained was optically isotropic when observed under a polarizing microscope, and its properties are shown in Table 1.

第   1   表 次に炭素質ピッチを口径0.3ma+のノズルをもつシ
リンダーに入れ、280℃に加熱浴融し、次いで1.2
 kpf /d aのN2ガス圧にて、上記ノズルを通
して押出し紡糸した。この時の捲取速度は約700m/
分であった。上述のようにして得られたピッチ繊維は空
気雰囲気下で、約り℃/分の昇温速度で、約265℃ま
で加熱し、この雰囲気下でピッチ繊維を約30分間保持
して不融化処理した。
Table 1 Next, carbonaceous pitch was put into a cylinder with a nozzle of 0.3 ma+ in diameter, melted in a heating bath at 280°C, and then heated to 1.2 mA.
Extrusion spinning was carried out through the above nozzle at a N2 gas pressure of kpf/da. The winding speed at this time is approximately 700 m/
It was a minute. The pitch fibers obtained as described above are heated to about 265°C in an air atmosphere at a temperature increase rate of about 265°C/minute, and the pitch fibers are held in this atmosphere for about 30 minutes to be infusible. did.

このように不融化処理された繊維をN2ガス雰囲気下で
、約り℃/分の昇温速度で約900℃まで加熱し、次い
で約り0℃/分の昇温速度でアル得られた炭素繊維(丘
径:8μm)のX線回折により求めた物性及び機械的特
性を第2表に示す。
The thus infusible fibers were heated to about 900°C at a temperature increase rate of about 0°C/min in an N2 gas atmosphere, and then the carbon obtained by heating was heated at a heating rate of about 0°C/min to about 900°C. Table 2 shows the physical properties and mechanical properties of the fibers (diameter: 8 μm) determined by X-ray diffraction.

以下余白 第   2   表 実施例 2 実施例1で得られた炭素繊維を更にアルコ゛ンガス雰囲
気下で約り0℃/分の昇温速度で約2500、枦 ℃才で加熱して、この温度で約10分間保持処理した。
The following margin is Table 2 Example 2 The carbon fiber obtained in Example 1 was further heated in an alcohol gas atmosphere at a heating rate of about 0°C/min to about 2,500°C, and at this temperature it was heated to about 2,500°C. Holding treatment was carried out for 10 minutes.

得られた炭素繊維の (直径ニア、5μm)X線回折に
より求めた物性及び機械的特性を第3表に示す。
Table 3 shows the physical properties and mechanical properties of the obtained carbon fibers determined by X-ray diffraction (near diameter, 5 μm).

−19= 第   3   表 呆施例 3 実施例1で得られた炭素繊維を更にアルゴンガ得られた
炭素繊維(直径ニア、5μm)のX線回折により求めた
物性及び機械的特性を第4表に示す。
-19= Table 3 Example 3 The physical properties and mechanical properties determined by X-ray diffraction of the carbon fiber obtained in Example 1 using argon gas (near diameter, 5 μm) are shown in Table 4. show.

第4表 実施例 4 ナフタリン(関東化学株式会社製 1級試薬)2000
gと触媒きしてklcls (関東化学株式会社製 1
級試薬)1001!を磁石誘導攪拌装置を備えたオート
クレーブに仕込み、密閉後、 N2ガスで充分置換後、
内圧Oktf/crIGとし、攪拌をしながら300℃
まで昇温し、300℃で1時間重合させた。重合終了後
、触媒除去のため水洗、口過(孔径0.2μm)を行い
ピッチを得た。得られたピッチをa 500c 、 1
2智FF3o分間N2ガス流通下で加熱して軽質分を除
去した。
Table 4 Example 4 Naphthalene (Class 1 reagent manufactured by Kanto Kagaku Co., Ltd.) 2000
g and catalyst klcls (manufactured by Kanto Kagaku Co., Ltd. 1
grade reagent) 1001! was placed in an autoclave equipped with a magnetic induction stirring device, sealed, and thoroughly replaced with N2 gas.
The internal pressure was set to Oktf/crIG, and the temperature was raised to 300°C while stirring.
The temperature was raised to 300° C. for 1 hour. After the polymerization was completed, pitch was obtained by washing with water and filtering (pore diameter: 0.2 μm) to remove the catalyst. The obtained pitch is a 500c, 1
The light components were removed by heating under N2 gas flow for 3 minutes at 20FF.

かようIこして得られた炭素質ピッチは、偏光顕微鏡で
観察したところ光学的等方性でありかつその特性はり(
5表の通りである。
When observed with a polarizing microscope, the carbonaceous pitch obtained by this process was found to be optically isotropic and its properties (
It is as shown in Table 5.

第5表 次に炭素質ピッチを口径0.3關のノズルをもつシリン
ダーに入れ275℃に加熱、溶融し次いで0.8’j’
f/crlGのN2ガス圧にて、上記のノズルを通して
押出し紡糸した。この時の捲取速度は約600m/分で
あった。上述のようにして得られたピッチ繊維は空気雰
門下で約り℃/分 の昇温速度で約250℃まで加熱し
、この雰囲気中でピッチ繊維を約30分間保持して不融
化処理した。
Table 5 Next, carbonaceous pitch was put into a cylinder with a nozzle of 0.3 diameter, heated to 275°C to melt it, and then 0.8'j'
Extrusion spinning was carried out through the above nozzle at a N2 gas pressure of f/crlG. The winding speed at this time was about 600 m/min. The pitch fibers obtained as described above were heated to about 250° C. under an air atmosphere at a temperature increase rate of about 250° C./min, and the pitch fibers were held in this atmosphere for about 30 minutes to be infusible.

このように不融化処理された繊維をN2ガス雰囲気下で
、約り℃/分の昇温速度で約900℃まで加熱し、次い
で、約50°C/分の昇温速度でア得られた炭素繊維(
直径ニア。5μm)のX線回折により求めた物性及び機
械的特性を第6表に示す。
The thus infusible fibers were heated to about 900°C at a heating rate of about 50°C/minute in an N2 gas atmosphere, and then a Carbon fiber(
Diameter near. Table 6 shows the physical properties and mechanical properties determined by X-ray diffraction (5 μm).

以F≦孜白 第   6   表 実施例 5 実施例4で得られた炭素繊維を更にアルゴンガス雰囲気
下で約り0℃/分の昇温速度で約2500℃まで加熱し
て、仁のy囲気中で約10分間保持し処理した。
Table 6 Example 5 The carbon fibers obtained in Example 4 were further heated in an argon gas atmosphere to about 2500°C at a temperature increase rate of 0°C/min. The sample was held in a vacuum chamber for about 10 minutes for processing.

得られた炭素繊維(直径=7.5μm)のX線回折より
求めた物性及び機械的特性を第7表に示す。
Table 7 shows the physical properties and mechanical properties of the obtained carbon fiber (diameter = 7.5 μm) determined by X-ray diffraction.

@7表 実施例 6 実施例4で得られた炭素繊維を更にアルゴンガス雰囲気
下で約50°C/分の昇温速度で約2800ヤ ℃まで加熱して、この雰囲気中で約10分間保持処理し
た。
@7 Table Example 6 The carbon fiber obtained in Example 4 was further heated to about 2800 °C at a heating rate of about 50 °C/min in an argon gas atmosphere, and held in this atmosphere for about 10 minutes. Processed.

得られた炭素繊維(西経ニアμm) のX線回折により
求めた物性及び機械的特性を第8表に示す。
Table 8 shows the physical properties and mechanical properties determined by X-ray diffraction of the obtained carbon fiber (near west longitude μm).

第   8   表 実施例 7 ナフタリン(関東化学株式会社製1級試薬)2000g
と触媒としてAlCl5 (関東化学株式会社製1級試
薬)ioogを攪拌機付き三ロフラスコに仕込み、10
0℃、60時間重合した。次いで触媒のhlcls  
(関東化学株式会社製1級試薬)100.9を更に加え
、210℃、30時間重合した。重合終了後、触媒除去
のため水洗口過(孔径02μm)を行いピッチを得た。
Table 8 Example 7 Naphthalene (class 1 reagent manufactured by Kanto Kagaku Co., Ltd.) 2000 g
and AlCl5 (class 1 reagent manufactured by Kanto Kagaku Co., Ltd.) ioog as a catalyst were placed in a three-loaf flask equipped with a stirrer and heated for 10 minutes.
Polymerization was carried out at 0°C for 60 hours. Then the catalyst hlcls
(Class 1 reagent manufactured by Kanto Kagaku Co., Ltd.) 100.9 was further added and polymerized at 210°C for 30 hours. After the polymerization was completed, pitch was obtained by rinsing with water and filtering (pore diameter: 02 μm) to remove the catalyst.

得られたピッチを380℃、10+ム岑i  20分間
N2ガス流通下で加熱して軽質分を除去した。
The obtained pitch was heated at 380° C. for 20 minutes under N2 gas flow to remove light components.

かようにして得られた炭素質ピッチは、偏光顕微鏡下で
観察したところ光学的に等方性であり、かつその特性は
第9表の通りである。
The carbonaceous pitch thus obtained was optically isotropic when observed under a polarizing microscope, and its properties are shown in Table 9.

第  9  表 次に炭素質ピッチを口径0.3 +n+のノズルをもつ
シリンダーに入れ275℃に加熱溶融し、次いで1.2
 kpf / 、にJ o  のN2ガス圧にて上記ノ
ズルを通して、押出し紡糸した。この時の捲取速度は、
約500m/分であった。
Table 9 Next, carbonaceous pitch was placed in a cylinder with a nozzle with a diameter of 0.3 +n+ and heated to 275°C to melt it.
It was extruded and spun through the above nozzle at a N2 gas pressure of J o of kpf/. The winding speed at this time is
The speed was approximately 500 m/min.

上述のように得られたピッチ繊維は空気雰囲気下で約り
℃/分の昇温速度で265℃まで加熱しこの豚囲気下で
ピッチ繊維を約30分間保持して不融化処理した。
The pitch fibers obtained as described above were heated to 265° C. at a temperature increase rate of about 0.degree. C./min in an air atmosphere, and the pitch fibers were held in this pig enclosure atmosphere for about 30 minutes to be infusible.

このように不融化処理された繊維をN2ガス界囲気下で
約5°C/分の昇温速度で約900°Cまで理した。
The thus infusible fibers were processed at a heating rate of about 5°C/min to about 900°C under a N2 gas atmosphere.

得られた炭素繊維(直径:8μm)のX線回折により求
めた物性及び機械的特性を第10表に示す。
Table 10 shows the physical properties and mechanical properties of the obtained carbon fiber (diameter: 8 μm) determined by X-ray diffraction.

以下余白 第   10  表 実施例 8 実施例7で得られた炭素繊維を更に、アルゴンガス豚囲
気下で約り0℃/分の昇温速度で約2500℃菫で加熱
して、この雰囲気中で約1゜分間保持し処理した。
Table 10 Example 8 The carbon fibers obtained in Example 7 were further heated to about 2500°C at a heating rate of about 0°C/min in an argon gas atmosphere, and It was held and processed for about 1°.

得られた炭素繊維(直径ニア、5μm)のX線回折によ
り求めた物性及び機械的特性を第11表に示す。
Table 11 shows the physical properties and mechanical properties of the obtained carbon fibers (near diameter, 5 μm) determined by X-ray diffraction.

第11表 実施例 9 実施例7で得られた炭素繊維を更にアルゴンガス雰囲気
下で約り0℃/分の昇温速度で約2800ヤ °Cまで加熱して、この雰囲気下で約10分間保持。
Table 11 Example 9 The carbon fiber obtained in Example 7 was further heated in an argon gas atmosphere to about 2800 degrees Celsius at a heating rate of 0 degrees Celsius/minute, and heated in this atmosphere for about 10 minutes. Retention.

処理した。Processed.

得られた炭素繊維(直径ニア、5μrn)(2)X線回
折により求めた物性及び機械的特性を第12表に示す。
Table 12 shows the physical properties and mechanical properties of the obtained carbon fiber (diameter near, 5 μrn) (2) determined by X-ray diffraction.

第12表 手続ネ111正書 昭和60年10月30日 2、発明の名称   炭素繊組及びイの製造方法3、補
正をする者 事件どの関係  特許出願人 名 称    (110)呉羽化学工業株式会着4、代
 理 人   東京都新宿区新宿1丁目1番14号  
山田ビル5、補正命令のl旧・1   自 発 6、補正により増加する発明の数 7、補正の対象   明 細 書 ” l’   : +lき ”ミ妬 6070.31 。
Table 12 Procedures 111 Official Book October 30, 1985 2. Title of the invention Carbon fiber assembly and method for manufacturing A. 3. Person making the amendment, case and relationship Patent applicant name (110) Kureha Chemical Industry Co., Ltd. 4. Agent 1-14 Shinjuku, Shinjuku-ku, Tokyo
Yamada Building 5, amendment order l old 1 spontaneity 6, number of inventions increased by amendment 7, specification subject to amendment ``l': +l ki'' 6070.31.

方式74)X望4影ミjン′ 8、補正の内容 (1)  明細山中特許請求の範囲の欄を別紙のとJ3
り補正する。
Form 74) X Desired 4 Shadow Min' 8. Contents of amendment (1) The scope of claims in the specification Yamanaka is attached to the attached sheet J3
Correct.

■ 同第7頁第4行目、第1]頁Fから第3行[”1、
第11頁第1行目、第15頁第3行目、第15頁第10
行目、第20頁第2表中、第21頁第3表中、第22頁
第1表中、第25頁第6表中、第26頁第7表中、第2
1頁第8表中、第30頁第10表中、第31貞第11表
中おJ:び第32頁第12表中に[d OO2Jどある
をそれぞれ「doo2」と補正する。
■ Page 7, line 4, 1] Page F to line 3 ["1,
Page 11, line 1, page 15, line 3, page 15, line 10
Rows, Table 2 on page 20, Table 3 on page 21, Table 1 on page 22, Table 6 on page 25, Table 7 on page 26, 2
In Table 8 on page 1, Table 10 on page 30, J in Table 11 on page 31, and Table 12 on page 32, [dOO2J] is corrected to "doo2".

(3)同第8頁第4行目に1潜在的メソフT−ズピッヂ
−1どあるを「潜在的異方性ビッヂ」ど補正でる。
(3) On the 4th line of page 8, 1 potential mesoph T-spidge-1 is corrected to ``potential anisotropic bitge''.

(4)同第6頁下から第7行目に「ピーチコーメン」と
あるを1ビヂコーメン」と補正覆る。
(4) In the 7th line from the bottom of page 6, the words ``Peach Komen'' were amended and overwritten as ``1 Biji Komen''.

(5)同第15頁下から第6行目に「口木学術振会」ど
あるを1日本学術振興会」と補正する。
(5) In the 6th line from the bottom of page 15, the text ``Kuchigi Science Foundation'' is corrected to ``1 Japan Society for the Promotion of Science''.

(6)同第19頁第5行「1の「約265°Cl第19
頁第9 i−r 11の1約900°C1、第19頁第
11行1−1の1約2000°C」、第20頁1ζから
第5へ・1行[1の1約2500°C1、第21真下か
ら第4行目の1約2800°C1,第24頁第4行目の
[約250°Cj、第24頁第7行「[の「約900°
Cl 、第24頁第9行目の[約2000°01、第2
5員下から第5へ・4行「]の1約2500°01、第
26頁Fから第0へ−5?jl’lの1約2800℃−
1、第29自第8 t’i r、1の「約900 °(
1、負′)29頁第9−・10 tjI−1の[約20
00°C1、第30白下から第〇−・5行[1の[−約
24+ 00°C1a−3よび第3111 小カラff
16−□5(−r[I’7) r約2800°C1中の
1約1をぞれぞれ削除りる3゜ 2、特許請求の範囲 (1)X線回折より求めた配向麻(27’ )が30゜
未満−Cあり、微結晶の見掛(−)の大きざ(1,c(
002) )が80人を超え[1′つ200人Iストひ
あり、層間隔(ル翌)が3.374へ、3.440人を
示づ゛、2000°C以上の温度で処理されたリフタリ
ンを原11どりるIj4素繊眉1゜ ■ ナフタリンをルイス酸触媒の存白下で330°C以
下、りfましくけ100〜300℃(’0.5へ・10
0時間加熱山合し、触媒を除去した後、常汁下又は減圧
上不活+Iガスを流通しイfがら330〜440°Cに
加熱して軟質分を除去し、軟化Jj、iが180〜20
0℃C1It/Cカ0.(i 〜0.8 テ、平均分子
fli カ800〜+500−(”、ベンピン不溶分が
35〜45手吊%であり■−1つキノリン不溶分を含ん
でいない光学的に等lJ性<rピッfを生成し、生成し
た等方171ピッチを常法ににり紡糸、不融化及び炭化
焼成した後、2000°0以上の温度で゛処理りること
を1!■徴どりる特許請求の範囲第1項に記載の炭素繊
組の製造1]法。
(6) Page 19, line 5 of the same page, “Approximately 265°Cl No. 19 of 1”
Page 9 ir 11-1 approx. 900°C1, page 19 line 11 line 1-1 approx. 2000°C, page 20 1ζ to 5/line 1 [1-1 approx. 2500°C1 , 1 approx. 2800° C1 in the 4th line from the bottom of No. 21, [approximately 250° Cj in the 4th line of page 24, 7th line of page 24 “Approximately 900°
Cl, page 24, line 9 [approx. 2000°01, 2nd
From the bottom of the 5th member to the 5th, 4th line "] 1 approximately 2500° 01, page 26 F to 0th - 5?jl'l 1 approximately 2800°C -
1, 29th Auto No. 8 t'i r, 1 "about 900 ° (
1, negative') 29 pages 9-10 tjI-1's [about 20
00°C1, 30th white bottom to 0-5th line [1 of [-approx. 24+ 00°C1a-3 and 3111th small color ff
16-□5(-r[I'7) rAbout 1 in about 2800°C1 is deleted 3°2, Claims (1) Orientation hemp determined by X-ray diffraction ( 27') is less than 30° -C, and the apparent (-) size of the microcrystals (1, c (
002)) exceeded 80 people [1'] 200 people were struck, the layer spacing (the next day) decreased to 3.374, and 3.440 people were treated at a temperature of 2000°C or higher. Ij4 fiber eyebrows 1゜■ Naphthalene is heated to 330°C or less in the presence of a Lewis acid catalyst, and 100 to 300°C (from 0.5 to 10
After heating for 0 hours and removing the catalyst, the mixture was heated to 330 to 440°C while flowing inert + I gas under normal broth or under reduced pressure to remove soft components until the softening Jj,i was 180 ~20
0℃C1It/C 0. (i ~ 0.8 Te, average molecular weight 800 ~ + 500 - ('', bempine insoluble content is 35 - 45% by hand) - optically equivalent lJ property that does not contain quinoline insoluble content < r 1! The patent claim requires that the resulting isotropic 171 pitch be spun, infusible, and carbonized by a conventional method, and then treated at a temperature of 2000° or higher. 1] Method for producing carbon fiber assembly according to Scope 1.

Claims (2)

【特許請求の範囲】[Claims] (1)X線回折より求めた配向度(2Z°)が30°未
満であり、微結晶の見掛けの大きさ(Lc_(_0_0
_2_))が80Åを超え且つ200Å以下であり、層
間隔(d002)が3.371〜3.440Aを示す、
2000℃以上の温度で処理されたナフタリンを原料と
する炭素繊維。
(1) The degree of orientation (2Z°) determined by X-ray diffraction is less than 30°, and the apparent size of the microcrystals (Lc_(_0_0
_2_)) is more than 80 Å and less than 200 Å, and the layer spacing (d002) is 3.371 to 3.440 A.
Carbon fiber made from naphthalene treated at temperatures of 2000°C or higher.
(2)ナフタリンをルイス酸触媒の存在下で330℃以
下、好しくは100〜300℃で0.5〜100時間加
熱重合し、触媒を除去した後、常圧下又は減圧下不活性
ガスを流通しながら330〜440℃に加熱して軽質分
を除去し、軟化点が180〜200℃で、H/Cが0.
6〜0.8で、平均分子量が800〜1500で、ベン
ゼン不溶分が35〜45重量%であり且つキノリン不溶
分を含んでいない光学的に等方性なピッチを生成し、生
成した等方性ピッチを常法により紡糸、不融化及び炭化
焼成した後、2000℃以上の温度で処理することを特
徴とする特許請求の範囲第1項に記載の炭素繊維の製造
方法。
(2) Naphthalene is polymerized by heating in the presence of a Lewis acid catalyst at 330°C or lower, preferably 100 to 300°C for 0.5 to 100 hours, and after removing the catalyst, an inert gas is passed under normal pressure or reduced pressure. While heating to 330-440°C to remove light components, the softening point is 180-200°C and H/C is 0.
6 to 0.8, an average molecular weight of 800 to 1500, a benzene insoluble content of 35 to 45% by weight, and no quinoline insoluble content. 2. The method for producing carbon fibers according to claim 1, wherein the carbon fiber is spun, infusible, and carbonized by a conventional method, and then treated at a temperature of 2000° C. or higher.
JP59193247A 1984-09-14 1984-09-14 Carbon fiber and manufacturing method thereof Expired - Lifetime JPH0633530B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP59193247A JPH0633530B2 (en) 1984-09-14 1984-09-14 Carbon fiber and manufacturing method thereof
CA000490155A CA1262007A (en) 1984-09-14 1985-09-06 Process for producing carbon fibers and the carbon fibers produced by the process
GB08522741A GB2164351B (en) 1984-09-14 1985-09-13 Process for producing carbon fibers and pitch suitable for use therein
DE19853532785 DE3532785A1 (en) 1984-09-14 1985-09-13 METHOD FOR PRODUCING CARBON FIBERS AND CARBON FIBERS PRODUCED BY THIS METHOD
FR8513616A FR2570395B1 (en) 1984-09-14 1985-09-13 PROCESS FOR THE PREPARATION OF CARBON FIBERS AND CARBON FIBERS PRODUCED BY THIS PROCESS
DE3546613A DE3546613C2 (en) 1984-09-14 1985-09-13
US07/293,563 US4863708A (en) 1984-09-14 1989-01-03 Process for producing carbon fibers and the carbon fibers produced by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59193247A JPH0633530B2 (en) 1984-09-14 1984-09-14 Carbon fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6183319A true JPS6183319A (en) 1986-04-26
JPH0633530B2 JPH0633530B2 (en) 1994-05-02

Family

ID=16304777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59193247A Expired - Lifetime JPH0633530B2 (en) 1984-09-14 1984-09-14 Carbon fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0633530B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118622A (en) * 1987-10-28 1989-05-11 Ube Ind Ltd High-strength and high-modulus carbon fiber
JPH026623A (en) * 1988-03-28 1990-01-10 Tonen Corp Pitch-based carbon fiber having high strength and elastic modulus
JPH0214023A (en) * 1988-06-30 1990-01-18 Nippon Oil Co Ltd Pitch-based carbon fiber having excellent compression property and production thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537533A (en) * 1976-06-28 1978-01-24 Olsson Erik Allan Method and device for changing molten metal into solid product
JPS5818613A (en) * 1981-07-28 1983-02-03 Olympus Optical Co Ltd Slanting light and dark visual field luminaire
JPS5818421A (en) * 1981-07-27 1983-02-03 Agency Of Ind Science & Technol Preparation of carbon fiber
JPS58185613A (en) * 1982-03-30 1983-10-29 アモコ・コ−ポレイション Manufacture of mesophase pitch and binder pitch
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537533A (en) * 1976-06-28 1978-01-24 Olsson Erik Allan Method and device for changing molten metal into solid product
JPS5818421A (en) * 1981-07-27 1983-02-03 Agency Of Ind Science & Technol Preparation of carbon fiber
JPS5818613A (en) * 1981-07-28 1983-02-03 Olympus Optical Co Ltd Slanting light and dark visual field luminaire
JPS58185613A (en) * 1982-03-30 1983-10-29 アモコ・コ−ポレイション Manufacture of mesophase pitch and binder pitch
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01118622A (en) * 1987-10-28 1989-05-11 Ube Ind Ltd High-strength and high-modulus carbon fiber
JPH026623A (en) * 1988-03-28 1990-01-10 Tonen Corp Pitch-based carbon fiber having high strength and elastic modulus
JPH0214023A (en) * 1988-06-30 1990-01-18 Nippon Oil Co Ltd Pitch-based carbon fiber having excellent compression property and production thereof

Also Published As

Publication number Publication date
JPH0633530B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
US3919387A (en) Process for producing high mesophase content pitch fibers
US4115527A (en) Production of carbon fibers having high anisotropy
US4863708A (en) Process for producing carbon fibers and the carbon fibers produced by the process
JPS5818421A (en) Preparation of carbon fiber
KR910005574B1 (en) Process for producing pitch for carbon
JPS59196390A (en) Preparation of pitch for carbon fiber
JPS6183319A (en) Carbon fiber and its production
JPH0532494B2 (en)
JP2780231B2 (en) Carbon fiber production method
JPH0516475B2 (en)
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPH0432118B2 (en)
JPH0633528B2 (en) Carbon fiber and manufacturing method thereof
JPH0150275B2 (en)
JPS59164386A (en) Preparation of precursor pitch for carbon fiber
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JPH0633529B2 (en) Carbon fiber manufacturing method
JP2817232B2 (en) Method for producing high-performance carbon fiber
JP2982406B2 (en) Method for producing spinning pitch for carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH0455237B2 (en)
JP2533487B2 (en) Carbon fiber manufacturing method
JP2594907B2 (en) Method for producing pitch carbon fiber
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JPH0739580B2 (en) Method for producing spinning pitch for carbon fiber