JPS6257678B2 - - Google Patents

Info

Publication number
JPS6257678B2
JPS6257678B2 JP57192384A JP19238482A JPS6257678B2 JP S6257678 B2 JPS6257678 B2 JP S6257678B2 JP 57192384 A JP57192384 A JP 57192384A JP 19238482 A JP19238482 A JP 19238482A JP S6257678 B2 JPS6257678 B2 JP S6257678B2
Authority
JP
Japan
Prior art keywords
weight
pitch
less
temperature
boiling point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57192384A
Other languages
Japanese (ja)
Other versions
JPS5982417A (en
Inventor
Kunihiko Morya
Kazuhito Tate
Goro Muroga
Kazuhiro Yanagida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP19238482A priority Critical patent/JPS5982417A/en
Priority to EP83101766A priority patent/EP0087749B1/en
Priority to DE8383101766T priority patent/DE3363347D1/en
Priority to US06/468,910 priority patent/US4597853A/en
Publication of JPS5982417A publication Critical patent/JPS5982417A/en
Publication of JPS6257678B2 publication Critical patent/JPS6257678B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 本発明は石油系重質残油を用いた炭素繊維の原
料ピツチおよびピツチを製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to carbon fiber raw material pitch using petroleum-based heavy residual oil and a method for producing pitch.

現在ピツチ類を原料として強度ならびに弾性率
の優れた炭素繊維を製造するには(1)等方性炭素よ
りなる炭素繊維を2500℃以上の高温条件下で緊張
延伸する。(2)非等方性ピツチを原料とする。とい
う2方法に大別される。
Currently, in order to produce carbon fibers with excellent strength and elastic modulus using pitches as raw materials, (1) carbon fibers made of isotropic carbon are stretched under high temperature conditions of 2500°C or higher. (2) Use anisotropic pitch as raw material. It is roughly divided into two methods.

(2)の方法の代表的なものはメソフエーズを多量
に含有するピツチを原料として炭素繊維を製造す
るものである。メソフエーズを多量に含有するピ
ツチを製造する方法としては特公昭55−37611に
示されるような前駆原料(ピツチを製造するため
の原料となる物質)に不活性ガス等を吹き込みな
がら加熱処理してメソフエーズを生成せしめる方
法が開示されている。
A typical method (2) is to produce carbon fibers using pitch containing a large amount of mesophase as a raw material. A method for producing pitches containing a large amount of mesophase is as shown in Japanese Patent Publication No. 55-37611, in which precursor raw materials (substances used as raw materials for producing pitches) are heated while being blown with an inert gas, etc. to produce mesophases. A method for generating is disclosed.

また特開昭57−88016において前駆原料を加熱
処理した後、重力沈降等の方法によつてメソフエ
ーズを濃縮してメソフエーズ含有ピツチを得る方
法が開示されている。また特開昭56−57881にお
いては溶剤を用いた抽出操作により全駆原料であ
るピツチよりメソフエーズを多量に含有する成分
を分取する方法が開示されている。但しこの場合
も「炭素質前駆材料ピツチは従来法(USP−
4005183)に説明されているような熱的方法によ
つて、中間相が広域を占めるピツチを形成し得る
前駆材料ピツチでなければならない」としてい
る。
Further, JP-A-57-88016 discloses a method of heating a precursor raw material and then concentrating mesophase by a method such as gravity sedimentation to obtain mesophase-containing pitch. Further, JP-A-56-57881 discloses a method for separating a component containing a large amount of mesophase from pitch, which is a complete raw material, by an extraction operation using a solvent. However, in this case as well, "the carbonaceous precursor material pitch is the conventional method (USP-
4005183), the precursor material pitch must be capable of forming an extensive pitch of the mesophase."

いずれにしてもこれらの方法においてピツチ製
造プロセスの中に加熱処理操作が含まれている。
一般的には前駆原料として化学的に純粋な化合物
を用いる例は少く、大部分石油系あるいは石炭系
の重質油を前駆原料としている。これらの石油系
あるいは石炭系の重質油は通常微量ではあつても
若干の夾雑物を含有しており、さらにこれを加熱
処理した場合脱水素反応が進行し、カーボンに近
く、加熱しても溶融が困難な物質が生成して来
る。この点に関しては前記特公昭55−37611にお
いて開示されているように加熱処理の温度をなる
べく低くし、加熱処理時間を長くすることが一般
的に行われているが、それでも若干量の溶融が困
難な物質の生成は避け得ない問題である。
In any case, these methods include a heat treatment operation in the pitch manufacturing process.
In general, there are few cases in which chemically pure compounds are used as precursor raw materials, and in most cases petroleum-based or coal-based heavy oils are used as precursor raw materials. These petroleum-based or coal-based heavy oils usually contain some impurities, even if only in trace amounts, and when they are heated, a dehydrogenation reaction proceeds, making them similar to carbon, and even when heated. Substances that are difficult to melt are produced. Regarding this point, as disclosed in the above-mentioned Japanese Patent Publication No. 55-37611, it is common practice to lower the heat treatment temperature as much as possible and lengthen the heat treatment time, but it is still difficult to melt a certain amount. The generation of such substances is an unavoidable problem.

このような溶融困難な物質が存在しているピツ
チを用いて炭素繊維を製造するとした場合、まず
ピツチを紡糸する際に糸切れや紡糸ノズル孔の閉
塞といつた問題を引き起す原因となる。勿論この
ような夾雑物を紡糸前に原料ピツチよりろ過等の
手段で除去する事は可能であるが、その量が多い
場合は原料ピツチの粘度が高いことによるろ過の
困難さと同時にろ過器の清掃を頻繁に行うことが
必要となり非常な手間を要し工業的に見て経済性
が悪いものとなる。また一方成形したピツチを炭
素化する場合ピツチの溶融による変形を防止する
ため不融化を行うことが通常行われている。特に
炭素繊維の場合紡糸したピツチ繊維を空気等の酸
化性雰囲気中で酸化不融化することが多い。この
際不融化が不充分であると繊維同志の融着が起つ
たり繊維の縮みを生じ、このような不融化が不充
分の繊維を炭化焼成しても強度や弾性率の優れた
炭素繊維にはならない。
If carbon fibers are produced using pitch containing such difficult-to-melt substances, problems such as yarn breakage and blockage of the spinning nozzle holes may occur during spinning of the pitch. Of course, it is possible to remove such impurities from the raw material pitch before spinning by means such as filtration, but if the amount is large, it may be difficult to filter due to the high viscosity of the raw material pitch, and it may be necessary to clean the filter. It is necessary to carry out this process frequently, which requires a lot of effort and is uneconomical from an industrial point of view. On the other hand, when a molded pitch is carbonized, it is customary to make it infusible to prevent the pitch from deforming due to melting. Particularly in the case of carbon fibers, spun pitch fibers are often oxidized and rendered infusible in an oxidizing atmosphere such as air. At this time, if the infusibility is insufficient, fibers may fuse together or shrink, and even if such infusible fibers are carbonized and fired, carbon fibers with excellent strength and elastic modulus will not be produced. It won't be.

我々はこの点に関し鋭意研究の結果従来法と異
つた方法により加工性、特に紡糸性に優れ不融化
の際に融着を起し難いピツチを経済的に製造でき
ることを見出したものである。
As a result of intensive research on this point, we have discovered that it is possible to economically produce pitches that have excellent processability, particularly spinnability, and are less prone to fusion during infusibility by a method different from conventional methods.

本発明の詳細は次のとおりである。すなわち沸
点410℃以上、硫黄含有量1.5重量%以下の石油系
重質残油を加圧することなく温度420〜450℃、加
熱時間1〜10時間、加熱処理油の収率80重量%以
上になる条件下で加熱処理した後、温度350℃以
下好ましくは温度200〜350℃で加熱しつつ重力あ
るいは遠心力の作用を利用した分離手段によりこ
の温度範囲において加熱処理油中の不溶解性物質
を分離除去する。
The details of the invention are as follows. In other words, the yield of heat-treated oil becomes 80% by weight or more at a temperature of 420 to 450°C and a heating time of 1 to 10 hours without pressurizing heavy petroleum residual oil with a boiling point of 410°C or higher and a sulfur content of 1.5% by weight or less. After heat treatment under the following conditions, insoluble substances in the heat-treated oil are separated in this temperature range by heating at a temperature of 350°C or lower, preferably 200 to 350°C, and using separation means that utilizes the action of gravity or centrifugal force. Remove.

次に不溶解性物質を分離除去した物質を圧力
1.0Torr以下好ましくは0.5Torr以下、系内の液温
370〜390℃の範囲の条件で真空蒸留することによ
り低沸点の物質を除去することによつてn−ヘプ
タン可溶分1.0重量%以下、キノリン不溶分7〜
18重量%、トルエン不溶分75〜90重量%性状を有
するピツチを製造するものである。
Next, the material from which insoluble substances have been separated is removed under pressure.
1.0Torr or less, preferably 0.5Torr or less, liquid temperature in the system
By removing low boiling point substances by vacuum distillation under conditions in the range of 370 to 390°C, the n-heptane soluble content is 1.0% by weight or less, and the quinoline insoluble content is 7 to 7% by weight.
18% by weight and a toluene insoluble content of 75-90% by weight.

前駆原料(ピツチを製造するための原料となる
物質)である石油系重質残油としては原油の常圧
蒸留残油、水素化脱硫残油、水素化分解残油、熱
分解残油、接触分解残油、潤滑油製造の際に副生
する溶剤抽出油等を起源とするものでよいが沸点
は410℃以上、硫黄含有量1.5重量%以下である事
が必要である。さもないと常圧下において所用の
加熱が困難になつたり、製造したピツチの性状が
悪いものとなる。特にピツチ中に含有される硫黄
分は高強度、高弾性率炭素繊維の製造に際し好ま
しくない物質であるが、ピツチを製造した後硫黄
分を除去する事は工業的にみて極めて困難であり
不経済であるので、前駆原料の硫黄含有量を1.5
重量%以下に制限することにより製造されるピツ
チの硫黄含有量をある限度以下にすることが有効
であり且つ経済的である。ここで硫黄含有量は
JIS K−2541に規定された方法で測定する。加熱
処理は加圧することなく温度420〜450℃、加熱時
間1〜10時間の範囲の条件で加熱を行うが、この
際ガスの吹き込みや減圧等の操作は行わず、加熱
処理容器の頂部を、加熱処理温度が所定の温度に
保持可能なかぎり冷却し、加熱処理中に生成する
軽質留分が系外に出ることを避けるようにして加
熱装置内に残留する加熱処理油の収率が80重量%
以上好ましくは90重量%以上になるように加熱処
理する。この場合収率を高めるために加圧状態で
加熱処理すると加熱処理によつて進行する熱改質
反応が抑制されてしまうので好ましくない。この
ような加熱処理を行つた場合加熱処理後の物質を
研磨し反射偏光顕微鏡で観察しても実質的に光学
的異方性相の発現を認めない。なお加熱処理後系
内に残留する物質における光学異方性発現の有無
について判定は以下の方法で行う。加熱処理物を
直径約3mm程度に粉砕した後、縮分してサンプル
を採取し、この加熱処理物サンプルを不飽和ポリ
エステル等の樹脂中に埋め込んで硬化させ、これ
を研磨した後反射型偏光顕微鏡を用いて直交ニコ
ル下、倍率250倍以上で観際し光学異方性の発現
の有無を判定する。
Petroleum-based heavy residual oils that are precursor raw materials (substances that serve as raw materials for manufacturing pitucci) include atmospheric distillation residual oil of crude oil, hydrodesulfurization residual oil, hydrocracked residual oil, pyrolysis residual oil, and contact oil. It may originate from cracked residual oil, solvent extracted oil by-produced during lubricant production, etc., but it must have a boiling point of 410°C or higher and a sulfur content of 1.5% by weight or less. Otherwise, it will be difficult to perform the necessary heating under normal pressure, and the properties of the produced pitches will be poor. In particular, the sulfur content contained in pitch is an undesirable substance when producing high-strength, high-modulus carbon fibers, but it is extremely difficult and uneconomical to remove the sulfur content after producing pitch. Therefore, the sulfur content of the precursor material is 1.5
It is effective and economical to keep the sulfur content of the pitch produced below a certain limit by limiting the sulfur content to below a certain weight percent. Here the sulfur content is
Measure according to the method specified in JIS K-2541. The heat treatment is performed without applying pressure at a temperature of 420 to 450 °C and a heating time of 1 to 10 hours. At this time, operations such as blowing gas or reducing pressure are not performed, and the top of the heat treatment container is heated. The yield of heat-treated oil remaining in the heating device is 80% by weight by cooling as long as the heat treatment temperature can be maintained at a specified temperature and by avoiding light fractions generated during heat treatment from exiting the system. %
The heat treatment is preferably performed so that the amount becomes 90% by weight or more. In this case, heat treatment under pressure in order to increase the yield is not preferable because the thermal reforming reaction that progresses due to the heat treatment is suppressed. When such a heat treatment is performed, substantially no optically anisotropic phase is observed even when the material after the heat treatment is polished and observed under a reflective polarizing microscope. The following method is used to determine whether optical anisotropy occurs in the substance remaining in the system after heat treatment. After pulverizing the heat-treated product to a diameter of approximately 3 mm, it is reduced and a sample is collected.The sample of the heat-treated product is embedded in a resin such as unsaturated polyester and cured, and after polishing, a reflective polarizing microscope is used. Observe at a magnification of 250 times or more under crossed Nicols using a microscope to determine the presence or absence of optical anisotropy.

軽質留分を系外に出してしまうと後で行う不溶
解性物質の分離が困難になるし、光学的異方性相
を発現させてしまうとピツチの必要な成分が除去
されてしまうことになる。
If the light fraction is taken out of the system, it will be difficult to separate insoluble substances later, and if an optically anisotropic phase is developed, necessary components of the pitch will be removed. Become.

次に加熱処理した物質(加熱処理油)を温度
350℃以下好ましくは200〜350℃の範囲に加熱し
つつ重力あるいは遠心力の作用を利用した分離手
段によりこの温度範囲において不溶解性の物質を
分離除去する。この場会加熱温度350℃以下とし
たのは加熱により光学的異方性物質の生成をきた
さない為である。一方200℃以下では加熱処理油
の粘度が高くなるので不溶解性物質の分離除去が
困難になる。勿論これ以下の温度で不溶解性物質
の分離除去は絶対不可能ではないが、経済的でな
く工業的見地から好ましくない。いずれにしても
この段階で不溶解性物質を除去することは加熱処
理油の粘度が最終的に得られるピツチの粘度より
はるかに低いことから極めて容易に行うことが可
能である。この不溶解性物質を分離除去すること
により紡糸時に溶融しない物質を除去する結果と
なり、糸切れは著しく減少し、紡糸が安定して行
えるようになる。次に不溶解性物質を分離除去し
た物質を真空蒸留し低沸点留分を除去する。この
場合好ましくは沸点750℃(常圧換算)以下の留
分を除去する。すなわち少なくとも沸点750℃
(常圧換算)以上の留分は残留するように真空蒸
留する。この際回分式真空蒸留装置を用いる場合
は圧力1.0Torr以下好ましくは0.5Torr以下、系内
底部液体温度370〜390℃の範囲の条件で真空蒸留
し、連続式真空蒸留装置を用いる場合は圧力
1.0Torr以下好ましくは0.5Torr以下、フラツシユ
ゾーンのおよび蒸留塔底部の液体温度370〜390℃
の範囲の条件で真空蒸留する。この圧力および液
体温度条件は極めて限定された狭い範囲に制限さ
れており、この範囲からはずれた場合はは好まし
い性状を有するピツチを得ることは困難である。
すなわち圧力1.0Torr以上であり液体温度が370℃
以下の場合はn−ヘプタン可溶分が1.0重量%以
下になり難くまたトルエン不溶分が本発明の規定
の範囲80重量%以下になつてしまう。また液体温
度が390℃以上の場合はキノリン不溶分の量が増
加し本発明の範囲18重量%を越えてしまうことに
なると同時にまたこの工程で不溶解性物質の生成
が起る。
Next, heat-treated material (heat-treated oil) is heated to
While heating to a temperature below 350°C, preferably in the range of 200 to 350°C, substances that are insoluble in this temperature range are separated and removed using separation means that utilizes gravity or centrifugal force. The reason why the heating temperature was set at 350° C. or lower in this case is to prevent the formation of optically anisotropic substances due to heating. On the other hand, below 200°C, the viscosity of the heat-treated oil increases, making it difficult to separate and remove insoluble substances. Of course, it is not absolutely impossible to separate and remove insoluble substances at temperatures below this temperature, but it is not economical and undesirable from an industrial standpoint. In any case, it is very easy to remove insoluble substances at this stage because the viscosity of the heat-treated oil is much lower than the viscosity of the final pitch. Separating and removing these insoluble substances results in the removal of substances that do not melt during spinning, significantly reducing yarn breakage and making it possible to perform spinning stably. Next, the material from which insoluble substances have been separated is vacuum distilled to remove low-boiling fractions. In this case, preferably a fraction having a boiling point of 750°C (converted to normal pressure) or lower is removed. i.e. boiling point of at least 750℃
The fraction above (converted to normal pressure) is vacuum distilled so that it remains. At this time, when using a batch type vacuum distillation apparatus, vacuum distillation is performed under conditions of a pressure of 1.0 Torr or less, preferably 0.5 Torr or less, and a bottom liquid temperature of 370 to 390°C, and when using a continuous type vacuum distillation apparatus, the pressure is
1.0 Torr or less, preferably 0.5 Torr or less, liquid temperature in the flash zone and at the bottom of the distillation column 370-390℃
Vacuum distillation is carried out under conditions within the range of . These pressure and liquid temperature conditions are limited to extremely narrow ranges, and if they deviate from these ranges, it is difficult to obtain pitches with desirable properties.
In other words, the pressure is 1.0 Torr or more and the liquid temperature is 370℃.
In the following cases, it is difficult for the n-heptane soluble content to fall below 1.0% by weight, and the toluene insoluble content falls below the specified range of the present invention, 80% by weight. Furthermore, if the liquid temperature is 390° C. or higher, the amount of quinoline insolubles increases and exceeds the range of 18% by weight of the present invention, and at the same time, insoluble substances also occur in this step.

このように極めて狭い条件の範囲内においてで
はあるが各工程の条件を前駆原料の性状等を考慮
しつつ設定し、n−ヘプタン可溶分1.0重量%以
下、キノリン不溶分7〜18重量%、トルエン不溶
分75〜90重量%、好ましくは80〜90重量%の範囲
の性状を有するピツチを製造する。
Although within the extremely narrow range of conditions described above, the conditions for each step were set while taking into consideration the properties of the precursor raw materials, and the n-heptane soluble content was 1.0% by weight or less, the quinoline insoluble content was 7 to 18% by weight, Pitch is produced having a toluene insoluble content of 75 to 90% by weight, preferably 80 to 90% by weight.

n−ヘプタン可溶分が1.0重量%以上の場合は
不融化が良好でなくなる。これはn−ヘプタンに
可溶な成分は主として分子量の低い飽和炭化水素
が主体であり、この成分は他の成分に比較して化
学的に安定であるので不融化のような低温におけ
る酸化反応性にとぼしく、そのためこのような成
分の多いピツチは不融化時に融着を起し易くな
る。したがつてn−ヘプタンに可溶な成分はでき
るだけ除去することが好ましく、本発明において
はこの量が1.0重量%以下であることが良いこと
を見出したものである。
If the n-heptane soluble content is 1.0% by weight or more, infusibility will not be good. This is because the components soluble in n-heptane are mainly saturated hydrocarbons with low molecular weights, and this component is chemically stable compared to other components, so it is difficult to oxidize at low temperatures such as infusibility. Therefore, pitches containing many such components are more likely to cause fusion during infusibility. Therefore, it is preferable to remove components soluble in n-heptane as much as possible, and it has been found in the present invention that this amount is preferably 1.0% by weight or less.

また一方キノリン不溶分とトルエン不溶分の量
については次のようなことが言える。従来炭素繊
維、特に高強度高弾性率炭素繊維の場合原料ピツ
チとして偏光顕微鏡による光学異方性成分の量等
による規定がなされていることが多いが、光学異
方性成分の量が多いといつてもその質が問題であ
り、光学異方性組識が高度に発達したものはコー
クス等のように形状をそれほど問題としない場合
には問題とならないが炭素繊維のようにピツチを
繊維化するといつた繊細な加工を要する場合は紡
糸困難という問題を生ずる。一方特開昭57−
100186におけるように「溶融状態でメソフエーズ
は実質的に形成しないで、全体的に均質でかつ光
学的に等方性の単一相を形成し、外力を加えると
その方向への配向性を示す」という潜在的異方性
ピツチも開示されており、単に偏光顕微鏡で認知
される光学異方性成分の量だけでピツチの性質を
律することは困難であることが明らかになつて来
ている。この点に関し種々のピツチを試作し紡糸
性、融着の問題、でき上がつた炭素繊維の性状と
の関連について検討した結果良好なピツチの性質
として前記のようにn−ヘプタン可溶分、キノリ
ン不溶分、トルエン不溶分の量によつて定量的に
規定しうることを見出したものである。n−ヘプ
タン可溶分1.0重量%以下、キノリン不溶分7〜
18重量%、トルエン不溶分75〜90重量%という性
状は通常の方法によつて簡単に得られるものでは
なく本発明のような各工程とその限定された条件
下において実現しうるものであり、このような各
成分の限定範囲内の性状を有するピツチにおいて
紡糸性に優れ、融着を起し難く、高強度高弾性率
炭素繊維の製造が可能となるものである。
On the other hand, the following can be said about the amounts of quinoline-insoluble matter and toluene-insoluble matter. Conventionally, in the case of carbon fibers, especially high-strength, high-modulus carbon fibers, the raw material pitch is often specified by the amount of optically anisotropic components measured using a polarizing microscope, but if the amount of optically anisotropic components is large, However, the quality is a problem, and if the optical anisotropic structure is highly developed, such as coke, where the shape is not a big issue, there is no problem, but if the pitch is made into fibers, such as carbon fiber, If delicate processing is required, the problem arises that spinning is difficult. On the other hand, JP-A-57-
100186, "In the molten state, mesophases are not substantially formed, but a single phase that is homogeneous and optically isotropic is formed as a whole, and when an external force is applied, it shows orientation in that direction." A potential anisotropic pitch has also been disclosed, and it has become clear that it is difficult to control the properties of the pitch simply by the amount of optically anisotropic component recognized by a polarizing microscope. Regarding this point, we made various pitches and examined the relationship between spinnability, fusion problems, and the properties of the finished carbon fibers. As a result, we found that good pitch properties include n-heptane soluble content and quinoline. It has been found that it can be quantitatively defined by the amount of insoluble matter and toluene insoluble matter. n-heptane soluble content 1.0% by weight or less, quinoline insoluble content 7~
The properties of 18% by weight and 75-90% by weight of toluene insoluble matter cannot be easily obtained by normal methods, but can be achieved through each process and its limited conditions as in the present invention. In pitches having properties within such limited ranges of each component, it is possible to produce carbon fibers that have excellent spinnability, are resistant to fusion, and have high strength and high elastic modulus.

ここでn−ヘプタン可溶分の測定は粉砕したピ
ツチ5gを平均孔径1μの円筒フイルターに入
れ、ソツクスレー抽出器を用いてn−ヘプタンで
20時間熱抽出して得られた可溶性成分を溶剤を除
去した後秤量することによつて測定するものであ
る。キノリン不溶分およびトルエン不溶分はJIS
K−2425に規定された方法によつて測定される。
本発明は紡糸性に優れ不融化性の良いピツチを規
定するとともに比較的粘性の低い中間生成物にお
いて不溶解性物質を除去しその後紡糸の際に糸切
れの原因となる不溶解性物質の生成をきたさない
ようにしながら不融化が容易であり、最終的に得
られる炭素繊維の性質が高強度高弾性となりうる
ピツチの製造を可能ならしめたものである。
To measure the n-heptane soluble content, put 5 g of crushed pitch into a cylindrical filter with an average pore size of 1 μm, and extract it with n-heptane using a Soxhlet extractor.
It is measured by removing the solvent and then weighing the soluble components obtained by heat extraction for 20 hours. Quinoline insoluble content and toluene insoluble content are JIS
Measured by the method specified in K-2425.
The present invention provides a pitch with excellent spinnability and good infusibility, removes insoluble substances from an intermediate product with relatively low viscosity, and then generates insoluble substances that cause yarn breakage during spinning. This makes it possible to manufacture pitches that can be easily made infusible while avoiding the occurrence of carbon fibers, and the properties of the final carbon fibers obtained can be high strength and high elasticity.

以下実施例により本発明をさらに詳細に説明す
る。
The present invention will be explained in more detail with reference to Examples below.

実施例 1 接触分解工程より副生する残油を真空蒸留して
沸点415℃以下の留分を除去し、沸点415℃以上の
重質残油を得た。この重質残油の硫黄含有量は
1.25重量%であつた。この沸点415℃以上の重質
残油を420℃で10時間加熱処理した所加熱処理油
の収率は85.5重量%であつた。この加熱処理油を
340℃で加熱しながら静置分離を行い不溶解性物
質を沈降分離せしめ除去した。つづいて不溶解性
物質を除去した上澄液を回分式真空蒸留装置によ
り低部液体温度385℃、圧力0.2Torrで真空蒸留し
沸点720℃以下の低沸点留分を除去してピツチを
得た。このピツチのn−ヘプタン可溶分は0.5重
量%、キノリン不溶分15.6重量%、トルエン不溶
分88.5重量%であつた。
Example 1 The residual oil produced as a by-product from the catalytic cracking process was vacuum distilled to remove the fraction with a boiling point of 415°C or lower to obtain a heavy residual oil with a boiling point of 415°C or higher. The sulfur content of this heavy residual oil is
It was 1.25% by weight. This heavy residual oil with a boiling point of 415°C or higher was heat-treated at 420°C for 10 hours, and the yield of the heat-treated oil was 85.5% by weight. This heat treated oil
Static separation was performed while heating at 340°C to remove insoluble substances by sedimentation. Subsequently, the supernatant liquid from which insoluble substances had been removed was vacuum distilled using a batch vacuum distillation device at a lower liquid temperature of 385°C and a pressure of 0.2 Torr to remove the low boiling point fraction with a boiling point of 720°C or less to obtain pitch. . The n-heptane soluble content of this pitch was 0.5% by weight, the quinoline insoluble content was 15.6% by weight, and the toluene insoluble content was 88.5% by weight.

本ピツチをノズル孔径0.5mmφの紡糸ノズルを
用いて紡糸温度365℃で溶融紡糸したところ巻取
速度500m/min、繊維直径20μで10分間に1回
の糸切れも生じないで紡糸が可能であつた。
When this pitch was melt-spun at a spinning temperature of 365°C using a spinning nozzle with a nozzle hole diameter of 0.5 mmφ, it was possible to spin the yarn at a winding speed of 500 m/min and a fiber diameter of 20 μ without causing even one yarn breakage in 10 minutes. Ta.

このピツチ繊維を空気雰囲気中300℃で不融化
した後、不活性ガス雰囲気中最高到達温度2500℃
で焼成したものは引張り強度21.0Ton/cm2、弾性
率6100Ton/cm2であつた。
After making this pitch fiber infusible at 300℃ in an air atmosphere, it reached a maximum temperature of 2500℃ in an inert gas atmosphere.
The tensile strength of the fired product was 21.0Ton/cm 2 and the elastic modulus was 6100Ton/cm 2 .

実施例 2 潤滑油精製の際、副生する溶剤抽出油で沸点
430℃以上硫黄含有量0.5重量%のものを430℃で
4時間加熱処理した所、加熱処理油の収率は88.9
%であつた。この加熱処理を300℃で加熱しなが
ら遠心分離を行い不溶解性物質を沈降分離せしめ
て除去した。つづいて不溶解性物質を除去した上
澄液を回分式真空蒸留装置により底部液体温度
383℃、圧力0.3Torrで真空蒸留し沸点702℃以下
の低沸点留分を除去してピツチを得た。このピツ
チのn−ヘプタン可溶分は0.5重量%、キノリン
不溶分16.7重量%、トルエン不溶分87.8重量%で
あつた。本ピツチをノズル孔径0.5mmφの紡糸ノ
ズルを用い紡糸温度370℃で溶融紡糸したところ
巻取速度500m/min、繊維直径20μで10分間に
1回の糸切れも生じないで紡糸が可能であつた。
このピツチ繊維を空気雰囲中300℃で不融化した
後、不活性ガス雰囲気中最高到達温度2500℃で焼
成したものは引張り強度18.4Ton/cm2、弾性率
5900Ton/cm2であつた。
Example 2 The boiling point of solvent-extracted oil produced as a by-product during lubricating oil refining
When oil with a sulfur content of 0.5% by weight was heat-treated at 430°C or higher for 4 hours, the yield of heat-treated oil was 88.9.
It was %. During this heat treatment, centrifugation was performed while heating at 300°C, and insoluble substances were sedimented and removed. Next, the supernatant liquid from which insoluble substances have been removed is heated to the bottom liquid temperature using a batch vacuum distillation device.
Pitch was obtained by vacuum distillation at 383°C and a pressure of 0.3 Torr to remove the low boiling point fraction below 702°C. The n-heptane soluble content of this pitch was 0.5% by weight, the quinoline insoluble content was 16.7% by weight, and the toluene insoluble content was 87.8% by weight. When this pitch was melt-spun at a spinning temperature of 370°C using a spinning nozzle with a nozzle hole diameter of 0.5 mmφ, spinning was possible at a winding speed of 500 m/min and a fiber diameter of 20 μ without a single yarn breakage occurring in 10 minutes. .
After making this pitch fiber infusible at 300℃ in an air atmosphere and then firing it at a maximum temperature of 2500℃ in an inert gas atmosphere, it has a tensile strength of 18.4Ton/cm 2 and an elastic modulus.
It was 5900Ton/ cm2 .

比較例 1 実施例1に用いたものと同一の接触分解重質残
油(沸点415℃以上)をNガスを吹き込みながら
410℃で20時間加熱処理した所加熱処理油の収率
は76.7重量%であつた。この加熱処理油を回分式
真空蒸留装置により底部液体温度410℃、圧力
10Torrで真空蒸留した。このピツチのn−ヘプ
タン可溶分は3.5重量%、キノリン不溶分29.7重
量%、トルエン不溶分62.4重量%であつた。本ピ
ツチをノズル孔径0.5mmφの紡糸ノズルを用いた
紡糸温度365℃で溶融紡糸したところ巻取り速度
500m/min、繊維直径20μで10分間に平均8回
の糸切れを生じた。このピツチ繊維を空気雰囲気
中300℃で不融化した後不活性ガス雰囲気中最高
到達温度2500℃で焼成したものは引張り強度
7.0Ton/cm2、弾性率4100Ton/cm2であつた。
Comparative Example 1 The same catalytic cracking heavy residual oil (boiling point 415°C or higher) as used in Example 1 was heated while blowing N gas.
The yield of the heat-treated oil heated at 410°C for 20 hours was 76.7% by weight. This heat-treated oil is heated to a bottom liquid temperature of 410℃ and a pressure of 410℃ using a batch vacuum distillation device.
Vacuum distilled at 10 Torr. The n-heptane soluble content of this pitch was 3.5% by weight, the quinoline insoluble content was 29.7% by weight, and the toluene insoluble content was 62.4% by weight. When this pitch was melt-spun using a spinning nozzle with a nozzle hole diameter of 0.5 mmφ at a spinning temperature of 365°C, the winding speed was
At 500 m/min and a fiber diameter of 20 μm, thread breakage occurred an average of 8 times in 10 minutes. This pitch fiber is made infusible at 300°C in an air atmosphere and then fired at a maximum temperature of 2500°C in an inert gas atmosphere, resulting in tensile strength.
The elasticity was 7.0Ton/cm 2 and the elastic modulus was 4100Ton/cm 2 .

比較例 2 実施例1に用いたものと同一の接触分解重質残
油(沸点415℃以上)を410℃で8時間加熱処理し
た所加熱処理油の収率は89.1重量%であつた。こ
の加熱処理油を回分式真空蒸留装置により底部液
体温度400℃、圧力10Torrで真空蒸留した。この
ピツチのn−ヘプタン可溶分は4.7重量%、キノ
リン不溶分5.9重量%、トルエン不溶分49.6重量
%であつた。
Comparative Example 2 The same catalytic cracking heavy residual oil (boiling point 415°C or higher) used in Example 1 was heat-treated at 410°C for 8 hours, and the yield of the heat-treated oil was 89.1% by weight. This heat-treated oil was vacuum distilled using a batch vacuum distillation apparatus at a bottom liquid temperature of 400°C and a pressure of 10 Torr. The n-heptane soluble content of this pitch was 4.7% by weight, the quinoline insoluble content was 5.9% by weight, and the toluene insoluble content was 49.6% by weight.

本ピツチをノズル孔径0.5mmφの紡糸ノズルを
用い紡糸温度362℃で溶融紡糸したところ巻取り
速度500m/min、繊維直径20μで10分間に平均
2回の糸切れを生じた。このピツチ繊維を空気雰
囲気中300℃で不融化した後不活性ガス雰囲気中
最高到達温度2500℃で焼成したものは引張り強度
5.4Ton/cm2、弾性率500Ton/cm2であつた。
When this pitch was melt-spun at a spinning temperature of 362° C. using a spinning nozzle with a nozzle hole diameter of 0.5 mmφ, yarn breakage occurred on average twice in 10 minutes at a winding speed of 500 m/min and a fiber diameter of 20 μm. This pitch fiber is made infusible at 300°C in an air atmosphere and then fired at a maximum temperature of 2500°C in an inert gas atmosphere, resulting in tensile strength.
The elasticity was 5.4Ton/cm 2 and the elastic modulus was 500Ton/cm 2 .

Claims (1)

【特許請求の範囲】 1 沸点410℃以上で硫黄含有量1.5重量%以下の
石油系重質残油を、加圧することなく温度420〜
450℃、加熱時間1〜10時間、加熱処理油の収率
が80重量%以上である条件下で加熱処理した後、
温度350℃以下で加熱しつつ不溶解性物質を分離
除去し、次いで圧力1.0Torr以下で系内の液温370
−390℃の範囲の条件で真空蒸留して低沸点留分
を除去することから成り、n−ヘプタン可溶分
1.0重量%以下、キノリン不溶分7−18重量%、
トルエン不溶分75〜95重量%の性状を有する炭素
繊維原料ピツチの製造方法。 2 特許請求の範囲1において加熱処理油を温度
200〜350℃で重力もしくは遠心力の作用を利用
し、不溶解性物質を分離除去することを特徴とす
る炭素繊維原料ピツチの製造方法。 3 特許請求の範囲1において不溶解性物質を分
離除去した物質を回分式真空蒸留装置により圧力
1.0Torr以下、系内底部液体温度370〜390℃の条
件下で真空蒸留し、低沸点留分を除去することを
特徴とする炭素繊維原料ピツチの製造方法。 4 特許請求の範囲1において不溶解性物質を分
離除去した物質を連続式真空蒸留装置により圧力
1.0Torr以下、系内フラツシユゾーンおよび蒸留
塔底部液体温度370〜390℃の条件下で真空蒸留し
低沸点留分を除去することを特徴とする炭素繊維
原料ピツチの製造方法。
[Claims] 1. Petroleum-based heavy residual oil with a boiling point of 410°C or higher and a sulfur content of 1.5% by weight or less is heated to a temperature of 420°C or higher without pressurizing it.
After heat treatment at 450°C for 1 to 10 hours, the yield of heat-treated oil is 80% by weight or more,
Separate and remove insoluble substances while heating at a temperature of 350°C or less, then reduce the liquid temperature in the system to 370°C at a pressure of 1.0 Torr or less.
It consists of vacuum distillation under conditions in the range of -390℃ to remove low boiling point fractions, and n-heptane solubles.
1.0% by weight or less, quinoline insoluble content 7-18% by weight,
A method for producing carbon fiber raw material pitch having a toluene insoluble content of 75 to 95% by weight. 2 In claim 1, heat-treated oil is heated to a temperature
A method for producing carbon fiber raw material pitch, characterized by separating and removing insoluble substances using the action of gravity or centrifugal force at 200 to 350°C. 3 In Claim 1, the substance from which insoluble substances have been separated is subjected to pressure using a batch vacuum distillation apparatus.
A method for producing a carbon fiber raw material pit, which comprises vacuum distilling under conditions of 1.0 Torr or less and a system bottom liquid temperature of 370 to 390°C to remove a low boiling point fraction. 4 In Claim 1, the substance from which insoluble substances have been separated is subjected to pressure using a continuous vacuum distillation apparatus.
1. A method for producing carbon fiber raw material pitch, which comprises vacuum distilling under conditions of 1.0 Torr or less and a liquid temperature of 370 to 390° C. in the flash zone in the system and at the bottom of the distillation column to remove low boiling point fractions.
JP19238482A 1982-02-23 1982-11-04 Pitch for raw material of carbon fiber and its preparation Granted JPS5982417A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP19238482A JPS5982417A (en) 1982-11-04 1982-11-04 Pitch for raw material of carbon fiber and its preparation
EP83101766A EP0087749B1 (en) 1982-02-23 1983-02-23 Pitch as a raw material for making carbon fibers and process for producing the same
DE8383101766T DE3363347D1 (en) 1982-02-23 1983-02-23 Pitch as a raw material for making carbon fibers and process for producing the same
US06/468,910 US4597853A (en) 1982-02-23 1983-02-23 Pitch as a raw material for making carbon fibers and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19238482A JPS5982417A (en) 1982-11-04 1982-11-04 Pitch for raw material of carbon fiber and its preparation

Publications (2)

Publication Number Publication Date
JPS5982417A JPS5982417A (en) 1984-05-12
JPS6257678B2 true JPS6257678B2 (en) 1987-12-02

Family

ID=16290392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19238482A Granted JPS5982417A (en) 1982-02-23 1982-11-04 Pitch for raw material of carbon fiber and its preparation

Country Status (1)

Country Link
JP (1) JPS5982417A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62277491A (en) * 1986-05-26 1987-12-02 Maruzen Petrochem Co Ltd Production of meso-phase pitch
FR2801297B1 (en) * 1999-11-19 2002-02-01 Centre Nat Rech Scient ACTIVE CARBONS AND THEIR PROCESS FOR OBTAINING A PARTIALLY MESOPHASE AND PARTIALLY MESOGENIC PIT

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139179A (en) * 1981-02-21 1982-08-27 Kawasaki Steel Corp Preparation of hard pitch
JPS58145782A (en) * 1982-02-23 1983-08-30 Mitsubishi Oil Co Ltd Preparation of pitch
JPS5933385A (en) * 1982-07-19 1984-02-23 イ− アイ デユポン デ ニモア−ス エンド コムパニ− Carbon fiber direct spinning pitch derived from tar raw material in steam decomposition equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57139179A (en) * 1981-02-21 1982-08-27 Kawasaki Steel Corp Preparation of hard pitch
JPS58145782A (en) * 1982-02-23 1983-08-30 Mitsubishi Oil Co Ltd Preparation of pitch
JPS5933385A (en) * 1982-07-19 1984-02-23 イ− アイ デユポン デ ニモア−ス エンド コムパニ− Carbon fiber direct spinning pitch derived from tar raw material in steam decomposition equipment

Also Published As

Publication number Publication date
JPS5982417A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
JPH048472B2 (en)
US4597853A (en) Pitch as a raw material for making carbon fibers and process for producing the same
GB2075049A (en) Preparation of A Pitch for Carbon Artifact Manufacture
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
US4503026A (en) Spinnable precursors from petroleum pitch, fibers spun therefrom and method of preparation thereof
US4758326A (en) Method of producing precursor pitches for carbon fibers
US4502943A (en) Post-treatment of spinnable precursors from petroleum pitch
JPS58196292A (en) Preparation of carbonaceous substance in premetaphase
JPS6257678B2 (en)
JPH0718058B2 (en) Carbon fiber manufacturing method
JPS5938280A (en) Preparation of precursor pitch for carbon fiber
JP3786967B2 (en) Self-stabilizing pitch for carbon fiber production
JPH0320432B2 (en)
JPH01247487A (en) Production of mesophase pitch
JPS6218593B2 (en)
JPH0424217A (en) Production of precursor pitch for general purpose carbon fiber
JPH054999B2 (en)
JPH0321589B2 (en)
JPH03227396A (en) Production of optically anisotropic pitch
JPH01249887A (en) Production of mesophase pitch
JPH03152189A (en) Production of precursor pitch for carbon fiber
JPH0324516B2 (en)
JPS61287961A (en) Precursor pitch for carbon fiber
JPS6254789A (en) Production of precursor pitch for carbon fiber
JPH03167291A (en) Optically anisotropic pitch and its manufacture