JPH0455237B2 - - Google Patents

Info

Publication number
JPH0455237B2
JPH0455237B2 JP5973483A JP5973483A JPH0455237B2 JP H0455237 B2 JPH0455237 B2 JP H0455237B2 JP 5973483 A JP5973483 A JP 5973483A JP 5973483 A JP5973483 A JP 5973483A JP H0455237 B2 JPH0455237 B2 JP H0455237B2
Authority
JP
Japan
Prior art keywords
heat
oil
treated product
treated
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5973483A
Other languages
Japanese (ja)
Other versions
JPS59184287A (en
Inventor
Shunsaku Hiraga
Shigeki Tomono
Jinichi Myasaka
Hiroshi Hasui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP5973483A priority Critical patent/JPS59184287A/en
Publication of JPS59184287A publication Critical patent/JPS59184287A/en
Publication of JPH0455237B2 publication Critical patent/JPH0455237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、特にピツチ系高特性炭素繊維を製造
するのに有用な紡糸ピツチの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a spinning pitch particularly useful for producing pitch-based high-performance carbon fibers.

周知のように、重質油、タール、ピツチ等の炭
素質原料を350〜500℃に加熱すると、それら物質
中に粒径が数ミクロンから数百ミクロンの偏光下
光学的異方性を示す小球体が生成する。そして、
更に加熱するとこれらの小球体は成長合体し、つ
いには全体が光学的異方性を示す状態となる。こ
の異方性組織は炭素質原料の熱重縮合反応により
生成した高分子芳香族炭化水素が層状に積み重な
り配向したもので、黒鉛結晶構造の前駆体とみな
されている。
As is well known, when carbonaceous raw materials such as heavy oil, tar, and pitch are heated to 350 to 500°C, small particles with particle sizes ranging from several microns to several hundred microns exhibit optical anisotropy under polarized light. A sphere is generated. and,
When heated further, these small spheres grow and coalesce, and finally the whole becomes in a state exhibiting optical anisotropy. This anisotropic structure is composed of polymeric aromatic hydrocarbons produced by a thermal polycondensation reaction of carbonaceous raw materials, stacked and oriented in layers, and is considered to be a precursor of graphite crystal structure.

この様な熱処理物は、ノズルを通し、溶融紡
糸、不融化、炭化、更に場合により黒鉛化するこ
とによつて、高強度、高弾性率などの特徴をもつ
ピツチ系の高特性炭素繊維の原料として提案され
ている。
This heat-treated material is passed through a nozzle, melt-spun, made infusible, carbonized, and optionally graphitized to produce a raw material for pitch-based high-performance carbon fiber, which has characteristics such as high strength and high modulus. It is proposed as.

炭素繊維は、比強度、比弾性率が高い材料で、
高性能複合材料のフイラー繊維として最も注目さ
れており、中でも、ピツチ系高特性炭素繊維は原
料コストが安価である、炭化工程で歩留が大き
い、繊維の弾性率が高い等、ポリアクリロニトリ
ル系炭素繊維に較べて様々な利点を持つている。
Carbon fiber is a material with high specific strength and specific modulus.
It is attracting the most attention as a filler fiber for high-performance composite materials, and among them, polyacrylonitrile-based carbon fibers have low raw material cost, high yield in the carbonization process, and high fiber elasticity. It has various advantages compared to fibers.

このピツチ系炭素繊維を製造するための紡糸ピ
ツチの製造方法については従来から種々の技術が
知られているが、未だ多くの改良点がある。
Although various techniques have been known for the production of spinning pitches for producing pitch-based carbon fibers, there are still many improvements to be made.

例えば、原料の炭素質ピツチを加熱処理した
後、トルエン等の低沸点有機溶剤を加え、該溶剤
不溶分を得て原料ピツチとする方法(特開昭55−
58287号)、或いは、炭素質ピツチを加熱処理して
メソ相を生成させ、次いで静置条件下に該メソ相
を沈降物として得て原料ピツチとする方法(特開
昭57−119984号)が知られている。しかし、原料
の炭素質ピツチを加熱処理すると、特に、ピツチ
の溶剤不溶分量が出来るだげ多く得られるような
条件で加熱処理すると、低分子成分がガス或は油
として除かれると同時に、ラジカル重合等により
炭素結晶構造の劣る過度に重合して高分子化した
好ましくない成分が形成されるが、それは溶剤に
不溶なため、或いは、比重が大きいため、上記の
方法では目的の不溶分中、或いは、沈降物中に混
入してくることとなる。
For example, after heating carbonaceous pitch as a raw material, a low boiling point organic solvent such as toluene is added to obtain the solvent-insoluble matter, which is used as raw material pitch (Japanese Unexamined Patent Publication No. 55-119).
58287), or a method in which a carbonaceous pitch is heat-treated to generate a mesophase, and then the mesophase is obtained as a sediment under stationary conditions to obtain a raw material pitch (Japanese Patent Application Laid-open No. 119984/1984). Are known. However, when the raw material carbonaceous pitch is heat-treated, especially under conditions that maximize the solvent-insoluble content of the pitch, the low-molecular components are removed as gas or oil, and at the same time radical polymerization occurs. However, because it is insoluble in the solvent or has a high specific gravity, in the above method, an undesirable component that is excessively polymerized and polymerized with an inferior carbon crystal structure is formed. , and will be mixed into the sediment.

そのため、原料から予めフリーカーボンや灰分
など繊維化に支障となる妨害物質を除去する必要
がある。しかし、これら妨害物質は原料中に微小
粒子として懸濁しているため、その除去には大き
な負担がかかる。
Therefore, it is necessary to remove from the raw material in advance interfering substances such as free carbon and ash that hinder fiberization. However, since these interfering substances are suspended in the raw material as minute particles, their removal requires a heavy burden.

また、炭素質ピツチを、特に加熱処理すること
なく、芳香族系軽油で処理し、その可溶分を得、
更に、ガソリン等の脂肪族系溶媒で処理して得た
可溶分を加熱処理してメソ相を生成させ、静置条
件下に該メソ相を沈降物として得て原料ピツチと
する方法(特開昭57−78486号)が知られている
が、高特性の炭素繊維を得るには未だ充分とはい
えない。
In addition, carbonaceous pitch is treated with aromatic light oil without any particular heat treatment to obtain its soluble content,
Furthermore, there is a method in which the soluble content obtained by treatment with an aliphatic solvent such as gasoline is heat-treated to generate a mesophase, and the mesophase is obtained as a precipitate under stationary conditions and used as a raw material pitch. 1986-78486) is known, but it is still not sufficient to obtain carbon fibers with high characteristics.

更にまた、熱処理する際に、メソ相形成の障害
となる揮発性の低分子量成分を除くために減圧或
いは大量の不活性ガス吹込みを行なつたり、生成
する異方性相と等方性相との混和性を良くするた
めに激しく撹拌するなどの煩雑な操作が行なわれ
ている。
Furthermore, during heat treatment, reduced pressure or a large amount of inert gas may be blown in order to remove volatile low-molecular-weight components that impede mesophase formation, or the anisotropic phase and isotropic phase formed may be reduced. Complicated operations such as vigorous stirring are performed to improve miscibility with

本発明者等は、これら従来技術の問題点を改良
し、ピツチ系高特性炭素繊維用の光学的異方性の
紡糸ピツチの製造方法を提供すべく鋭意検討した
結果、炭素質原料を加熱処理し、次いで特定の溶
剤と接触させて得られる可溶分を加熱処理し、生
成する光学的異方性部分を沈降物として得て原料
ピツチとすれば、所期の目的が達成されることを
見い出し、本発明を完成するに到つた。
The inventors of the present invention improved the problems of these conventional techniques and conducted intensive studies to provide a method for producing an optically anisotropic spinning pitch for pitch-based high-performance carbon fibers. Then, if the soluble portion obtained by contacting with a specific solvent is heat-treated and the resulting optically anisotropic portion is obtained as a precipitate and used as a raw material pitch, the desired purpose will be achieved. With this finding, we have completed the present invention.

すなわち、本発明の要旨は、炭素質原料を加熱
処理し、次いで、沸点又は初留点が150℃以上の
芳香族油と接触させて得られる該芳香族油可溶分
を加熱処理して、光学的異方性部分を含む熱処理
物を得、該熱処理物から光学的異方性部分を静置
条件下に沈降分離し、その沈降物を得ることを特
徴とする炭素繊維用紡糸ピツチの製造方法に存す
る。
That is, the gist of the present invention is to heat-treat a carbonaceous raw material, and then heat-treat the aromatic oil-soluble content obtained by contacting it with an aromatic oil having a boiling point or initial boiling point of 150 ° C. or higher, Production of a spinning pit for carbon fibers, characterized in that a heat-treated product containing an optically anisotropic portion is obtained, and the optically anisotropic portion is separated by sedimentation from the heat-treated product under standing conditions to obtain the precipitate. It lies in the method.

以下本発明を説明するに、本発明で使用する炭
素質原料としては、例えば、石炭系のコールター
ル、コールタールピツチ、石炭液化物、石油系の
重質油、タール、ピツチ等が挙げられる。これら
炭素原料には、通常、フリーカーボン、未溶解石
炭、灰分などの不純物が含まれているが、後述す
るように、本発明方法によれば、予め原料からそ
れら不純物を従来行なわれているような程度まで
特に除去しておかなくとも有利に使用することが
できる。
To explain the present invention below, examples of the carbonaceous raw material used in the present invention include coal-based coal tar, coal tar pitch, coal liquefied products, petroleum-based heavy oil, tar, and pitch. These carbon raw materials usually contain impurities such as free carbon, undissolved coal, and ash, but as will be described later, according to the method of the present invention, these impurities can be removed from the raw materials in advance, unlike conventional methods. It can be used advantageously without having to be specifically removed to a certain degree.

本発明においては、先ずこれら炭素質原料を加
熱処理し、熱処理物(以下「1次熱処理物」とい
う)を得る。加熱処理条件は、温度350〜500℃、
時間0.5〜20時間、圧力常圧〜10Kg/cm2Gの範囲
で適宜選択すればよい。
In the present invention, these carbonaceous raw materials are first heat-treated to obtain a heat-treated product (hereinafter referred to as "primary heat-treated product"). The heat treatment conditions are: temperature 350-500℃;
The time may be appropriately selected within the range of 0.5 to 20 hours and the pressure within the range of normal pressure to 10 kg/cm 2 G.

通常、光学的異方性部分を含む、好ましくは、
10%以上、特に好ましくは、30〜95%含む1次熱
処理物が得られる。また、比較的高温で短時間重
縮合反応させた場合は、光学的に等方性の1次熱
処理物が得られる。
Usually includes an optically anisotropic portion, preferably
A primary heat-treated product containing 10% or more, particularly preferably 30 to 95%, is obtained. Moreover, when the polycondensation reaction is carried out at a relatively high temperature for a short time, an optically isotropic primary heat-treated product can be obtained.

本発明でいう熱処理物(1次熱処理物及び後記
熱処理物)の光学的異方性部分の含量は、常温下
偏光顕微鏡での熱処理物試料中の光学的異方性を
示す部分の面積割合として求めた値である。
The content of the optically anisotropic portion of the heat-treated product (primary heat-treated product and heat-treated product described below) as used in the present invention is expressed as the area percentage of the portion exhibiting optical anisotropy in the sample of the heat-treated product under a polarizing microscope at room temperature. This is the obtained value.

具体的には、例えば、熱処理物試料を数mm角に
粉砕したものを常法に従つて約2cm直径の樹脂の
表面のほぼ全面に試料片を埋込み、表面を研磨
後、表面全体をくまなく偏光顕微鏡(100倍率)
下で目視観察し、試料の全表面積に占る光学的異
方性部分の面積の割合を測定することによつて求
める。
Specifically, for example, a sample piece of a heat-treated product is crushed into pieces of several mm square, and the sample piece is embedded in almost the entire surface of a resin with a diameter of about 2 cm using a conventional method. Polarized light microscope (100x magnification)
It is determined by visually observing the area below and measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.

上記1次熱処理物を、沸点又は初留点が150℃
以上の芳香油と接触させ、その可溶分を得る。か
かる芳香油としては、例えば、ナフタリン油、吸
収油、クレオソート油、アントラセン油、或い
は、前述の炭素質原料の加熱処理中に生成した
油、それを蒸溜して得られる油などが挙げられ
る。
The boiling point or initial boiling point of the above primary heat treated product is 150℃
Contact with the above aromatic oil to obtain its soluble content. Such aromatic oils include, for example, naphthalene oil, absorption oil, creosote oil, anthracene oil, the oil produced during the heat treatment of the carbonaceous raw material mentioned above, and the oil obtained by distilling the same.

芳香族油は、1次熱処理物1重量部に対して、
通常、0.1〜3重量部、好ましくは、0.3〜1.5重量
部の範囲で使用される。
Aromatic oil is based on 1 part by weight of the primary heat treated product.
It is usually used in an amount of 0.1 to 3 parts by weight, preferably 0.3 to 1.5 parts by weight.

1次熱処理物と芳香族油の接触は、1次熱処理
物が流動性を示す温度以上で約400℃以下、好ま
しくは、300〜370℃の温度で行うのがよい。そし
て、静置沈降分離、遠心分離、過などにより目
的の芳香族油可溶分を得る。なかでも静置沈降分
離によるのが簡便で好都合である。
The contact between the first heat-treated product and the aromatic oil is preferably carried out at a temperature above the temperature at which the first heat-treated product exhibits fluidity and below about 400°C, preferably from 300 to 370°C. Then, the desired aromatic oil soluble content is obtained by static sedimentation, centrifugation, filtration, or the like. Among these, static sedimentation separation is simple and convenient.

このようにして得られる芳香族油可溶分は、次
の様な性質のピツチである。即ち、得られる芳香
族油可溶分から含まれる芳香族油を実質的に留去
した後の残渣分が、ベンゼン可溶(Bs)なγ成
分が65〜0%、好ましくは、65〜10%で、ベンゼ
ン不溶(Bi)でキノリン可溶なβ成分が65〜20
%、好ましくは60〜25%で、キノリン不溶(Qi)
なα成分が30〜0%であるようなピツチである。
また、本発明の芳香族油可溶分は全体が等方性
が、或いは、ごくわずかの異方性小球体を含む光
学的組織を示し、重質成分の指標であるα成分や
β成分を多く含むことから、異方性相へ転換し得
る直前の状態(分子の集合体としては積層構造を
とりえていないが、個々の分子については分子の
再配列をひきおこすような若干の刺激によつて配
向しうるような励起された状態)の重質高分子化
したピツチ成分から成るものと考えられる。
The aromatic oil soluble component thus obtained is a pitch having the following properties. That is, after substantially distilling off the aromatic oil contained in the obtained aromatic oil soluble fraction, the residual content is such that the benzene soluble (Bs) γ component is 65 to 0%, preferably 65 to 10%. So, the benzene insoluble (Bi) and quinoline soluble β component is 65-20
%, preferably 60-25%, quinoline insoluble (Qi)
The pitch is such that the α component is 30 to 0%.
In addition, the aromatic oil soluble component of the present invention exhibits an optical structure that is isotropic as a whole or contains a very small number of anisotropic spherules, and contains α and β components that are indicators of heavy components. Because it contains a large amount, it is in a state just before it can convert to an anisotropic phase (the aggregate of molecules does not have a stacked structure, but individual molecules may be affected by slight stimulation that causes molecular rearrangement). It is thought that it consists of a heavy polymerized pitch component (in an excited state that allows it to be oriented).

本発明方法によれば、炭素質原料を加熱処理す
る際に過度に重合分子化した成分は芳香族油不溶
分として分離除去され、また、炭素質原料中に存
在したフリーカーボン、未溶解石炭、灰分等は過
度に重合高分子化した成分に付着して容易に分離
除去することができる。従つて、予め原料中の前
述の不純物を除去したり、それらの不純物を含ま
ない原料を選択使用することは特に必要とせず、
操作上有利であり、また、低分子分および過度の
高分子分を含まず、分子組成が好適に制御されて
いるので有利である。
According to the method of the present invention, components excessively polymerized and molecularized during heat treatment of carbonaceous raw materials are separated and removed as aromatic oil-insoluble components, and free carbon, undissolved coal, and other components present in the carbonaceous raw materials are separated and removed. Ash and the like adhere to excessively polymerized components and can be easily separated and removed. Therefore, it is not particularly necessary to remove the aforementioned impurities from the raw materials in advance or to select and use raw materials that do not contain these impurities.
It is advantageous in terms of operation, and is advantageous because it does not contain low molecular weight components or excessive high molecular weight components, and the molecular composition is suitably controlled.

次いで、上記芳香族油可溶分を加熱処理して光
学的異方性部分を、通常、10〜90%、好ましく
は、30〜80%含む熱処理物を得る。加熱処理条件
は、温度350〜500℃、時間2分〜20時間、圧力常
圧〜10Kg/cm2Gの範囲で適宜選択する。
Next, the aromatic oil soluble content is heat-treated to obtain a heat-treated product containing usually 10 to 90%, preferably 30 to 80%, of optically anisotropic portions. The heat treatment conditions are appropriately selected within the range of temperature 350 to 500°C, time 2 minutes to 20 hours, and pressure normal pressure to 10 kg/cm 2 G.

その際、勿論、撹拌や不活性ガスの吹込等を行
なつてもよいが、従来の様な激しい撹拌や大量の
不活性ガスの吹込、減圧処理等の煩雑な操作は特
に行なわなくとも、過度に重縮合された高分子成
分(早期コーキング物)はほとんど形成されない
ので有利である。
At that time, of course, stirring or blowing inert gas may be performed, but the complicated operations such as conventional vigorous stirring, blowing in a large amount of inert gas, and depressurization are not necessary. This is advantageous because almost no polymeric components polycondensed (early coking products) are formed.

次いで、上記熱処理物を約300〜400℃の温度下
に通常、0.2〜10時間静置し、光学的異方性部分
を比重差により等方性部分と分離し、沈降させて
本発明の紡糸ピツチを得る。本発明においては、
目的に応じ、一部等方性部分を含めて沈降物を得
て紡糸ピツチとしてもよい。
Next, the above-mentioned heat-treated product is left to stand at a temperature of about 300 to 400°C for usually 0.2 to 10 hours, and the optically anisotropic part is separated from the isotropic part by the difference in specific gravity and allowed to settle, resulting in the spinning of the present invention. Get Pituchi. In the present invention,
Depending on the purpose, a precipitate containing a part of the isotropic portion may be obtained and used as a spinning pitch.

上記静置沈降分離は、常圧下に行なうこともで
きるが、本発明においては、加圧下、通常10Kg/
cm2G以下、好ましくは、5〜10Kg/cm2Gに行なう
こともできる。
The above-mentioned static sedimentation separation can be carried out under normal pressure, but in the present invention, under pressure, usually 10 kg/
cm 2 G or less, preferably 5 to 10 Kg/cm 2 G.

また、本発明においては、沈降分離が妨げられ
ない程度のゆるやかな撹拌を行なつてもよい。
Further, in the present invention, gentle stirring may be performed to the extent that sedimentation separation is not hindered.

本発明によれば、芳香族油可溶分の加熱処理に
よつて粒径のほぼ均一な光学的に異方性の球体、
即ち、比較的分子量分布の揃つた球体が生成す
る。そして、次いで、重質化を伴う熱即処理では
なく、比重差による分離を行なうため、分子量の
増加が起らず、分子量分布の均一な紡糸ピツチを
得ることができる。そのため、軟化点は低下し、
紡糸性も向上した。また得られた紡糸ピツチは従
来のように熱処理して得られた紡糸ピツチと比較
して、キノリン不溶分が、通常、30〜60%と多い
にもかかわらず60ポイズを示す温度が約300〜350
℃と低いという特徴があり、したがつて高収率に
炭素繊維が得られる。この紡糸ピツチを通常の方
法に従い溶融紡糸し、得られたピツチ繊維を不融
化し、炭化し場合により更に黒鉛化することによ
り高特性のピツチ系炭素繊維を製造することがで
きる。
According to the present invention, optically anisotropic spheres having a substantially uniform particle size are formed by heating the aromatic oil soluble content.
That is, spheres with a relatively uniform molecular weight distribution are produced. Then, since separation is performed based on the difference in specific gravity instead of immediate heat treatment that involves weighting, an increase in molecular weight does not occur and a spinning pitch with a uniform molecular weight distribution can be obtained. Therefore, the softening point decreases,
Spinnability was also improved. In addition, compared to spinning pitches obtained by conventional heat treatment, the resulting spinning pitches have a high quinoline insoluble content of 30 to 60%, but the temperature at which they reach 60 poise is approximately 300 to 300%. 350
It is characterized by a low temperature of ℃, and therefore carbon fiber can be obtained in high yield. A pitch-based carbon fiber with high properties can be produced by melt-spinning this spinning pitch according to a conventional method, making the resulting pitch fiber infusible, carbonizing it, and optionally graphitizing it.

以下に実施例を挙げて更に本発明を具体的に説
明する。
EXAMPLES The present invention will be further explained in detail by giving examples below.

実施例 1 コールタールピツチ(Bi6.0%、Qi0%)を窒素
雰囲気中常圧で440℃、4時間加熱処理して異方
性割合80%の1次熱処理物を得た。この熱処理物
1重量部に0.5重量部のアントラセン油を添加し
て、350℃に30分間静置し、その上澄液をデカン
テーシヨンによつて得た。この上澄液は、γ62
%、β32.2%、α5.8%であり、偏光顕微鏡下で観
察したところ全面等方性であつた。
Example 1 Coal tar pitch (Bi6.0%, Qi0%) was heat-treated at 440° C. for 4 hours at normal pressure in a nitrogen atmosphere to obtain a first heat-treated product with an anisotropy ratio of 80%. 0.5 parts by weight of anthracene oil was added to 1 part by weight of this heat-treated product, and the mixture was allowed to stand at 350°C for 30 minutes, and the supernatant liquid was obtained by decantation. This supernatant is γ62
%, β 32.2%, and α 5.8%, and when observed under a polarizing microscope, the entire surface was isotropic.

この上澄液を窒素雰囲気中常圧で420℃、1時
間加熱して、光学的に異方性の球体を約40%含む
Qi29.8%の熱処理物を得た。次いで、この熱処理
物を370℃で常圧で2時間静置し、光学的に異方
性の球体を沈降させた。
This supernatant liquid was heated at 420°C for 1 hour at normal pressure in a nitrogen atmosphere to contain approximately 40% optically anisotropic spheres.
A heat-treated product with a Qi of 29.8% was obtained. Next, this heat-treated product was allowed to stand at 370° C. and normal pressure for 2 hours to precipitate optically anisotropic spheres.

2時間静置後の熱処理物を冷却し、その断面を
偏光顕微鏡で観察することにより、熱処理物が2
層に分離していることを確認した。
By cooling the heat-treated product after standing for 2 hours and observing its cross section with a polarizing microscope, it was found that the heat-treated product was
It was confirmed that it was separated into layers.

下層部は、全面異方性でQiは42.0%であつた。
また、60ポイズを示す温度は339℃であつた。
The lower layer was anisotropic throughout and had a Qi of 42.0%.
Moreover, the temperature showing 60 poise was 339°C.

この下層部を直径0.3mmのノズルをもつ紡糸器
で348℃の温度で紡糸した。得られたピツチ繊維
を酸素雰囲気中310℃で30分間不融化処理し、次
いで、窒素雰囲気中、1400℃で0.5時間炭化処理
して炭素繊維を得た。
This lower layer was spun at a temperature of 348°C using a spinning machine with a nozzle of 0.3 mm in diameter. The obtained pitch fibers were subjected to infusibility treatment at 310°C for 30 minutes in an oxygen atmosphere, and then carbonized at 1400°C for 0.5 hours in a nitrogen atmosphere to obtain carbon fibers.

この炭素繊維の引張り強度は34t/cm2で、また、
引張り弾性率は2300t/cm2であつた。
The tensile strength of this carbon fiber is 34t/ cm2 , and
The tensile modulus was 2300t/ cm2 .

比較例 1 コールタールピツチ(Bi6.0%、Qi0%)を窒素
雰囲気中、420℃で2時間加熱処理して熱処理物
を得た。この熱処理物は全面異方性でQiは65.5%
で、また、60ポイズを示す温度は416℃であつた。
Comparative Example 1 Coal tar pitch (Bi6.0%, Qi0%) was heat-treated at 420°C for 2 hours in a nitrogen atmosphere to obtain a heat-treated product. This heat-treated product is anisotropic throughout and has a Qi of 65.5%.
Also, the temperature that showed 60 poise was 416°C.

この熱処理物を実施例1と同様にして紡糸を行
なつたが、糸切れをおこし繊維を得ることが出来
なかつた。
This heat-treated product was spun in the same manner as in Example 1, but yarn breakage occurred and fibers could not be obtained.

実施例 2 コールタールピツチ(Bi10.5%、Qi0.7%)を
窒素雰囲気中常圧で440℃4時間加熱処理して異
方性割合90%の1次熱処理物を得た。この熱処理
物1重量部に0.5重量部のアントラセン油を添加
して350℃に30分間静置し、その上澄液をデカン
テーシヨンによつて得た。この上澄液は、γ59.7
%β35%α5.3%であり偏光顕微鏡下で観察したと
ころ全面等方性であつた。
Example 2 Coal tar pitch (Bi 10.5%, Qi 0.7%) was heat-treated at 440° C. for 4 hours at normal pressure in a nitrogen atmosphere to obtain a primary heat-treated product with an anisotropy ratio of 90%. 0.5 parts by weight of anthracene oil was added to 1 part by weight of this heat-treated product, and the mixture was allowed to stand at 350°C for 30 minutes, and the supernatant liquid was obtained by decantation. This supernatant liquid is γ59.7
%β35%α5.3%, and when observed under a polarizing microscope, the entire surface was isotropic.

この上澄液を窒素雰囲気中常圧で420℃5分間
加熱処理して光学的に異方性の球体を50%含む
Qi21.0%の熱処理物を得た。次いでこの熱処理物
を360℃常圧で3時間静置し、光学的に異方性の
球体を沈降させた。
This supernatant liquid was heat-treated at 420°C for 5 minutes at normal pressure in a nitrogen atmosphere to contain 50% of optically anisotropic spheres.
A heat-treated product with Qi of 21.0% was obtained. Next, this heat-treated product was allowed to stand at 360° C. and normal pressure for 3 hours to precipitate optically anisotropic spheres.

その後熱処理物を冷却しその断面を偏光顕微鏡
で観察することにより熱処理物が2層に分離して
いることが確認された。
Thereafter, the heat-treated product was cooled and its cross section was observed with a polarizing microscope, and it was confirmed that the heat-treated product was separated into two layers.

下層部は全面異方性で、Qiは35.7%、また60ポ
イズを示す温度は333℃であつた。
The lower layer was anisotropic throughout, with a Qi of 35.7% and a temperature of 60 poise at 333°C.

この下層部を直径0.2mmのノズルをもつ紡糸機
で339℃で紡糸した、その後実施例−1と同じ方
法で炭化、2800℃黒鉛化処理を行い、炭素繊維を
得た。この炭素繊維の引張り強度は27t/cm2でま
た引張り弾性率は2800t/cm2であつた。
This lower layer was spun at 339°C using a spinning machine with a nozzle having a diameter of 0.2 mm, and then carbonized and graphitized at 2800°C in the same manner as in Example 1 to obtain carbon fibers. This carbon fiber had a tensile strength of 27 t/cm 2 and a tensile modulus of 2800 t/cm 2 .

Claims (1)

【特許請求の範囲】 1 炭素質原料を加熱処理し、次いで、沸点又は
初留点が150℃以上の芳香族油と接触させて得ら
れる該芳香族油可溶分を加熱処理して、光学的異
方性部分を含む熱処理物を得、該熱処理物から光
学的異方性部分を静置条件下に沈降分離し、その
沈降物を得ることを特徴とする炭素繊維用紡糸ピ
ツチの製造方法。 2 芳香族油が、ナフタリン油、吸収油、クレオ
ソート油又はアントラセン油である特許請求の範
囲第1項記載の方法。 3 芳香族油が、炭素質原料の加熱処理により生
成する油である特許請求の範囲第1項記載の方
法。 4 沈降分離を300〜400℃の温度で行う特許請求
の範囲第1項記載の方法。
[Scope of Claims] 1. A carbonaceous raw material is heat-treated, and then the aromatic oil-soluble content obtained by contacting it with an aromatic oil having a boiling point or initial boiling point of 150°C or higher is heat-treated to obtain optical properties. A method for producing a spinning pit for carbon fibers, which comprises obtaining a heat-treated product containing an optically anisotropic portion, and separating the optically anisotropic portion from the heat-treated product by sedimentation under standing conditions to obtain the precipitate. . 2. The method according to claim 1, wherein the aromatic oil is naphthalene oil, absorption oil, creosote oil or anthracene oil. 3. The method according to claim 1, wherein the aromatic oil is an oil produced by heat treatment of carbonaceous raw materials. 4. The method according to claim 1, wherein the sedimentation separation is carried out at a temperature of 300 to 400°C.
JP5973483A 1983-04-05 1983-04-05 Preparation of spun pitch for carbon fiber Granted JPS59184287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5973483A JPS59184287A (en) 1983-04-05 1983-04-05 Preparation of spun pitch for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5973483A JPS59184287A (en) 1983-04-05 1983-04-05 Preparation of spun pitch for carbon fiber

Publications (2)

Publication Number Publication Date
JPS59184287A JPS59184287A (en) 1984-10-19
JPH0455237B2 true JPH0455237B2 (en) 1992-09-02

Family

ID=13121731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5973483A Granted JPS59184287A (en) 1983-04-05 1983-04-05 Preparation of spun pitch for carbon fiber

Country Status (1)

Country Link
JP (1) JPS59184287A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102529745B1 (en) * 2021-04-19 2023-05-08 재단법인 포항산업과학연구원 Method of producing coal-based pitch for artificial graphite
KR102583031B1 (en) * 2021-07-01 2023-09-27 한국화학연구원 Method for manufacturing hetero-phase binder pitch and hetero-phase binder pitch manufactured therefrom
KR102389550B1 (en) * 2021-09-24 2022-04-21 한국화학연구원 Method for preparing anisotropic pitch derived from heavy oil for carbon fiber based on two-stage solvent extraction method

Also Published As

Publication number Publication date
JPS59184287A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
JPH0133568B2 (en)
JPH0455237B2 (en)
JPS6256198B2 (en)
JPH0432118B2 (en)
JPH0532494B2 (en)
JP2780231B2 (en) Carbon fiber production method
JPH058238B2 (en)
JPH01247487A (en) Production of mesophase pitch
JPS6183319A (en) Carbon fiber and its production
JPS61185588A (en) Production of pitch for spinning pitch carbon yarn
JPH0229765B2 (en)
JP2533487B2 (en) Carbon fiber manufacturing method
JPH03227396A (en) Production of optically anisotropic pitch
JPS61190587A (en) Production of precursor pitch for carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JP2982406B2 (en) Method for producing spinning pitch for carbon fiber
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JPS6160785A (en) Production of precursor pitch for carbon fiber
JPS6218593B2 (en)
JPH058755B2 (en)
JPS6059950B2 (en) How to make pitutchi
JPS6233330B2 (en)
JPH0633529B2 (en) Carbon fiber manufacturing method
JPS61287961A (en) Precursor pitch for carbon fiber
JPS6232179A (en) Preparation of raw material pitch for carbonaceous material