JPS6218593B2 - - Google Patents

Info

Publication number
JPS6218593B2
JPS6218593B2 JP57026740A JP2674082A JPS6218593B2 JP S6218593 B2 JPS6218593 B2 JP S6218593B2 JP 57026740 A JP57026740 A JP 57026740A JP 2674082 A JP2674082 A JP 2674082A JP S6218593 B2 JPS6218593 B2 JP S6218593B2
Authority
JP
Japan
Prior art keywords
pitch
weight
boiling point
insoluble
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57026740A
Other languages
Japanese (ja)
Other versions
JPS58145782A (en
Inventor
Kunihiko Morya
Kazuhito Tate
Goro Muroga
Kazuhiro Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP2674082A priority Critical patent/JPS58145782A/en
Priority to US06/468,910 priority patent/US4597853A/en
Priority to DE8383101766T priority patent/DE3363347D1/en
Priority to EP83101766A priority patent/EP0087749B1/en
Publication of JPS58145782A publication Critical patent/JPS58145782A/en
Publication of JPS6218593B2 publication Critical patent/JPS6218593B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は石油系重質残油を用いての炭素質加工
品の原料用ピツチの製造に関するものである。特
に本発明は易加工性を目的とした炭素質加工、な
かでも炭素繊維製造に好適な原料ピツチを得るた
めの製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of pitch for raw material for carbonaceous processed products using petroleum heavy residual oil. In particular, the present invention relates to carbonaceous processing for the purpose of easy processability, particularly to a manufacturing method for obtaining a raw material pitch suitable for manufacturing carbon fibers.

現在ピツチ類を原料として強度ならびに弾性率
の優れた炭素繊維を製造するには、(1)等方性炭素
よりなる炭素繊維を2500℃以上の高温度条件下で
緊張延伸する、(2)非等方性ピツチを原料とすると
いう2方法に大別される。
Currently, in order to produce carbon fibers with excellent strength and elastic modulus using Pits as a raw material, there are two methods: (1) stretching carbon fibers made of isotropic carbon under high temperature conditions of 2500°C or higher, and (2) non-stretching them. There are two main methods: using isotropic pitch as a raw material.

(2)の方法の代表的なものはメソフエーズを多量
に含有するピツチを原料として炭素繊維を製造す
ることである。特許公告公報昭49−8634において
は基本骨格として7個以上の環が縮合することに
よつて形成された平面性の大きな多環構造物を原
料とした炭素繊維の製造方法が開示されており、
同原料物質を繊維に成型すると、この繊維軸方向
に平行な研磨面の偏光顕微鏡による観察およびX
線的観察によると平面分子の繊維軸方向への配向
が認められる。また炭化或いは、黒鉛化処理をし
たものは不融化処理をしたものであつてもX線的
観察によつて同様の配向が確認されるとしてい
る。
A typical method (2) is to produce carbon fibers using pitch containing a large amount of mesophase as a raw material. Patent Publication No. 1986-8634 discloses a method for producing carbon fiber using a large planar polycyclic structure formed by condensing seven or more rings as a basic skeleton as a raw material,
When the same raw material is molded into fibers, the polished surface parallel to the fiber axis can be observed with a polarizing microscope and
Linear observation shows that the planar molecules are oriented in the direction of the fiber axis. Furthermore, the same orientation is confirmed by X-ray observation even when carbonized or graphitized materials are infusible.

また特許公告公報昭55−37611においては40〜
90重量%のメソ相含有量を有するメソ相ピツチか
ら高弾性率、高強度炭素繊維を製造する方法が開
示されている。なおこの場合メソ相とは偏光顕微
鏡試験によつて視覚観察することができ本質上キ
ノリンおよびピリジンの如き有機溶剤に不溶性の
ものとして定義されている。また一方公開特許公
報昭54−160427においては等方性炭素質ピツチよ
り溶媒抽出法によつて分離した留分で230〜400℃
に10分以下の時間加熱することで75%以上光学異
方性相を生成するピツチの製造方法が開示されて
いる。なお該特許の特許請求請求範囲においては
ピツチの製造方法の他、ピツチ繊維を含んでお
り、発明の詳細な説明の中では炭素繊維の製造を
目的としていることが述べられているが、本製造
方法によるピツチから高強度、高弾性率炭素繊維
ができたという点については記載がない。
Also, in Patent Publication Publication No. 55-37611, 40~
A method for producing high modulus, high strength carbon fibers from mesophase pitch having a mesophase content of 90% by weight is disclosed. In this case, the mesophase is defined as one that can be visually observed by polarized light microscopy and is essentially insoluble in organic solvents such as quinoline and pyridine. On the other hand, in Published Patent Publication No. 160427/1984, the fraction separated from isotropic carbonaceous pitch by solvent extraction method is
Disclosed is a method for producing pitch, which generates an optically anisotropic phase of 75% or more by heating for 10 minutes or less. In addition to the method for manufacturing pitch, the claims of the patent include pitch fiber, and in the detailed description of the invention, it is stated that the purpose is to manufacture carbon fiber. There is no mention of the fact that high-strength, high-modulus carbon fibers can be produced from pitch using this method.

したがつてこれらの各特許にみるかぎり可能性
はともかく高強度、高弾性率炭素繊維の実現はメ
ソフエーズを多量に含有するピツチによつてなさ
れているということである。メソフエーズを多量
に含有するピツチを紡糸し、適当な条件下におい
て不融化、炭化、黒鉛化を行えばたしかに高強
度、高弾性率炭素繊維を作ることは可能である。
しかしメソフエーズを多量に含有するピツチ、特
に40重量%以上のメソフエーズを含有するピツチ
を溶融紡糸することは非常に困難である。したが
つてメソフエーズを多量に含有するピツチを原料
として工業的に安定して高強度、高弾性率の炭素
繊維を製造するには紡糸の困難さを克服する必要
がある。
Therefore, as far as these patents are concerned, regardless of the possibility, high strength and high modulus carbon fibers are achieved by using pitch containing a large amount of mesophase. It is certainly possible to produce high-strength, high-modulus carbon fibers by spinning pitch containing a large amount of mesophase and subjecting it to infusibility, carbonization, and graphitization under appropriate conditions.
However, it is very difficult to melt-spun pitch containing a large amount of mesophase, especially pitch containing 40% by weight or more of mesophase. Therefore, in order to industrially stably produce carbon fibers with high strength and high modulus using pitch containing a large amount of mesophase as a raw material, it is necessary to overcome the difficulty of spinning.

我々はこの点に関し鋭意研究の結果従来法と異
なつた性状を有するピツチにより紡糸性が極めて
優れており同時に高弾性率の炭素繊維の製造が可
能であることを見出した。すなわちそのピツチの
性状はキノリン不溶分7〜18重量%、トルエン不
溶分70〜85重量%という極めて限定された範囲に
あり、製造方法も従来法とは異なつたものであ
る。ここでピツチの性状をキノリン不溶分および
トルエン不溶分の量によつて規定したのは次に述
べるような理由によるものである。
As a result of intensive research on this point, we have found that using pitch, which has properties different from conventional methods, has extremely excellent spinnability and at the same time makes it possible to produce carbon fibers with a high modulus of elasticity. That is, the properties of the pitch are within a very limited range of 7-18% by weight of quinoline-insoluble content and 70-85% by weight of toluene-insoluble content, and the production method is also different from conventional methods. The reason why the properties of pitch were defined by the amounts of quinoline-insoluble matter and toluene-insoluble matter is as follows.

前記の如く従来法では主としてメソフエーズ含
有量によりピツチの性状を規定しているが、メソ
フエーズとメソフエーズの源となる潜在的な物質
との間には連続的に各段階に対応した物質が存在
し、ピツチのような複雑な混合物においてこれら
を明確に区別することは困難である。例えばピツ
チを研磨し反射偏光顕微鏡によりメソフエーズを
観察したり、さらにはこの観察によつて認識され
た光学異方性領域の面積をもつてメソフエーズの
量を推定することも試みられている。しかしこの
方法により光学異方性が認められた場合でもその
部分に存在する物質がすべてメソフエーズである
とは断定できないはずである。キノリンやピリジ
ンに不溶となつたメソフエーズはたしかに光学異
方性物質として観察可能であるが、その逆に光学
異方性が観察される部分にはメソフエーズの存在
は認められてもそのすべてがメソフエーズではな
い。すなわち、光学的に異方性として認識される
部分であつてもメソフエーズ以外の物質も混在す
る場合も十分考えられ、特に石油系重質油のよう
な混合物を前駆原料として製造したピツチにおい
てはメソフエーズとメソフエーズ以外の物質が混
在すると考えることの方が妥当と考えられる。し
たがつて反射偏光顕微鏡によつてたまたま光学異
方性領域として観察される部分の面積からメソフ
エーズの量を求めることは特別な場合を除いては
適当な方法とはいえない。本発明において製造さ
れるピツチの主成分はメソフエーズに極めて近い
がメソフエーズではない物質であり、それ故紡糸
性が極めて優れているのである。この様な物質を
規定する方法を種々試みた結果、前記のごとくキ
ノリン不溶分およびトルエン不溶分の量により規
定することが可能であることを見出したものであ
る。
As mentioned above, in the conventional method, the properties of pitches are mainly determined by the mesophase content, but there are substances that correspond to each stage in a continuous manner between mesophases and potential substances that become the source of mesophases. It is difficult to clearly distinguish these in a complex mixture such as pitch. For example, attempts have been made to polish the pitch and observe mesophases using a reflective polarization microscope, and to estimate the amount of mesophases based on the area of the optically anisotropic region recognized through this observation. However, even if optical anisotropy is observed using this method, it cannot be concluded that all the substances present in that region are mesophases. Mesophases that are insoluble in quinoline and pyridine can certainly be observed as optically anisotropic substances, but conversely, even if the presence of mesophases is recognized in areas where optical anisotropy is observed, not all of them are mesophases. do not have. In other words, even in areas that are recognized as optically anisotropic, it is quite possible that substances other than mesophase may also be present, and especially in pitches produced from mixtures such as heavy petroleum oil as precursor raw materials, mesophase may be present. It is more reasonable to think that substances other than mesophase and mesophase coexist. Therefore, determining the amount of mesophase from the area of a portion that happens to be observed as an optically anisotropic region by a reflective polarization microscope is not an appropriate method except in special cases. The main component of the pitch produced in the present invention is a substance that is very similar to mesophase but is not mesophase, and therefore has extremely excellent spinnability. As a result of trying various methods for defining such substances, we have found that it is possible to define them by the amounts of quinoline-insoluble matter and toluene-insoluble matter, as described above.

本発明の概要は次のとおりである。すなわち沸
点400℃以上で硫黄含有量1.5重量%以下の石油系
重質残油を温度380〜415℃、加熱時間12〜30時間
の範囲の条件で加熱処理した後温度380℃以下に
加熱しつつ重力あるいは遠心力の作用によつて不
溶解性物質を分離除去し、次いで真空蒸留して沸
点400℃以下の軽質留分を分離除去することによ
つて製造するピツチであつてキノリン不溶分7〜
18重量%、トルエン不溶分70〜85重量%の範囲の
性状を有するものである。
The outline of the present invention is as follows. In other words, petroleum-based heavy residual oil with a boiling point of 400°C or higher and a sulfur content of 1.5% by weight or less is heat-treated at a temperature of 380 to 415°C for a heating time of 12 to 30 hours, and then heated to a temperature of 380°C or lower. Pitch is produced by separating and removing insoluble substances by the action of gravity or centrifugal force, followed by vacuum distillation to separate and remove light fractions with a boiling point of 400°C or less, and contains 7 to 70% of quinoline insoluble matter.
The content is 18% by weight, and the toluene insoluble content is in the range of 70 to 85% by weight.

前駆原料(ピツチを製造するための原料となる
物質)である石油系重質残油としては原油の常圧
蒸留残油、水素化脱硫残油、水素化分解残油、熱
分解残油、接触分解残油、潤滑油製造の際に副生
する溶剤抽出油(エキストラクト)等を起源とす
るものでよいが沸点は常圧換算400℃以上、硫黄
含有量1.5重量%以下であることが必要である。
さもないと常圧において所用の加熱が困難とな
り、製造したピツチの性状が悪いものとなる。こ
こで硫黄含有量はJIS K−2541に規定された方法
で測定する。加熱処理は常圧下、温度380〜415
℃、加熱時間12〜30時間の範囲の条件で加熱処理
する。加熱処理中にガス吹き込みや減圧等の操作
は行なわず、加熱処理中に生成する軽質留分が系
外に出ることはできるだけ避けるようにする。軽
質留分を系外に出してしまうと後で行なう不溶解
性物質の分離が困難となる。また加熱処理は前記
の条件範囲で行なうが、加熱温度と加熱時間の組
合せについては加熱処理後系内に残留する物質を
研磨し反射偏光顕微鏡で観察しても実質的に光学
異方性を認めないような条件に設定することが好
ましい。ここで光学異方性が認められる場合は紡
糸性が悪化する。
Petroleum-based heavy residual oils that are precursor raw materials (substances that serve as raw materials for manufacturing pitucci) include atmospheric distillation residual oil of crude oil, hydrodesulfurization residual oil, hydrocracked residual oil, pyrolysis residual oil, and contact oil. It may originate from cracked residual oil, solvent-extracted oil (extract) that is a by-product during lubricant production, but it must have a boiling point of 400°C or higher calculated at normal pressure and a sulfur content of 1.5% by weight or less. It is.
Otherwise, it will be difficult to achieve the required heating at normal pressure, and the properties of the produced pitches will be poor. Here, the sulfur content is measured by the method specified in JIS K-2541. Heat treatment is performed under normal pressure at a temperature of 380 to 415.
Heat treatment is performed at a temperature in the range of 12 to 30 hours. Operations such as gas blowing and depressurization are not performed during the heat treatment, and light fractions generated during the heat treatment are prevented from exiting the system as much as possible. If the light fraction is discharged from the system, it becomes difficult to separate insoluble substances later. In addition, the heat treatment is performed within the above-mentioned condition range, but with regard to the combination of heating temperature and heating time, substantial optical anisotropy is observed even when the substances remaining in the system are polished after the heat treatment and observed with a reflective polarization microscope. It is preferable to set conditions such that there is no such occurrence. If optical anisotropy is observed here, spinnability deteriorates.

なお加熱処理後系内に残留する物質における光
学異方性発現の有無について判定は以下の方法で
行う。加熱処理物を直径約3mm程度に粉砕した後
縮分してサンプルを採取しての加熱処理物サンプ
ルを不飽和ポリエステル等の樹脂中に埋め込んで
硬化させ、これを研磨した後反射型偏光顕微鏡を
用い直交ニコル下倍率250倍以上で観察し光学異
方性の発現を判定するものである。次に、加熱処
理した物質を380℃以下の温度において重力ある
いは遠心力等を利用し設定温度において不溶解性
物質を分離し、除去する。加熱処理温度を380℃
以下としたのはこの加熱によつて光学異方性物質
の生成をきたさないためである。この不溶解性物
質を分離、除去することによつて紡糸時に溶融し
ない物質を除去することができる。次に、不溶解
性物質を分離除去した物質を真空蒸留し沸点400
℃(常圧換算)以下の低沸点留分を分離除去す
る。このような各工程を経て製造されたピツチの
性状としてキノリン不溶分7〜18重量%トルエン
不溶分70〜85重量%の範囲になるように各工程の
条件を適切に設定する。製造したピツチのキノリ
ン不溶分が7重量%以下、トルエン不溶分70重量
%以下の場合には紡糸性は良いが、高弾性率を有
する炭素繊維は製造できない。一方キノリン不溶
分18重量%以上になると紡糸性が悪化し、紡糸時
の糸切れが頻繁となり安定な紡糸が困難となる。
ピツチの性状としてこのようにかなり限定された
範囲において紡糸性と高弾性率炭素繊維製造とい
う両者を満足せしめることができるのである。こ
こでキノリン不溶分およびトルエン不溶分はJIS
K−2425に規定された方法によつて測定される。
以上のように本発明は従来法において高弾性率炭
素繊維の原料とはかなり難しいと考えられていた
性状範囲のピツチを製造することにより紡糸が極
めて容易となり、且つ本ピツチを用いて製した炭
素繊維が高弾性率を有するということを同時に可
能ならしめたものである。
The following method is used to determine whether optical anisotropy occurs in the substance remaining in the system after heat treatment. The heat-treated product is crushed to a diameter of approximately 3 mm, then reduced and a sample is collected.The sample of the heat-treated product is embedded in a resin such as unsaturated polyester and hardened, and after polishing, a reflective polarizing microscope is used. It is used to observe at a magnification of 250 times or more under crossed Nicols to determine the development of optical anisotropy. Next, the heat-treated substance is heated to a temperature of 380° C. or below using gravity or centrifugal force to separate and remove insoluble substances at a set temperature. Heat treatment temperature 380℃
The reason for the following is to prevent the generation of optically anisotropic substances due to this heating. By separating and removing this insoluble material, it is possible to remove the material that does not melt during spinning. Next, the substance from which insoluble substances have been separated and removed is vacuum distilled to a boiling point of 400.
Separate and remove the low boiling point fraction below ℃ (converted to normal pressure). The conditions of each step are appropriately set so that the properties of the pitch produced through these steps are in the range of 7 to 18% by weight of quinoline insoluble content and 70 to 85% by weight of toluene insoluble content. If the quinoline-insoluble content of the produced pitch is 7% by weight or less and the toluene-insoluble content is 70% by weight or less, spinnability is good, but carbon fibers with high elastic modulus cannot be produced. On the other hand, if the quinoline insoluble content exceeds 18% by weight, spinnability deteriorates, and yarn breaks occur frequently during spinning, making stable spinning difficult.
Within such a fairly limited range of pitch properties, both spinnability and production of high modulus carbon fibers can be satisfied. Here, quinoline insoluble content and toluene insoluble content are JIS
Measured by the method specified in K-2425.
As described above, the present invention makes it extremely easy to spin fibers by producing a pitch with a property range that was considered to be quite difficult to use as a raw material for high modulus carbon fiber in the conventional method. This simultaneously makes it possible for the fiber to have a high modulus of elasticity.

以下実施例により本発明をさらに詳細に説明す
る。
The present invention will be explained in more detail with reference to Examples below.

実施例 1 潤滑油精製の際に副生する溶剤抽出油(沸点
400℃以上、硫黄含有量0.5重量%)を410℃、16
時間加熱処理した後360℃に加熱しつつ静置し不
溶解性物質を沈降せしめ傾斜法によつて不溶解性
物質を分離除去し次いで不溶解性物質を除去した
物質を真空蒸留し400℃以下の低沸点留分を分離
除去してピツチを得た。このピツチのキノリン不
溶分は15.4重量%、トルエン不溶分は73.2重量
%、n−ヘプタン可溶分は1.2重量%であつた。
本ピツチを紡糸温度364℃でノズル孔0.5mmφの紡
糸ノズルを用いて溶融紡糸したところ、ピツチ繊
維直径20μにおいて10分間と1回の糸切れも生じ
なかつた。このピツチ繊維を空気雰囲気中260℃
で不融化した後、不活性ガス雰囲気中2000℃で焼
成炭化したものは引張り強度15.6Ton/cm2、弾性
率2400Ton/cm2であつた。
Example 1 Solvent extracted oil (boiling point
400℃ or higher, sulfur content 0.5% by weight) to 410℃, 16
After heat treatment for an hour, the insoluble substances are allowed to settle while being heated to 360°C, and the insoluble substances are separated and removed using a decanting method.The substances from which the insoluble substances have been removed are then vacuum distilled at a temperature below 400°C. The low boiling point fraction was separated and removed to obtain pitch. The quinoline-insoluble content of this pitch was 15.4% by weight, the toluene-insoluble content was 73.2% by weight, and the n-heptane soluble content was 1.2% by weight.
When this pitch was melt-spun using a spinning nozzle with a nozzle hole of 0.5 mmφ at a spinning temperature of 364°C, the pitch fiber diameter was 20 μm for 10 minutes without a single yarn breakage. This pitch fiber is heated at 260℃ in an air atmosphere.
After being made infusible by heating, the material was fired and carbonized at 2000° C. in an inert gas atmosphere to have a tensile strength of 15.6Ton/cm 2 and an elastic modulus of 2400Ton/cm 2 .

実施例 2 接触分解工程より副生する残油を蒸留して沸点
400℃以下の留分を除去し、沸点400℃以上の重質
残油を得た。この重質残油の硫黄含有量は1.27重
量%である。この沸点400℃以上の重質残油を410
℃、20時間加熱処理した後360℃に加熱しつつ静
置し不溶解性物質を沈降せしめ傾斜法によつて不
溶解性物質を分離除去し次いで不溶解性物質を除
去した物質を真空蒸留し400℃以下の低沸点留分
を分離除去してピツチを得た。このピツチのキノ
リン不溶分は16.5重量%、トルエン不溶分は77.4
重量%、n−ヘプタン可溶分は1.2重量%であつ
た。本ピツチを紡糸温度365℃でノズル孔径0.5mm
φの紡糸ノズルを用いて溶融紡糸したところ、ピ
ツチ繊維直径20μにおいて10分間に1回の糸切れ
も生じなかつた。このピツチ繊維を空気雰囲気中
260℃で不融化した後、不活性ガス雰囲気中2000
℃焼成炭化したものは引張り強度16.9Ton/cm2
弾性率4100Ton/cm2であつた。
Example 2 Distilling the residual oil by-produced from the catalytic cracking process to reduce the boiling point
The fraction below 400°C was removed to obtain a heavy residual oil with a boiling point of 400°C or above. The sulfur content of this heavy residual oil is 1.27% by weight. This heavy residual oil with a boiling point of 400℃ or higher is
After heat treatment for 20 hours at 360°C, the insoluble substances were allowed to settle while being heated to 360°C, and the insoluble substances were separated and removed using a decanting method.Then, the substances from which the insoluble substances had been removed were vacuum distilled. Pitch was obtained by separating and removing the low boiling point fraction below 400°C. The quinoline insoluble content of this pitch is 16.5% by weight, and the toluene insoluble content is 77.4%.
The n-heptane soluble content was 1.2% by weight. This pitch is spun at a spinning temperature of 365℃ and a nozzle hole diameter of 0.5mm.
When melt spinning was carried out using a spinning nozzle with a diameter of φ, no yarn breakage occurred even once in 10 minutes when the pitch fiber diameter was 20 μm. This pitch fiber is placed in the air atmosphere.
After infusibility at 260℃, 2000℃ in an inert gas atmosphere
The tensile strength of the carbonized one by firing at ℃ is 16.9Ton/cm 2 ,
The elastic modulus was 4100Ton/ cm2 .

比較例 1 実施例2に用いたものと同一の接触分解の残油
で沸点400℃以上の重質残油をN2ガスを吹き込み
ながら410℃、20時間加熱処理した後真空蒸留に
よつて400℃以下の低沸点留分を分離除去してピ
ツチを得た。このピツチのキノリン不溶分29.7重
量%、トルエン不溶分62.4重量%、n−ヘプタン
可溶分1.1重量%であつた。本ピツチを紡糸温度
365℃でノズル孔径0.5mmφの紡糸ノズルを用いて
溶融紡糸したところ、ピツチ繊維直径20μにおい
て10分間に平均8回の糸切れを生じた。このピツ
チ繊維を空気雰囲気中260℃で不融化した後、不
活性ガス雰囲気中2000℃で焼成したものは引張り
強度7.8Ton/cm2、弾性率2100Ton/cm2であつた。
Comparative Example 1 The same heavy residual oil from catalytic cracking as used in Example 2, with a boiling point of 400°C or higher, was heated at 410°C for 20 hours while blowing N2 gas, and then reduced to 400°C by vacuum distillation. The low boiling point fraction below ℃ was separated and removed to obtain pitch. This pitch had a quinoline insoluble content of 29.7% by weight, a toluene insoluble content of 62.4% by weight, and an n-heptane soluble content of 1.1% by weight. Spinning temperature of this pitch
When melt spinning was carried out at 365° C. using a spinning nozzle with a nozzle hole diameter of 0.5 mmφ, thread breakage occurred an average of 8 times in 10 minutes for pitch fibers with a diameter of 20 μm. This pitch fiber was made infusible at 260° C. in an air atmosphere and then fired at 2000° C. in an inert gas atmosphere, and had a tensile strength of 7.8 Ton/cm 2 and an elastic modulus of 2100 Ton/cm 2 .

比較例 2 実施例2に用いたものと同一の接触分解の残油
で沸点400℃以上の重質残油をN2ガスを吹き込み
ながら410℃、5時間加熱処理した後真空蒸留に
よつて400℃以下の低沸点留分を分離除去してピ
ツチを得た。このピツチのキノリン不溶分は5.6
重量%、トルエン不溶分は45.7重量%、n−ヘプ
タン可溶分は2.0重量%であつた。本ピツチを紡
糸温度363℃でノズル孔径0.5mmφの紡糸ノズルを
用いて溶融紡糸したところ、ピツチ繊維直径20μ
において10分間に1回の糸切れも生じなかつた。
このピツチ繊維を空気雰囲気中260℃で不融化し
た後、不活性ガス雰囲気中で2000℃で焼成したも
のは引張り強度6.6Ton/cm2、弾性率410Ton/cm2
であつた。
Comparative Example 2 The same heavy residual oil from catalytic cracking used in Example 2 with a boiling point of 400°C or above was heated at 410°C for 5 hours while blowing N2 gas, and then reduced to 400°C by vacuum distillation. The low boiling point fraction below ℃ was separated and removed to obtain pitch. The quinoline insoluble content of this pitch is 5.6
The toluene-insoluble content was 45.7% by weight, and the n-heptane soluble content was 2.0% by weight. When this pitch was melt-spun using a spinning nozzle with a nozzle hole diameter of 0.5 mmφ at a spinning temperature of 363℃, the pitch fiber diameter was 20μ.
The yarn did not break even once in 10 minutes.
This pitch fiber was made infusible at 260°C in an air atmosphere and then fired at 2000°C in an inert gas atmosphere, resulting in a tensile strength of 6.6Ton/cm 2 and an elastic modulus of 410Ton/cm 2 .
It was hot.

比較例 3 接触分解工程より副生する残油を蒸留して沸点
400℃以上の重質残油を得た。この重質残油を得
た。この重質残油の硫黄含有量は2.7重量%であ
つた。この重質残油を410℃で20時間加熱処理し
た後、360℃に加熱しつつ静置して不溶解性物質
を沈降せしめ傾斜法にによつて不溶解性物質を分
離除去し次いで不溶解性物質を除去したものを真
空蒸留して400℃以下の低沸点留分を分離除去し
てピツチを得た。そのピツチのキノリン不溶分は
22.5重量%、トルエン不溶分は68.7重量%、n−
ヘプタン可溶分は1.2重量%であつた。このピツ
チを紡糸温度365℃でノズル孔径0.5mmφの紡糸ノ
ズルを用いて溶融紡糸したところ、ピツチ繊維直
径20μにおいて10分間に平均6回の糸切れを生じ
た。このピツチ繊維を空気雰囲気中260℃で不融
化した後不活性ガス雰囲気中で2000℃で焼成した
ものは引張り強度11.0Ton/cm2、弾性率
1790Ton/cm2であつた。
Comparative Example 3 Distilling the residual oil by-product from the catalytic cracking process to reduce the boiling point
A heavy residual oil with a temperature of over 400℃ was obtained. This heavy residual oil was obtained. The sulfur content of this heavy residual oil was 2.7% by weight. This heavy residual oil was heat-treated at 410°C for 20 hours, then heated to 360°C and allowed to settle, allowing insoluble substances to settle out. After removing the organic substances, vacuum distillation was performed to separate and remove the low boiling point fraction below 400°C to obtain pitch. The quinoline-insoluble content of the pitch is
22.5% by weight, toluene insoluble content 68.7% by weight, n-
The heptane soluble content was 1.2% by weight. When this pitch was melt-spun at a spinning temperature of 365° C. using a spinning nozzle with a nozzle hole diameter of 0.5 mm, fiber breakage occurred an average of 6 times in 10 minutes at pitch fiber diameter of 20 μm. This pitch fiber was made infusible at 260°C in an air atmosphere and then fired at 2000°C in an inert gas atmosphere, resulting in a tensile strength of 11.0Ton/cm 2 and an elastic modulus.
It was 1790Ton/ cm2 .

Claims (1)

【特許請求の範囲】 1 沸点400℃(常圧換算)以上で硫黄含有量1.5
重量%以下の石油系重質残油を加熱処理した後、
温度380℃以下で加熱しつつ不溶解性物質を分離
除去し、次いで真空蒸留して沸点400℃(常圧換
算)以下の留分を除去することから成り、キノリ
ン不溶分7〜18重量%、トルエン不溶分70〜85重
量%の性状を有するピツチの製造法。 2 特許請求の範囲1において、沸点400℃以上
で硫黄含有量1.5重量%以下の石油系重質残油を
常圧下でガス吹込みを行わず加熱によつて生成す
る低沸点留分が系外に出ることを抑制しつつ温度
380〜415℃、加熱時間12〜30時間で加熱処理する
ことを特徴とするピツチの製造法。 3 特許請求の範囲1において、加熱処理物を温
度380℃以下で加熱しつつ重力あるいは遠心力の
作用によつて不溶解性物質を分離し除去を行なう
ことを特徴とするピツチの製造法。
[Claims] 1. Sulfur content 1.5 at a boiling point of 400°C (converted to normal pressure) or higher
After heat treatment of petroleum heavy residual oil of less than % by weight,
It consists of separating and removing insoluble substances while heating at a temperature of 380°C or less, and then vacuum distilling to remove a fraction with a boiling point of 400°C or less (normal pressure equivalent). A method for producing pitchchi having a toluene insoluble content of 70 to 85% by weight. 2 In claim 1, a low boiling point fraction produced by heating petroleum heavy residual oil with a boiling point of 400°C or more and a sulfur content of 1.5% by weight or less under normal pressure without blowing gas is removed from the system. temperature while suppressing
A method for producing pitutchi characterized by heat treatment at 380 to 415°C for a heating time of 12 to 30 hours. 3. The method for producing pituti according to claim 1, characterized in that insoluble substances are separated and removed by the action of gravity or centrifugal force while heating the heat-treated product at a temperature of 380° C. or lower.
JP2674082A 1982-02-23 1982-02-23 Preparation of pitch Granted JPS58145782A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2674082A JPS58145782A (en) 1982-02-23 1982-02-23 Preparation of pitch
US06/468,910 US4597853A (en) 1982-02-23 1983-02-23 Pitch as a raw material for making carbon fibers and process for producing the same
DE8383101766T DE3363347D1 (en) 1982-02-23 1983-02-23 Pitch as a raw material for making carbon fibers and process for producing the same
EP83101766A EP0087749B1 (en) 1982-02-23 1983-02-23 Pitch as a raw material for making carbon fibers and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2674082A JPS58145782A (en) 1982-02-23 1982-02-23 Preparation of pitch

Publications (2)

Publication Number Publication Date
JPS58145782A JPS58145782A (en) 1983-08-30
JPS6218593B2 true JPS6218593B2 (en) 1987-04-23

Family

ID=12201692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2674082A Granted JPS58145782A (en) 1982-02-23 1982-02-23 Preparation of pitch

Country Status (1)

Country Link
JP (1) JPS58145782A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5982417A (en) * 1982-11-04 1984-05-12 Mitsubishi Oil Co Ltd Pitch for raw material of carbon fiber and its preparation
FR2801297B1 (en) * 1999-11-19 2002-02-01 Centre Nat Rech Scient ACTIVE CARBONS AND THEIR PROCESS FOR OBTAINING A PARTIALLY MESOPHASE AND PARTIALLY MESOGENIC PIT

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281321A (en) * 1975-12-09 1977-07-07 Koa Oil Co Ltd Method of manufacturing binder pitch from petroleum heavy hydrocarbons

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5281321A (en) * 1975-12-09 1977-07-07 Koa Oil Co Ltd Method of manufacturing binder pitch from petroleum heavy hydrocarbons

Also Published As

Publication number Publication date
JPS58145782A (en) 1983-08-30

Similar Documents

Publication Publication Date Title
JPH048472B2 (en)
US4597853A (en) Pitch as a raw material for making carbon fibers and process for producing the same
JPH0133568B2 (en)
EP0124062B1 (en) A method for the preparation of pitches for spinning carbon fibers
US5968435A (en) Process for manufacturing pitch-type carbon fiber
JPS6187790A (en) Production of precursor pitch for carbon fiber
JPS6218593B2 (en)
JPH0532494B2 (en)
JPS58113292A (en) Preparation of raw material pitch for production of carbon product
JPS60202189A (en) Pitch for carbonaceous material and its preparation
JPH0320432B2 (en)
JPS6257678B2 (en)
US5540905A (en) Optically anisotropic pitch for manufacturing high compressive strength carbon fibers and method of manufacturing high compressive strength carbon fibers
JPH01247487A (en) Production of mesophase pitch
JPH054999B2 (en)
JPH0455237B2 (en)
EP0378187A2 (en) Pitch for carbon fibers, process for production of said pitch, and process for production of carbon fibers using said pitch
JPH0321589B2 (en)
JPH0324516B2 (en)
JP2520099B2 (en) Carbon fiber pitch manufacturing method
JPH0424217A (en) Production of precursor pitch for general purpose carbon fiber
JPH03227396A (en) Production of optically anisotropic pitch
JPS6254789A (en) Production of precursor pitch for carbon fiber
JPH0367123B2 (en)
JPS59136384A (en) Preparation of pitch for producing carbon fiber