JPH03167291A - Optically anisotropic pitch and its manufacture - Google Patents

Optically anisotropic pitch and its manufacture

Info

Publication number
JPH03167291A
JPH03167291A JP30850089A JP30850089A JPH03167291A JP H03167291 A JPH03167291 A JP H03167291A JP 30850089 A JP30850089 A JP 30850089A JP 30850089 A JP30850089 A JP 30850089A JP H03167291 A JPH03167291 A JP H03167291A
Authority
JP
Japan
Prior art keywords
pitch
optically anisotropic
anisotropic phase
phase
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30850089A
Other languages
Japanese (ja)
Inventor
Kazuyuki Murakami
一幸 村上
Tsutomu Naito
勉 内藤
Takashi Hino
日野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP30850089A priority Critical patent/JPH03167291A/en
Publication of JPH03167291A publication Critical patent/JPH03167291A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Working-Up Tar And Pitch (AREA)

Abstract

PURPOSE:To improve the stability in spinning by subjecting an asphaltene-free oily or tarry substance to two-step heat treatment under specified conditions. CONSTITUTION:An oily or tarry substance which comprises a fraction having a boiling point of 500-550 deg.C under atmospheric pressure and obtained by vacuum distillation of a heavy residual oil formed as a by-product in catalytic cracking of petroleum, which contains an n-heptanes-soluble aromatic matter and resinous material as principal components, and which does not contain an n-heptane- insoluble component comprising an asphaltene is heat-treated at 380-460 deg.C under a reduced pressure while blowing an inert gas therein until an optically anisotropic phase amounts to 5-20%. The optically anisotropic phase is then separated and removed. The obtained pitch is heat-treated at 380-460 deg.C until the optically anisotropic phase amounts to 20-70%, and the optically anisotropic phase is then separated and collected, thus giving an optically anisotropic pitch having a longitudinal relaxation time of 2,000-3,000msec as measured by the solid-state broad line <1>H-NMR and a rate of change in magnetic field orientation of 0.20 to 0.50 as measured by the pyrene-added high-temperature <13>C-NMR.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高性能炭素繊維を製造するのに適した光学的異
方性ピッチ及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optically anisotropic pitch suitable for producing high-performance carbon fibers and a method for producing the same.

更に詳しくは、本発明は紡糸安定性の優れた高性能炭素
繊維製造用に適した光学的異方性ピッチ及びその製造方
法に関する。
More specifically, the present invention relates to an optically anisotropic pitch suitable for producing high-performance carbon fibers with excellent spinning stability and a method for producing the same.

〔従来の技術〕[Conventional technology]

従来、自動車、航空機その他の各種産業分野にわたって
、軽量、高強度、高弾性率等を有する高性能素材の開発
が要望されており、か)る観点から炭素繊維が注目され
ている。
BACKGROUND ART Conventionally, there has been a demand for the development of high-performance materials having light weight, high strength, high elastic modulus, etc. in various industrial fields such as automobiles, aircraft, etc., and carbon fiber has been attracting attention from these viewpoints.

現在市販の炭素繊維は依然としてポリアクリロニトリル
を原料とするPAN系炭素繊維が主流であるが、石炭又
は石油系ピッチ類を原料とする炭素繊維も原料が安価で
、炭化工程での歩留いが高く、弾性率の高い繊維が得ら
れるなどの利点から重要視され、活発な開発研究が行な
われている.光学的に等方性のピッチから得られる炭素
繊維は強度、弾性率ともに低いが、光学的等方性ピッチ
を熱処理して得られる光学的異方性ピッチからは高性能
炭素繊維が得られる.光学的異方性ピッチの製造に関し
ては、ピッチ製造用の一般原料である重質炭化水素油、
タール,市販等方性ピッチ等を、例えば、単に加熱処理
する(特開昭49−19127号,同57−42924
号各公報)、光学的等方性ピッチを溶媒で抽出しその不
溶分を加熱処理する(特開昭54−160427号公報
等)、不活性ガスを吹込みながら加熱処理する(特開昭
58−168687号公報),部分水添した後、加熱処
理する(特開昭57−100186号,同5B−184
21号各公報)方法などが提案されている.しかし、熱
処理のみによって製造された光学的異方性ピッチは、一
般に軟化点が高く,安定紡糸が困難であるという欠点が
あり、また溶剤抽出あるいは水素化処理等の前処理をし
た後に熱処理する方法は、ある程度ピッチの特性を制御
できるものの、工程が複雑で製造コストが高いという問
題点を有する。
Currently, the mainstream carbon fibers on the market are still PAN-based carbon fibers made from polyacrylonitrile, but carbon fibers made from coal or petroleum pitches are also cheaper raw materials and have a higher yield in the carbonization process. It is regarded as important due to its advantages such as the ability to obtain fibers with high elastic modulus, and active research and development is being carried out. Carbon fibers obtained from optically isotropic pitch have low strength and elastic modulus, but high-performance carbon fibers can be obtained from optically anisotropic pitch obtained by heat-treating optically isotropic pitch. Regarding the production of optically anisotropic pitch, heavy hydrocarbon oil, which is a common raw material for pitch production,
For example, tar, commercially available isotropic pitch, etc. are simply heat treated (JP-A-49-19127, JP-A-57-42924).
JP-A-54-160427, etc.), extracting the optically isotropic pitch with a solvent and heat-treating the insoluble content (JP-A-54-160427, etc.), heat-treating while blowing an inert gas (JP-A-58-1989). -168687), heat treatment after partial hydrogenation (JP-A-57-100186, JP-A-5B-184)
21 publications) methods have been proposed. However, optically anisotropic pitch produced only by heat treatment generally has a high softening point and is difficult to stably spin. Although the pitch characteristics can be controlled to some extent, the process is complicated and the manufacturing cost is high.

このような点を解決するために,熱分解重縮合を半ばで
打切って、比重差によって沈積分離又は遠心分離して高
濃度異方性ピッチを得る(特公昭61−38755号、
同62−24036号各公報)方法が提案されている. 〔発明が解決しようとする課題〕 ところが、前記の特公昭61−38755号及び同62
−24036号各公報に記載の方法によっても、熱分解
重縮合を通常の熱処理によって行なって、光学的異方性
相が95%以上のピッチを製造した場合には、会合性が
強くなりすぎ,長時間の安定紡糸条件範囲が狭く,紡糸
による繊維構造制御が難しいという問題がある. 従って,本発明の目的は,このような問題点を克服した
,即ち低軟化点で光学的異方性を示し、しかも会合性が
ある程度弱い,高性能炭素繊維が容易に得られる,光学
的異方性ピッチ及びその製造方法を提供することにある
. 〔課題を解決するための手段〕 本発明によれば,固体広@1H−NMRにより測定され
る縦緩和時間が2,000〜3,000msecであっ
て、且つビレン添加高温”C−NMRにより測定される
磁場配向変化率が0.20〜0.50であることを特徴
とする炭素繊維製造用に適した光学的異方性相を95%
以上含有する光学的異方性ピッチが提供され、また石油
を接触分解した際副生する重質残油を減圧蒸留すること
によって得られる常圧に換算した沸点が500〜550
℃の留分であって、n−ヘプタン可溶成分の芳香族分及
びレジン分を主成分として含有し、実質的にn−ヘプタ
ン不溶成分としてのアスファルテン分を含まない油状又
はタール状物質に、380〜460℃の範囲の温度で1
段目の熱処理を行ない、生或ピッチ中の光学的異方性相
が5−20%生成したところで反応を止め、光学的異方
性相部分を分離除去した後、得られたピッチに380〜
460℃の範囲の温度で2段目の熱処理を行ない、光学
的異方性相が20〜70%生成した時点で反応を止め,
光学的異方性相部分を分離回収することを特徴とする前
記の光学的異方性ピッチの製造方法が提供される。
In order to solve this problem, the thermal decomposition polycondensation is stopped halfway and high-concentration anisotropic pitch is obtained by sedimentation separation or centrifugation depending on the difference in specific gravity (Japanese Patent Publication No. 38755/1983).
62-24036) method has been proposed. [Problem to be solved by the invention] However, the above-mentioned Japanese Patent Publication No. 61-38755 and No. 62
-24036, when pyrolysis polycondensation is carried out by ordinary heat treatment to produce pitch with an optically anisotropic phase of 95% or more, the associative properties become too strong. The problem is that the range of long-term stable spinning conditions is narrow, making it difficult to control the fiber structure through spinning. Therefore, the object of the present invention is to overcome these problems, that is, to easily obtain high-performance carbon fibers that exhibit optical anisotropy at a low softening point and have weak associativity to some extent. The purpose of this invention is to provide a directional pitch and a method for manufacturing the same. [Means for Solving the Problems] According to the present invention, the longitudinal relaxation time measured by solid-state wide@1H-NMR is 2,000 to 3,000 msec, and the longitudinal relaxation time measured by birene-added high temperature "C-NMR" is 2,000 to 3,000 msec. 95% optically anisotropic phase suitable for carbon fiber production characterized by a magnetic field orientation change rate of 0.20 to 0.50.
An optically anisotropic pitch containing the above is provided, and has a boiling point of 500 to 550 when converted to normal pressure obtained by vacuum distillation of heavy residual oil by-produced when petroleum is catalytically cracked.
℃ fraction, which mainly contains aromatic and resin components soluble in n-heptane, and substantially does not contain asphaltene components insoluble in n-heptane, 1 at a temperature in the range of 380-460℃
Heat treatment is performed in the second stage, and the reaction is stopped when 5-20% of the optically anisotropic phase in the raw pitch is formed. After separating and removing the optically anisotropic phase portion, the resulting pitch is
A second heat treatment is performed at a temperature in the range of 460°C, and the reaction is stopped when 20 to 70% of the optically anisotropic phase is formed.
There is provided a method for producing the optically anisotropic pitch described above, which comprises separating and recovering the optically anisotropic phase portion.

なお,本発明でいう光学的異方性ピッチとは、常温で固
化したピッチ塊の断面を研摩し、反対型偏光顕微鏡で直
交二コルを回転して光輝が認められるピッチ、即ち実質
的に光学的異方性であるピッチが大部分であるピッチを
意味し,光輝が認められず光学的等方性であるピッチに
ついては,本明細書では光学的等方性ピッチと呼称する
。従って,本明細書における光学的異方性ピッチには、
純粋な光学的異方性ピッチのみならず、光学的異方性相
の中に光学的等方性相が球状又は不定形の島状に包含さ
れている場合も含まれる。これとは逆に、光学的等方性
ピッチには,光学的等方性ピッチ中に、少量の光学的異
方性相を包含するものも含まれる.また、本明細書にお
ける光学的異方性相は、所謂メソフェースと同様と考え
られるが、メソフェースにはキノリン又はビリジンに不
溶なものとキノリン又はピリジンに可溶な戒分を多く含
むものとの二種類があり、本明細書でいう光学的異方性
相は主として、後者のメソフェースである。
In addition, optically anisotropic pitch as used in the present invention refers to a pitch in which brightness is observed by polishing the cross section of a pitch lump solidified at room temperature and rotating an orthogonal Nicol with a reverse polarizing microscope, that is, a pitch that is substantially optically anisotropic. This refers to a pitch in which most of the pitches are optically anisotropic, and a pitch that is optically isotropic without any brilliance is referred to as an optically isotropic pitch in this specification. Therefore, the optical anisotropic pitch in this specification includes:
It includes not only a pure optically anisotropic pitch but also a case where an optically isotropic phase is included in an optically anisotropic phase in the form of a sphere or an irregularly shaped island. On the contrary, optically isotropic pitch also includes a small amount of optically anisotropic phase. In addition, the optically anisotropic phase in this specification is considered to be the same as a so-called mesophase, but mesophase includes two types: one that is insoluble in quinoline or pyridine, and one that contains a large amount of components that are soluble in quinoline or pyridine. There are several types, and the optically anisotropic phase referred to herein is mainly the latter mesophase.

なお、本発明でいう光学的異方性相の含有量とは、試料
を偏光顕微鏡で直交二コル下でfR察写真撮影して、試
料中の光学的異方性相部分の占める面積割合を測定する
ことにより求めたものである。
In addition, the content of the optically anisotropic phase as used in the present invention refers to the area ratio occupied by the optically anisotropic phase portion in the sample obtained by photographing the sample under orthogonal Nicol using a polarizing microscope. It was determined by measurement.

なお本発明でいうピッチの軟化点とは、ピッチの固一液
転移温度をいうが、差動走査型熱量計を用い、ピッチの
融解又は凝固する潜熱の吸、放出ピーク温度から求めた
ものである.この温度はピッチ試料について他のリング
アンドボール法、微量融点法などで測定したものと±1
0℃の範囲で一致する。
The softening point of pitch in the present invention refers to the solid-liquid transition temperature of pitch, which is determined from the peak temperature of absorption and release of latent heat during melting or solidification of pitch using a differential scanning calorimeter. be. This temperature is ±1 compared to that measured by other ring and ball methods, micro melting point methods, etc. for pitch samples.
It matches within the range of 0°C.

以下、本発明の光学的異方性ピッチ及びその製造方法に
ついて詳細に説明する。
Hereinafter, the optically anisotropic pitch of the present invention and its manufacturing method will be explained in detail.

本発明の光学的異方性ピッチは、光学的異方性相を95
%以上含有し、しかも固体広幅1H−NMRにより測定
される縦緩和時間が2,000〜3,000msec(
好ましくは2,200−2,700msec)であって
,且つビレン添加高温13C−NMRにより測定される
磁場配向変化率が0.20〜0.50(好ましくは0.
30〜0.48)であることを特徴としている。
The optically anisotropic pitch of the present invention has an optically anisotropic phase of 95
% or more, and the longitudinal relaxation time measured by solid-state wide-width 1H-NMR is 2,000 to 3,000 msec (
(preferably 2,200-2,700 msec), and the magnetic field orientation change rate measured by birene-added high temperature 13C-NMR is 0.20-0.50 (preferably 0.50 msec).
30 to 0.48).

なお、ここでいう縦緩和時間とは、ピッチ分子中の水素
の回りの環境(側鎖構造、芳香環骨格構造、ピッチ分子
間の相互作用など)を反映しており,この値が大きくな
る程、側鎖が多く逆に芳香環骨格が小さく、分子全体と
しては動き易い。また,この値が小さくなる程、側鎖が
少なく芳香環骨格が発達して、分子全体として動き難く
なる。
The longitudinal relaxation time referred to here reflects the environment around hydrogen in pitch molecules (side chain structure, aromatic ring skeleton structure, interaction between pitch molecules, etc.), and the larger this value is, the more , has many side chains and a small aromatic ring skeleton, making the molecule as a whole easy to move. Furthermore, as this value decreases, the number of side chains decreases and the aromatic ring skeleton develops, making it difficult for the molecule as a whole to move.

従って,縦緩和時間は分子構造に帰囚した会合特性を表
わすパラメータであり、それは次のようにして求められ
る。
Therefore, the longitudinal relaxation time is a parameter representing the association characteristics attributed to the molecular structure, and it can be obtained as follows.

使用装置:固体広@ ’H−NMR 試  料:ピッチ粉末約100mg 測定法:試料を5問内径サンプルチューブに詰め、約1
0”” torr以下で真空脱気下後チューブ長さが4
0m+a以下になるように封管する。試料をセットし,
l80゜−τ−90゜パルスで取り込み時間(τ)を0
.01秒一約20秒の間で変化させ10〜15点スペク
トル強度(Aτ)を測定する.縦緩和時間(T1)は各
取り込み時間でのスペクトル強度から下記式(1)に よって求められる. A 00 :τ無限大の時のスペクトル強度Aτ:時間
τの時のスペクトル強度 一方、磁場配向変化率は、光学的異方性ピッチに外部か
ら溶媒を加えて会合状態を変えた時の変化のしやすさを
示すものであり,この値が大きい程、ピッチ分子間の相
互作用が強く、溶媒の影響が低く,またこの値が小さい
程、ピッチ分子間の相互作用が弱く,溶媒の影響を受け
易いことを示している.従って,磁場配向変化率はピッ
チ分子間の会合力を表わすパラメータであり,次のよう
にして求められる. 装IEf:1液13C−NMR, ”C高温プローブ試
 料:ピッチ約1g、ピレン(試薬特級、a+p149
℃、bPa86℃)約0.1g 測定法:ピッチにピレンを重量比で10重量算添加し乳
鉢で粉砕混合する.混合物を5間内径サンプルチューブ
に詰め、予め300℃に加熱して置いたブロックバス中
で窒 素置換しながら溶融させ試料を充分に 充填する.別にピッチのみの試料も用 意する。試料をプローブ中で所定の温 度まで昇温させ, Gated−Decoupling
法によりスペクトルを得る.積算回数は 約2,000回である.測定温度はピッチのみで200
=300poise、ピッチ/ピレン系で20〜30p
oissになるような温度で測定する. 磁場配向変化率(R)は下記式(II)によって求めら
れる。
Equipment used: Solid wide@'H-NMR Sample: Approximately 100 mg of pitch powder Measurement method: Pack the sample into 5 inner diameter sample tubes, approximately 1
After vacuum degassing under 0”” torr, the tube length is 4
Seal the tube so that it is below 0m+a. Set the sample,
Set the acquisition time (τ) to 0 with l80°-τ-90° pulse.
.. Measure the spectral intensity (Aτ) at 10 to 15 points by varying the intensity between 0.01 seconds and about 20 seconds. The longitudinal relaxation time (T1) is calculated from the spectral intensity at each acquisition time using the following formula (1). A 00 : Spectral intensity when τ is infinite A τ : Spectral intensity at time τ On the other hand, the magnetic field orientation change rate is the change when the association state is changed by adding a solvent from the outside to the optically anisotropic pitch. The larger this value is, the stronger the interaction between pitch molecules is and the less the influence of the solvent is. It shows that it is easy to accept. Therefore, the magnetic field orientation change rate is a parameter that represents the association force between pitch molecules, and can be found as follows. Equipment IEf: 1 liquid 13C-NMR, ``C high temperature probe sample: pitch approx. 1g, pyrene (reagent special grade, a+p149
℃, bPa 86℃) Approximately 0.1 g Measurement method: Add pyrene to pitch in a weight ratio of 10, and grind and mix in a mortar. Pack the mixture into a sample tube with an inner diameter of 5 minutes, and melt it in a block bath preheated to 300°C while purging with nitrogen to fully fill it with the sample. A pitch-only sample is also prepared separately. The sample is heated to a predetermined temperature in the probe, and Gated-Decoupling
Obtain the spectrum using the method. The cumulative number of times is approximately 2,000. The measured temperature is 200℃ for pitch only.
=300poise, pitch/pyrene type 20~30p
Measure at a temperature that will result in oiss. The magnetic field orientation change rate (R) is determined by the following formula (II).

■、。。:芳香族炭素(磁場配向分子)強度I13。:
芳香族炭素(自由分子)強度I111。.,:芳香族炭
素(磁場配向分子)強度、ピレンlO重量2添加 I13。.,:芳香族炭素(自由分子)強度、ピレン1
0重量算添加、但しモル比換算でピレンの強度を差引く 本発明の光学的異方性ピッチは、前記した特定の縦緩和
時間と磁場配向変化率を併せ持つため,適正な会合性を
有する。そのため,本発明のピッチを用いて炭素繊維を
製造する場合には,可紡糸範囲が広く、紡糸工程での構
造制御が容易であり、その結果,高強度,高弾性率の炭
素繊維を容易に得ることができる。
■,. . : Aromatic carbon (magnetic field oriented molecules) intensity I13. :
Aromatic carbon (free molecule) intensity I111. .. ,: aromatic carbon (magnetic field oriented molecules) strength, pyrene lO weight 2 addition I13. .. , : aromatic carbon (free molecule) strength, pyrene 1
The optically anisotropic pitch of the present invention, which has zero weight addition but subtracts the strength of pyrene in terms of molar ratio, has appropriate associativity because it has both the above-described specific longitudinal relaxation time and magnetic field orientation change rate. Therefore, when producing carbon fibers using the pitch of the present invention, the spinnable range is wide and the structure can be easily controlled in the spinning process, and as a result, carbon fibers with high strength and high elastic modulus can be easily produced. Obtainable.

なお、ピッチの縦緩和時間が2,000msec未満で
は,分子構造的に動き難いピッチであるため、結果的に
会合性が強くなり過ぎて,紡糸安定性が低く、紡糸によ
る繊維構造制御が困難であり、その結果、炭化及び黒鉛
化時の結晶或長を最適化することが難しく、高強度、高
弾性の炭素繊維を得ることが困難となる.逆に、縦緩和
時間が3,000一secを越えると,分子構造的に動
き易い形になるため会合性が弱く,場合によっては光学
的等方性相が含まれてくるので、紡糸−性が悪い.また
、反応性の高い側鎖構造が増えるため,不融化及び炭化
工程での制御が難しくなる. 一方、ピッチの磁場配向変化率が0.50超過では、分
子間の会合力が強くなりすぎて,紡糸安定性が低く,高
強度、高弾性の炭素繊維を得ることが困難であり、逆に
0.20未満では、光学的等方性相が5%以上に増える
ため、光学的異方性相との粘度差から、紡糸性が著しく
悪くなる. 本発明の適正な会合性を有する光学的異方性ピッチは、
特定の石油系炭素質原料を選択し,光学的異方性相部分
の分離除去を含む多段熱処理及び光学的異方性相部分の
回収処理を行なうことによって製造することができる。
In addition, if the longitudinal relaxation time of the pitch is less than 2,000 msec, the pitch is difficult to move due to its molecular structure, and as a result, the associative property becomes too strong, resulting in low spinning stability and difficulty in controlling the fiber structure by spinning. As a result, it is difficult to optimize the crystal length during carbonization and graphitization, making it difficult to obtain carbon fibers with high strength and high elasticity. On the other hand, when the longitudinal relaxation time exceeds 3,000 seconds, the molecular structure becomes more mobile and the associativity becomes weaker, and in some cases an optically isotropic phase is included, resulting in poor spinning properties. It's bad. Additionally, since the number of highly reactive side chain structures increases, control during the infusibility and carbonization processes becomes difficult. On the other hand, if the pitch magnetic field orientation change rate exceeds 0.50, the association force between molecules becomes too strong, resulting in low spinning stability and difficulty in obtaining high-strength, high-elastic carbon fibers; If it is less than 0.20, the optically isotropic phase increases to 5% or more, resulting in significantly poor spinnability due to the viscosity difference with the optically anisotropic phase. The optically anisotropic pitch having appropriate associativity of the present invention is
It can be produced by selecting a specific petroleum-based carbonaceous raw material and performing multi-stage heat treatment including separation and removal of the optically anisotropic phase portion and recovery treatment of the optically anisotropic phase portion.

即ち、本発明の光学的異方性ピッチの製造方法は、特定
の組戒及び構造を有する石油系の油状又はタール状物質
を出.発原料として使用し、これに380〜460℃の
範囲の温度で1段目の熱処理を行ない,生或ピッチ中の
光学的異方性相が5〜20%生成したところで反応を止
め、光学的異方性相部分を分離除去した後,得られた光
学的等方性ピッチに380−460℃の範囲の温度で2
段目の熱処理を行ない、光学的異方性相が20〜7郎生
成した時点で反応を止め,光学的異方性相部分を分離回
収することを特徴とする. 本発明の方法においては,出発原料として、石油を接触
分解した際副生ずる重質残油を減圧蒸留することによっ
て得られる常圧に換算した沸点が500〜550℃の留
分であって.n−ヘプタン可溶成分の芳香族分及びレジ
ン分を主成分として含有し、実質的にn−ヘプタン不溶
成分としてのアスファルテン分を含まない油状又はター
ル状物質が使用される. 該原料は、強度低下の原因となる固形異物や熱処理反応
により高分子物質を形成する高分子量成分を含有しない
. 本発明の方法においては,前記炭素質原料を熱分解重縮
合するために,該原料に2段階の熱処理を行ない、1段
目の熱処理後に光学的異方性相部分の分lIM除去処理
が、また2段目の熱処理後に光学的異方性相部分の分離
回収処理が行なわれる.なお熱分解重縮合とは、重質炭
化水素の熱分解反応と重縮合反応とが,ともに主反応と
して併列的に起ることにより、ピツチ戒分分子の化学構
造を変化させる反応を意味し、この反応の結果、バラフ
ィン鎖構造の切断,脱水素,閉環、重縮合による多環縮
合芳香族の平面構造の発達等が進行するものである。
That is, the method for producing optically anisotropic pitch of the present invention produces a petroleum-based oily or tar-like substance having a specific composition and structure. This is used as a starting material and subjected to a first heat treatment at a temperature in the range of 380 to 460°C, and the reaction is stopped when 5 to 20% of the optically anisotropic phase in the raw material or pitch is formed. After separating and removing the anisotropic phase portion, the optically isotropic pitch obtained is subjected to 2
It is characterized in that the heat treatment in the second stage is carried out, and the reaction is stopped when 20 to 7 degrees of optically anisotropic phase is produced, and the optically anisotropic phase portion is separated and recovered. In the method of the present invention, the starting material is a fraction having a boiling point of 500 to 550°C calculated at normal pressure, which is obtained by vacuum distillation of heavy residual oil by-produced when petroleum is catalytically cracked. An oily or tar-like substance is used which contains aromatic components and resin components which are n-heptane soluble components as main components and does not substantially contain asphaltene components which are n-heptane insoluble components. The raw material does not contain solid foreign matter that causes a decrease in strength or high molecular weight components that form high molecular substances through heat treatment reactions. In the method of the present invention, in order to carry out pyrolysis polycondensation of the carbonaceous raw material, the raw material is subjected to two stages of heat treatment, and after the first heat treatment, a portion of the optically anisotropic phase portion is removed. After the second heat treatment, the optically anisotropic phase portion is separated and recovered. Note that pyrolysis polycondensation refers to a reaction in which the pyrolysis reaction and polycondensation reaction of heavy hydrocarbons occur in parallel as the main reaction, thereby changing the chemical structure of the Pitzchi molecule. As a result of this reaction, scission of the paraffin chain structure, dehydrogenation, ring closure, and development of a planar structure of polycyclic condensed aromatics due to polycondensation proceed.

この反応のために、前記炭素質原料は約380〜約46
0℃、好ましくは400〜430℃で2段階に分けて熱
処理される.熱処理においては、反応温度が約460℃
を超過すると,原料未反応物の揮発が増大し、光学的異
方性相の軟化点も高くなり且つコーキングを発生し易く
なるので不適当であり、逆に約380℃未満では、反応
に長時間を要し好ましくない。
For this reaction, the carbonaceous feedstock is about 380 to about 46
Heat treatment is carried out in two stages at 0°C, preferably 400-430°C. In the heat treatment, the reaction temperature is approximately 460°C.
If the temperature exceeds 380°C, the volatilization of unreacted raw materials will increase, the softening point of the optically anisotropic phase will also increase, and coking will easily occur, making it unsuitable. It is time consuming and undesirable.

熱処理に際しては、局部過熱を防ぎ、均一に反応させる
ために、撹拌が行なわれるが,更に,熱分解の結果,生
或した低分子量の物質を速やかに除くため、減圧下にお
いて、又は必要な場合には、不活性ガスを反応器中へ吹
き込みながら行なうことができる.この場合、不活性ガ
スとしては、窒素,水蒸気、炭酸ガス,軽質炭化水素ガ
ス,又はこれらの混合ガス等,反応温度でピッチとの化
学反応性が充分小さいものを使用することができる.こ
れらの不活性ガスは、吹込み前に予熱しておくことが,
反応温度を下げることなく好ましい.分解油及び分解ガ
スを含んだ該不活性ガスは,反応器上部より抜き出され
,コンデンサー,スクラバー、分離槽等を経て,分解油
及び分解ガスが除去される.その後、該不活性ガスを再
循環使用することも可能である. この熱処理反応器としては、液相熱分解装置であれば任
意の型式のものが使用されるが、通常円筒状容器からな
るものが用いられ、原料供給口、分解油、分解ガス、不
活性ガス等の排出口,ピッチ抜出口等が設けられ、反応
器内部には撹拌装置等が,また外部には原料加熱用ヒー
ター等が配設されている.なお、反応操作はバッチ,セ
ミパッチ及び連続式等の何れの方法でもよい.本発明の
方法においては、1段目の熱処理で光学的異方性相が5
−20%(好ましくは7−15%)生成した時点で熱処
理を止め、光学的異方性相部分を分離除去する.この光
学的異方性相部分の除去処理により、熱処理の初期に生
成し易い高分子物が除去される.この1段目の熱処理を
、光学的異方性相が20%超過となるまで行なうと、ピ
ッチの収量が低下し,逆に5%未満で止めると,高分子
物除去効果が低下する. 1段目の熱処理によって生或した光学的異方性相を5〜
20%含有するピッチから光学的異方性相部分を除去す
るための方法、即ち光学的異方性相部分と光学的等方性
相部分とを分離するための方法としては、公知の種々の
固液分離法が適宜採用されるが、特に比重差を利用する
分離法(参,特公昭61−38755号、同62−24
036号各公報)を採用するのが好ましく,とりわけ工
業生産においては,遠心分離法を採用するのが好ましい
. 遠心分離法は、熱処理によって生成した光学的異方性相
含有ピッチに,その溶融状態で、遠心分離操作を加える
ことにより,光学的異方性相は光学的等方性相よりも比
重が大きいために迅速に沈降し、合体或長しつつ下層(
遠心力方向の層)へ集積し,光学的異方性相が約80%
以上で連続相を成し、その中にわずかに光学的等方性相
を島状または微小な球状体の形で包含する光学的異方性
ピッチが下層となり、一方上層は光学的等方性相が大部
分で、その中に光学的異方性相が微小な球状体で分散し
ている形態の光学的等方性ピッチとなり,しかもこの上
層と下層との界面が明瞭であって、しかも上層と下層の
溶融状態での比重が大きく異ることを利用して,下層を
上層より分離して取出し、光学的異方性ピッチと光学的
等方性ピッチとを分離する方法である.なお、遠心分離
操作とは,流体に高速回転作用を与え,流体中のより比
重の大きい相を下層(遠心力の方向)へ集め、これを分
離する処理操作であり,その実施態様の一つとしていわ
ゆる遠心分離機による操作,特に連続的に重相と軽相を
分離排出する連続型遠心分離機などが有利に使用される
During heat treatment, stirring is performed to prevent local overheating and to ensure a uniform reaction, but in addition, to quickly remove low molecular weight substances produced as a result of thermal decomposition, stirring is performed under reduced pressure or when necessary. This can be carried out by blowing an inert gas into the reactor. In this case, the inert gas may be one that has sufficiently low chemical reactivity with pitch at the reaction temperature, such as nitrogen, water vapor, carbon dioxide, light hydrocarbon gas, or a mixture thereof. These inert gases should be preheated before blowing.
This is preferable without lowering the reaction temperature. The inert gas containing cracked oil and cracked gas is extracted from the top of the reactor and passes through a condenser, scrubber, separation tank, etc., and the cracked oil and cracked gas are removed. Thereafter, it is also possible to recycle and use the inert gas. This heat treatment reactor can be of any type as long as it is a liquid-phase pyrolysis device, but it is usually made of a cylindrical container, with a raw material supply port, cracked oil, cracked gas, and inert gas. The reactor is equipped with a discharge port, a pitch outlet, etc., a stirring device, etc. is installed inside the reactor, and a heater for heating the raw materials, etc. is installed outside. In addition, the reaction operation may be carried out by any method such as batch, semi-patch, or continuous method. In the method of the present invention, the optically anisotropic phase is
When -20% (preferably 7-15%) is produced, the heat treatment is stopped and the optically anisotropic phase portion is separated and removed. This process for removing the optically anisotropic phase portion removes polymeric substances that are likely to be generated during the initial stage of heat treatment. If this first stage heat treatment is carried out until the optically anisotropic phase exceeds 20%, the yield of pitch decreases, and conversely, if it is stopped at less than 5%, the polymer removal effect decreases. The optically anisotropic phase produced by the first heat treatment is
Various known methods can be used to remove the optically anisotropic phase portion from the pitch containing 20%, that is, to separate the optically anisotropic phase portion and the optically isotropic phase portion. Solid-liquid separation methods are employed as appropriate, but in particular separation methods that utilize differences in specific gravity (see Japanese Patent Publications No. 61-38755 and No. 62-24)
It is preferable to adopt the method (No. 036 publications), and especially in industrial production, it is preferable to adopt the centrifugal separation method. In the centrifugation method, pitch containing an optically anisotropic phase generated by heat treatment is centrifuged in its molten state, whereby the optically anisotropic phase has a higher specific gravity than the optically isotropic phase. Therefore, the lower layer (
The optically anisotropic phase is approximately 80%
The above forms a continuous phase, and the optically anisotropic pitch containing a slightly optically isotropic phase in the form of islands or minute spheres forms the lower layer, while the upper layer is optically isotropic. This is an optically isotropic pitch in which the phase is the majority, and the optically anisotropic phase is dispersed in minute spherical bodies, and the interface between the upper layer and the lower layer is clear. This method takes advantage of the fact that the specific gravity of the upper and lower layers in the molten state is significantly different, and separates the lower layer from the upper layer to separate the optically anisotropic pitch and the optically isotropic pitch. The centrifugal separation operation is a processing operation that applies high-speed rotation to a fluid, collects a phase with a higher specific gravity in the fluid to a lower layer (in the direction of centrifugal force), and separates it. As a method, a so-called centrifugal separator operation, particularly a continuous type centrifugal separator that continuously separates and discharges a heavy phase and a light phase, is advantageously used.

光学的異方性相部分を分離する温度は,遠心力の大きさ
にもよるが、ピッチの軟化点以上好ましくは250℃−
300℃の範囲である.この範囲内の所定の一定温度で
もよく、また必らずしも一定温度でなくてもよい. この処理では,光学的異方性部分を遠心力方向へ沈積さ
せ合体せしめることが主目的であり、熱分解および重縮
合反応はできるだけ避ける必要がある.従って300℃
以上の温度は好ましくないし,また必要以上の温度は遠
心分離装置の長時間の連続運転を難しくするが,上述の
温度では、その問題もない.また上述の範囲よりも低温
ではピッチ系全体の、特に光学的異方性相の粘度が大き
いため下層光学的異方性相中に共沈した光学的等方性相
が脱けにくくなる. また,該遠心分離操作の遠心力加速度は、如何なる値で
あってもよいが、光学的異方性相部分(重相)と光学的
等方性相部分(軽相)とを、滞留時間を短かくして,効
率的に短時間で分離するために,好ましくは1,000
−10,000Gの範囲を採用することができる. 光学的異方性相部分が分離除去された後,光学的等方性
相からなるピッチは、続いて2段目の熱処理に付される
,2段目の熱処理は、ピッチ中に光学的異方性相が20
〜7oz,好ましくは30−65%含有される状態にな
った時点で中止される.というのは,2段目の熱処理を
受けたピッチは、次に光学的異方性相部分を分離回収す
る処理を受けるが、この光学的異方性ピッチ回収処理に
おいて、低軟化点の均質な光学的異方性ピッチを高収率
で得るためには,熱分解重縮合反応後のピッチ収率が高
く且つ光学的異方性相含有量が約20〜約7郎、軟化点
が260℃以下であるものが好ましいためである.熱分
解重縮合反応後のピッチ中の光学的異方性相が20%未
満のものでは、次の分離回収での光学的異方性ピッチの
収率が極めて小さく、逆に光学的異方性相を70%より
大きいものにすると、分離回収の際の分離性が悪くなっ
て高濃度の光学的異方性ピッチが得られなくなる.2段
目の熱処理によって得られる光学的異方性相含有ピッチ
としては、光学的異方性相の大部分又は実質的に全てが
直径500μm以下、好ましくは300μm以下の球状
の状態であるものが適切である.本発明の方法において
は、2段目の熱処理によって生戒した光学的異方性相含
有ピッチは、次に光学的異方性ピッチ分離回収処理を受
け、ここで光学的異方性ピッチと光学的等方性ピッチと
に分離される.この場合の分離方法としては,前記1段
目の熱処理後の分離と同様に、公知の種々の固液分離法
が適宜採用され、特に比重差を利用する分離法を採用す
るのが好ましく、とりわけ工業生産においては、遠心分
離法を採用するのが好ましい. ただ,この光学的異方性ピッチ回収処理においては,遠
心分離法を採用した場合、その温度は310〜360℃
の範囲が好ましく、また遠心力加速度はS,Goo−2
0,000Gの範囲が好ましい.この光学的異方性ピッ
チ回収処理により、光学的異方性相含有量が95%以上
の光学的異方性ピッチが,短時間に,経済的に得られる
. なお,本発明においては,光学的異方性ピッチ回収処理
の直後に、適当な仕上げ熱処理を加えることも可能であ
る.即ち、前記回収処理で特に短い滞留時間を用いて、
軟化点は充分低いが、光学的異方性相含有量が約80%
〜90%と,やや不充分な光学的異方性ピッチを製造し
,次にこれを300℃−430℃の温度で熱重質化反応
処理を加えて.光学的異方性ピッチの特性が狭い品質管
理限界内に入るように調節する方法を採用することもで
きる.光学的異方性相を80〜90%含有する光学的異
方性ピッチは光学的等方性相をlO〜20%含有してい
るが、この光学的等方性相は更に熱重質化反応処理を少
し加えることによって減少し、また軟化点も次第に上昇
することが判っているので,適度に調節された温度と処
理時間で,分離後のピッチを熱重質化することによって
、光学的異方性相の含有量を9郎以上に調節することが
できる. 本発明の方法によって得られたピッチは連続的に系外へ
取出され,液状のままあるいは固化され製品となる.本
発明の方法により、軟化点が充分に低く且つ適切な会合
性を有する光学的異方性ピッチが得られる. 以上のようにして得られたピッチを、公知の方法に従っ
て:溶融紡糸し,得られたピッチ繊維を不融化し、炭化
し、場合により更に黒鉛化することにより、紡糸性が良
好で、高性能のピッチ系炭素繊維及び黒鉛繊維を得るこ
とができる。
The temperature at which the optically anisotropic phase is separated depends on the magnitude of the centrifugal force, but is preferably higher than the softening point of the pitch, preferably 250°C -
The temperature range is 300℃. It may be a predetermined constant temperature within this range, and it does not necessarily have to be a constant temperature. The main purpose of this process is to deposit and coalesce the optically anisotropic parts in the direction of centrifugal force, and it is necessary to avoid thermal decomposition and polycondensation reactions as much as possible. Therefore 300℃
Temperatures above this level are undesirable, and temperatures higher than necessary make it difficult to operate the centrifugal separator continuously for long periods of time, but at the above-mentioned temperature, there is no such problem. Furthermore, at temperatures lower than the above-mentioned range, the viscosity of the entire pitch system, especially of the optically anisotropic phase, is high, making it difficult for the optically isotropic phase co-precipitated in the lower optically anisotropic phase to come off. The centrifugal force acceleration of the centrifugation operation may be of any value, but the residence time between the optically anisotropic phase portion (heavy phase) and the optically isotropic phase portion (light phase) may be set at any value. Preferably 1,000 in order to keep it short and separate efficiently in a short time.
-10,000G range can be adopted. After the optically anisotropic phase portion is separated and removed, the pitch consisting of the optically isotropic phase is subsequently subjected to a second heat treatment. The tropic phase is 20
Discontinue when the content reaches ~7oz, preferably 30-65%. This is because the pitch that has undergone the second heat treatment is then subjected to a process to separate and recover the optically anisotropic phase portion, and in this optically anisotropic pitch recovery process, a homogeneous pitch with a low softening point is In order to obtain a high yield of optically anisotropic pitch, it is necessary to have a high pitch yield after the pyrolysis polycondensation reaction, an optically anisotropic phase content of about 20 to about 70°C, and a softening point of 260°C. This is because the following is preferable. If the optically anisotropic phase in the pitch after the pyrolysis polycondensation reaction is less than 20%, the yield of optically anisotropic pitch in the next separation and recovery will be extremely small, and conversely, the optically anisotropic phase will increase. If the phase is larger than 70%, the separability during separation and recovery will deteriorate, making it impossible to obtain a highly concentrated optically anisotropic pitch. The optically anisotropic phase-containing pitch obtained by the second heat treatment is one in which most or substantially all of the optically anisotropic phase is in a spherical state with a diameter of 500 μm or less, preferably 300 μm or less. Appropriate. In the method of the present invention, the optically anisotropic phase-containing pitch recovered by the second heat treatment is then subjected to an optically anisotropic pitch separation and recovery process, where the optically anisotropic pitch and the optically anisotropic pitch are separated and recovered. isotropic pitch. As for the separation method in this case, similar to the separation after the first heat treatment, various known solid-liquid separation methods are appropriately employed, and it is particularly preferable to employ a separation method that utilizes the difference in specific gravity. In industrial production, it is preferable to use centrifugation. However, in this optical anisotropic pitch recovery process, when centrifugation is used, the temperature is 310 to 360°C.
It is preferable that the centrifugal acceleration is in the range of S, Goo-2
A range of 0,000G is preferred. By this optically anisotropic pitch recovery process, optically anisotropic pitch with an optically anisotropic phase content of 95% or more can be obtained economically in a short time. In addition, in the present invention, it is also possible to add an appropriate finishing heat treatment immediately after the optical anisotropic pitch recovery treatment. That is, using a particularly short residence time in the recovery process,
The softening point is sufficiently low, but the optically anisotropic phase content is approximately 80%.
A somewhat insufficient optically anisotropic pitch of ~90% was produced, which was then subjected to a thermal weighting reaction treatment at a temperature of 300°C to 430°C. Methods can also be employed to adjust the optical anisotropy pitch properties to within narrow quality control limits. The optically anisotropic pitch containing 80-90% of the optically anisotropic phase contains 10~20% of the optically isotropic phase, but this optically isotropic phase is further thermograined. It is known that the softening point can be reduced by adding a small amount of reaction treatment, and the softening point can also be gradually raised. The content of anisotropic phase can be adjusted to 90% or more. The pitch obtained by the method of the present invention is continuously taken out of the system and is either kept in a liquid state or solidified to become a product. By the method of the present invention, an optically anisotropic pitch having a sufficiently low softening point and appropriate associativity can be obtained. The pitch obtained as described above is melt-spun according to a known method, and the obtained pitch fibers are made infusible, carbonized, and optionally further graphitized, resulting in good spinnability and high performance. pitch-based carbon fibers and graphite fibers can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明の光学的異方性ピッチは,前記した特定の会合特
性を有するため、本発明のピッチを用いて炭素繊維を製
造すると、可紡糸範囲が広く、紡糸工程での構造制御が
容易であり,高強度、高弾性率の炭素繊維を容易に製造
することができる.また,本発明の光学的異方性ピッチ
の製造方法によれば,(イ)JJr料として特定の組成
及び構戒を有する,固形異物や熱処理によって高分子物
を形成し易い高分子量成分を含まない、石油系の油状又
はタール状物質を使用し,その上(口〉熱処理の゛初期
に生成し易い高分子物が、1段目の熱処理後に光学的異
方性相として除去されるので、(ハ)不純物が少なく,
分子量分布が狭く、軟化点が低く且つ会合性の適正な光
学的異方性ピッチが安定して容易に製造される. 〔実施例〕 以下、実施例により本発明を更に詳細に説明するが、も
ちろん本発明の範囲はこれに限定されるものではない. 実施例1 石油の接触分解工程で副生ずる重質残渣油を減圧蒸留し
て,常圧に換算して500〜550℃の釜残タールを分
取し、これを出発原料とした.このタール状物は、炭素
90.7重量算,水素8.1重量算,硫黄1.1重量瓢
からなり,その組成は表−1に示す通りで、アスファル
テン分を含まないものであった.表−1 このタール状物質20kgを内容積351の反応槽に張
込み、窒素気流下で充分撹拌しながら415℃,4時間
,1段目の熱分解重縮合を行ない,偏光顕微鏡で観察す
ると光学的等方性母相に200.以下の光学的異方性球
体が約8%含有するピッチを、原料タールに対して25
%の収率で得た. 次に,このピッチを連続式遠心分離機に張込み、窒素雰
囲気下、250℃、10,000Gの条件で1段目の遠
心分離を行ない、光学的異方性ピッチ゛′A″と光学的
異方性相を2%以上含まない実質的に光学的等方性のピ
ッチ“B”に分離した. 次に、ピッチ“B”を415℃で3時間,2段目の熱分
解重縮合を行ない、残留ピッチとして200μ以下の光
学的異方性球体を約50%含有するピッチ″゛C”を6
7%の収率で得た. このピッチ“C”をバッチ式遠心分離機で窒素気流下,
350℃、1G,000Gの条件で2段目の遠心分離を
行ない、光学的異方性相100%のピッチ゛′D”と光
学的異方性相が邪以下の実質的に光学的等方性のピッチ
“E”を、約50:5Gの比率で得た.ピッチ“D″は
固体1H−NMRで測定される縦緩和時間が2,410
msec,高温”C−NMRで測定される磁場配向変化
率が0.450であった.また、その軟化点は265℃
であった. 次に,ピッチ“D”を0,3snのノズルを有する紡糸
機に充填し、320℃の紡糸温度において1,000m
/minの高速の引き取り速度で引き取ったところ、連
続1時間以上にわたって糸切れをすることなく、平均繊
維径約13−のピッチ繊維を得ることが出来た. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100”C/w
inの昇温速度で2,500℃まで昇温し黒鉛化繊維を
得た.得られた黒鉛化繊維の平均糸径は10.〇一、平
均強度4.6GPa、平均弾性率850GPaであった
.実施例2 実施例1で得られたピッチ“B”を420℃で2時間,
2段目の熱分解重縮合を行ない,残留ピッチとして20
0.以下の光学的異方性球体を約50%含有するピッチ
″F”を63%の収率で得た. このピッチ“F”をバッチ式遠心分離機で窒素気流下、
350℃, 10.000Gの条件で2段目の遠心分離
を行ない、光学的異方性相100%のピッチ″G”と光
学的異方性相が邪以下の実質的に光学的等方性のピッチ
“H”を,約50:50の比率で得た.ビッチ゛′G”
は固体1}1−NMRで測定される縦緩和時間が2,2
00msec.高21″’ C−NMRで測定される磁
場配向変化率が0.475であった.また、その軟化点
は267℃であった. 次に、ピッチ“G”を0.3■のノズルを有する紡糸機
に充填し,320℃の紡糸温度において1 , 000
m/sinの高速の引き取り速度で引き取ったところ、
連続1時間以上にわたって糸切れすることなく、平均繊
維径約13.のピッチ繊維を得ることが出来た. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100’C/s
inの昇温速度で2,500℃まで昇温し黒鉛化繊維を
得た.得られた黒鉛化繊維の平均糸径は9.7p、平均
強度4 .3GPa、平均弾性率810GPaであった
.比較例1 実施例!と同様の重質残渣油を,減圧蒸留して得られる
415℃以上の留分を出発原料として用いた.この残渣
油は、炭素89.9重量算、水素8.9重量算,硫黄1
.0重量算からなり,その組成は表−2に示す通りで、
アスファルテン分を3.8重量%含有していた. 表−2 この残渣油について,1段目の熱分解縮合及び遠心分離
を実施例lと同一条件で行ない、光学的異方性相100
%のピッチ“I″と光学的異方性相が3z以下の実質的
に光学的等方性のビッチtaJ”を、約25:75の比
率で得た. ピッチ“工”は固体iH−NMRで測定される縦緩和時
間が2,250msec、高温”C−NMRで測定され
る磁場配向変化率が0.645であった。
Since the optically anisotropic pitch of the present invention has the above-mentioned specific association characteristics, when carbon fibers are produced using the pitch of the present invention, the spinnable range is wide and the structure can be easily controlled in the spinning process. , it is possible to easily produce carbon fibers with high strength and high modulus. In addition, according to the method for producing optically anisotropic pitch of the present invention, (a) the JJr material contains a solid foreign material and a high molecular weight component that easily forms a polymeric substance by heat treatment, and has a specific composition and structure. In addition, the polymers that tend to form at the beginning of the heat treatment are removed as an optically anisotropic phase after the first heat treatment. (c) Few impurities,
Optically anisotropic pitch with narrow molecular weight distribution, low softening point, and appropriate associativity can be produced stably and easily. [Example] The present invention will be explained in more detail with reference to Examples below, but the scope of the present invention is of course not limited thereto. Example 1 The heavy residual oil produced as a by-product in the catalytic cracking process of petroleum was distilled under reduced pressure, and the residual tar at a temperature of 500 to 550°C converted to normal pressure was fractionated and used as a starting material. This tar-like substance consisted of 90.7 parts by weight of carbon, 8.1 parts by weight of hydrogen, and 1.1 parts by weight of sulfur, and its composition was as shown in Table 1, and did not contain asphaltenes. Table 1: 20 kg of this tar-like substance was charged into a reaction tank with an internal volume of 351 cm, and the first stage of pyrolysis polycondensation was carried out at 415°C for 4 hours with sufficient stirring under a nitrogen stream. 200 for an isotropic matrix. Pitch containing approximately 8% of the following optically anisotropic spheres was added to the raw material tar by 25%.
% yield. Next, this pitch was loaded into a continuous centrifugal separator and centrifuged in the first stage at 250°C and 10,000G in a nitrogen atmosphere. The pitch was separated into a substantially optically isotropic pitch "B" containing no more than 2% of an orthotropic phase. Next, the pitch "B" was subjected to a second stage of pyrolysis polycondensation at 415°C for 3 hours. , the pitch "゛C" containing about 50% of optically anisotropic spheres of 200μ or less as residual pitch is 6
Obtained with a yield of 7%. This pitch “C” is processed under a nitrogen stream using a batch centrifuge.
A second stage of centrifugation is performed at 350°C and 1G,000G, and the optically anisotropic phase is substantially optically isotropic with a pitch of 100% ``D'' and an optically anisotropic phase of less than 100%. pitch "E" was obtained in a ratio of about 50:5G. Pitch "D" has a longitudinal relaxation time of 2,410 as measured by solid-state 1H-NMR.
msec, high temperature" The magnetic field orientation change rate measured by C-NMR was 0.450. Also, its softening point was 265 ° C.
Met. Next, the pitch "D" was filled into a spinning machine with a 0.3 sn nozzle, and 1,000 m
When the fibers were drawn at a high drawing speed of 1/min, pitch fibers with an average fiber diameter of about 13 mm could be obtained without yarn breakage for more than 1 hour continuously. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated to 100"C/w in an inert gas atmosphere.
The temperature was raised to 2,500°C at a heating rate of 1.5 in to obtain graphitized fibers. The average thread diameter of the graphitized fibers obtained was 10. 〇1.The average strength was 4.6 GPa and the average elastic modulus was 850 GPa. Example 2 The pitch “B” obtained in Example 1 was heated at 420°C for 2 hours.
The second stage of pyrolysis polycondensation is carried out, and the remaining pitch is 20
0. The following pitch "F" containing about 50% of optically anisotropic spheres was obtained with a yield of 63%. This pitch “F” is processed using a batch centrifuge under a nitrogen stream.
A second stage of centrifugation was performed at 350°C and 10,000G, and the optically anisotropic phase was substantially optically isotropic with a pitch of 100% "G" and an optically anisotropic phase of less than 100%. The pitch "H" was obtained at a ratio of approximately 50:50. Bitch゛′G”
The longitudinal relaxation time measured by solid state 1}1-NMR is 2,2
00msec. The magnetic field orientation change rate measured by high 21'' C-NMR was 0.475. Also, its softening point was 267°C. Next, a nozzle with a pitch "G" of 0.3 1,000 at a spinning temperature of 320°C.
When picked up at a high picking speed of m/sin,
The average fiber diameter was approximately 13.5 mm without breaking for more than 1 hour continuously. We were able to obtain pitch fibers. The pitch fibers were oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated at 100°C/s in an inert gas atmosphere.
The temperature was raised to 2,500°C at a heating rate of 1.5 in to obtain graphitized fibers. The average yarn diameter of the graphitized fibers obtained was 9.7p, and the average strength was 4. The average elastic modulus was 810 GPa. Comparative Example 1 Example! The same heavy residual oil was distilled under reduced pressure and the fraction above 415°C was used as the starting material. This residual oil contains 89.9 carbon by weight, 8.9 hydrogen by weight, and 1 sulfur.
.. The composition is as shown in Table 2.
It contained 3.8% by weight of asphaltene. Table 2 This residual oil was subjected to the first stage of pyrolysis condensation and centrifugation under the same conditions as in Example 1, resulting in an optically anisotropic phase of 100
% pitch "I" and a substantially optically isotropic pitch "taJ" with an optically anisotropic phase of 3z or less in a ratio of about 25:75. The longitudinal relaxation time measured by 2,250 msec was 2,250 msec, and the rate of change in magnetic field orientation measured by high temperature C-NMR was 0.645.

次に,ピッチ“■”を0.3mmのノズルを有する紡糸
機に充填し,320℃の紡糸温度において500m/I
Ilinの引き取り速度で引き取ったところ、連続!時
間以上わたって糸切れすることなく、平均繊維径約12
.5pmのピッチ繊維を得る事が出来た。しかし、1,
000m/sinの高速の引き取り速度では,安定に紡
糸することができなかった. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100℃/■i
nの昇温速度でz,soo℃まで昇温し黒鉛化繊維を得
た.得られた黒鉛化繊維の平均糸径は9.3μ,平均強
度3.7GPa、平均弾性率770GPaであった.比
較例2 比較例1で得られたピッチ“J”を,415℃で4時間
、2段目の熱分解重縮合を行ない,残留ピッチとして2
00pm以下の光学的異方性球体を約50%含有するピ
ッチ“し”を、70%の収率で得た.このピッチ“L”
をバッチ式遠心分離機で窒素気流下,350℃, 10
,000Gの条件で2段目の遠心分離を行ない,光学的
異方性相100%のピッチ“H”と光学的異方性相が3
%以下の実質的に光学的等方性のピッチ“N”を.約5
0:50の比率で得た.ピッチ“H”は固体1R−NN
Rで測定される縦緩和時間が1,960+msec.高
温”C−NMRで測定されるit場配向変化率が0.6
20であった. 次に、ピッチ′酊”を0.3mmのノズルを有する紡糸
機に充填し,320℃の紡糸温度において500m/+
*inの引き取り速度で引き取ったところ,連続1時間
以上にわたって糸切れすることなく,平均JIIl&径
約12.5,のピッチ繊維を得る事が出来た.しかし,
1,Goos/sinの高速の引き取り速度では,安定
に紡糸することができなかった. このピッチ繊維を酸素雰囲気中で230”Cで1時間酸
化不融化し,次いで不活性ガス雰囲気中で100’C/
winの昇温速度で2,500”Cまで昇温し黒鉛化繊
維を得た.得られた黒鉛化suiの平均糸径は9.0一
、平均強度3.4GPa、平均弾性率750GPaであ
った.比較例3 実施例1で得られたピッチitC ljは光学的異方性
相を50%含み,固体’H−NMRで測定される縦緩和
時間が2,900msec.高温”C−NMRで測定さ
れる磁場配向変化率がo,tsoであった. ピッチ“C′を用いて実施例1と同様にして紡糸を行な
ったが、紡糸性が悪く、ピッチ繊維を得ることができな
かった. 比較例4 実施例lの重質残渣油のうち、常圧に換算して450℃
以下の留分を出発タールとして用いた。実施例1と同じ
反応装置を用い、400℃、4時間で熱分解重縮合を行
ない、残留ピッチとして2 0 0 pm以下の光学的
異方性球体を約4ダ含有するピッチ゛10j″を、2%
の収率で得た. このピッチ“0”をバッチ式遠心分離機で窒素気流下、
310℃、1G,000Gの条件で遠心分離を行ない、
光学的異方性相96%のピッチ゛P”と光学的異方性相
が3で以下の実質的に光学的等方性のビッチ゛′Q′″
を得た. ピッチ“P”は固体”I{−NMRで測定される縦緩和
時間が3, 100msec、高温”C−NMRで測定
される磁場配向変化率が0.430であった。
Next, the pitch "■" was filled into a spinning machine with a 0.3 mm nozzle, and 500 m/I was filled at a spinning temperature of 320°C.
When I picked it up at Ilin's picking speed, it was continuous! Average fiber diameter of approximately 12 without yarn breakage over time
.. It was possible to obtain pitch fibers of 5 pm. However, 1,
Stable spinning could not be achieved at a high take-up speed of 1,000 m/sin. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then at 100°C/i in an inert gas atmosphere.
The temperature was raised to z, soo°C at a heating rate of n to obtain graphitized fibers. The obtained graphitized fibers had an average thread diameter of 9.3 μ, an average strength of 3.7 GPa, and an average elastic modulus of 770 GPa. Comparative Example 2 The pitch “J” obtained in Comparative Example 1 was subjected to the second stage of pyrolysis polycondensation at 415°C for 4 hours, and the remaining pitch was 2
Pitch "shi" containing about 50% of optically anisotropic spheres of 00 pm or less was obtained with a yield of 70%. This pitch “L”
in a batch centrifuge under nitrogen flow at 350°C for 10
The second stage of centrifugation was carried out under the conditions of ,000G, and the optically anisotropic phase was 100% pitch "H" and the optically anisotropic phase was 3.
% or less of the substantially optically isotropic pitch "N". Approximately 5
Obtained at a ratio of 0:50. Pitch "H" is solid 1R-NN
The longitudinal relaxation time measured at R is 1,960+msec. The IT field orientation change rate measured by high-temperature C-NMR is 0.6.
It was 20. Next, the pitch 'Koku' was filled into a spinning machine with a 0.3 mm nozzle, and the spinning machine was used for 500 m/+ at a spinning temperature of 320°C.
When the fibers were taken at a take-up speed of *in, it was possible to obtain pitch fibers with an average JIIl diameter of approximately 12.5 without yarn breakage for over 1 hour continuously. but,
1. Stable spinning was not possible at a high take-up speed of Goos/sin. The pitch fibers were oxidized and infusible at 230'C in an oxygen atmosphere for 1 hour, and then at 100'C/in an inert gas atmosphere.
The temperature was raised to 2,500"C at a temperature increase rate of 1.5" to obtain graphitized fibers.The average yarn diameter of the obtained graphitized sui was 9.0 mm, the average strength was 3.4 GPa, and the average elastic modulus was 750 GPa. Comparative Example 3 The pitch itClj obtained in Example 1 contains 50% of an optically anisotropic phase, and has a longitudinal relaxation time of 2,900 msec measured by solid-state 'H-NMR. The measured magnetic field orientation change rate was o,tso. Pitch "C' was used for spinning in the same manner as in Example 1, but the spinnability was poor and pitch fibers could not be obtained. Comparative Example 4 Of the heavy residual oil of Example I, 450℃ converted to pressure
The following fractions were used as starting tars. Using the same reaction apparatus as in Example 1, thermal decomposition polycondensation was carried out at 400°C for 4 hours, and a pitch "10j" containing about 4 days of optically anisotropic spheres of 200 pm or less as a residual pitch was obtained. %
It was obtained with a yield of . This pitch “0” is processed using a batch centrifuge under a nitrogen stream.
Centrifugation was performed at 310°C and 1G,000G.
The optically anisotropic phase has a pitch of 96% ``P'' and the optically anisotropic phase is 3 and the following substantially optically isotropic pitch ``'Q''''
I got it. The pitch "P" had a longitudinal relaxation time of 3,100 msec as measured by solid-state I{-NMR, and a magnetic field orientation change rate of 0.430 as measured by high-temperature C-NMR.

次に、ピッチ“P”を0.3開のノズルを有する紡糸機
に充填し、300℃の紡糸温度において500m/wi
nの引き取り速度で,平均繊維径約12.5pmのピッ
チ繊維を得る事が出来た.しかし、1,000m/mi
nの高速の引き取り速度では、安定に紡糸することがで
きなかった. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100’C/s
inの昇温速度で2,500℃まで昇温し黒鉛化繊維を
得た.得られた黒鉛化繊維の平均糸径は9.0μs,平
均強度3.3GPa、平均弾性率720GPaであった
.比較例5 実施例lのピッチ“B”を440℃で2時間、2段目の
熱分解重縮合を行ない、残留ピッチとして200p以下
の光学的異方性球体を約80%含有するビッチ′゛,R
”を、55%の収率で得た. このピッチ“R”をバッチ式遠心分離機で窒素気流下、
350℃、10,000Gの条件で2段目の遠心分離を
行ない、光学的異方性相100%のピッチ“S”と光学
的異方性相が3%以下の実質的に光学的等方性のピッチ
“T′″を,約50:50の比率で得た。
Next, the pitch "P" was filled into a spinning machine with a nozzle opening of 0.3, and the spinning speed was 500 m/wi at a spinning temperature of 300°C.
Pitch fibers with an average fiber diameter of approximately 12.5 pm could be obtained at a take-up speed of n. However, 1,000m/mi
Stable spinning could not be achieved at a high take-up speed of n. The pitch fibers were oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated at 100°C/s in an inert gas atmosphere.
The temperature was raised to 2,500°C at a heating rate of 1.5 in to obtain graphitized fibers. The graphitized fibers obtained had an average thread diameter of 9.0 μs, an average strength of 3.3 GPa, and an average elastic modulus of 720 GPa. Comparative Example 5 Pitch "B" of Example 1 was subjected to the second pyrolysis polycondensation at 440° C. for 2 hours to produce a pitch containing about 80% of optically anisotropic spheres of 200p or less as residual pitch. ,R
” was obtained with a yield of 55%. This pitch “R” was subjected to a batch centrifuge under a nitrogen stream.
A second stage of centrifugation is carried out at 350°C and 10,000G, resulting in a pitch "S" of 100% optically anisotropic phase and a substantially optically isotropic phase with an optically anisotropic phase of 3% or less. A pitch "T'" of approximately 50:50 was obtained.

ピッチits”は固体’ H−NMRで測定される縦緩
和時間が1,800msec,高温”C−NMRで測定
される磁場配向変化率が0.491であった。
The pitch "its" had a longitudinal relaxation time of 1,800 msec as measured by solid-state H-NMR, and a magnetic field orientation change rate of 0.491 as measured by high-temperature C-NMR.

次に,ピッチ“S”を0.3問のノズルを有する紡糸機
に充填し,320℃の紡糸温度において500m/mi
nの引き取り速度で、平均繊維径約13μmのピッチ繊
維を得る事が出来た。しかし、1,000Il/win
の引き取り速度では、安定に紡糸することができなかっ
た. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100’C/s
inの昇温速度で2,500℃まで昇温し黒鉛化繊維を
得た.得られた黒鉛化繊維の平均糸径は9.5μ■、平
均強度3 . 8GPa ,平均弾性率770GPaで
あった。
Next, the pitch "S" was filled into a spinning machine with 0.3 nozzles, and the spinning speed was 500 m/mi at a spinning temperature of 320°C.
Pitch fibers with an average fiber diameter of about 13 μm could be obtained at a take-up speed of n. However, 1,000Il/win
Stable spinning was not possible at this take-up speed. The pitch fibers were oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated at 100°C/s in an inert gas atmosphere.
The temperature was raised to 2,500°C at a heating rate of 1.5 in to obtain graphitized fibers. The average yarn diameter of the graphitized fibers obtained was 9.5μ, and the average strength was 3. 8 GPa, and the average elastic modulus was 770 GPa.

Claims (2)

【特許請求の範囲】[Claims] (1)固体広幅^1H−NMRにより測定される縦緩和
時間が2,000〜3,000msecであって、且つ
ピレン添加高温^1^3C−NMRにより測定される磁
場配向変化率が0.20−0.50であることを特徴と
する炭素繊維製造用に適した光学的異方性相を95%以
上含有する光学的異方性ピッチ。
(1) Longitudinal relaxation time measured by solid-state wide width^1H-NMR is 2,000 to 3,000 msec, and magnetic field orientation change rate measured by pyrene-added high temperature^1^3C-NMR is 0.20 -0.50, an optically anisotropic pitch containing 95% or more of an optically anisotropic phase suitable for carbon fiber production.
(2)石油を接触分解した際副生する重質残油を減圧蒸
留することによって得られる常圧に換算した沸点が50
0〜550℃の留分であって、n−ヘプタン可溶成分の
芳香族分及びレジン分を主成分として含有し、実質的に
n−ヘプタン不溶成分としてのアスファルテン分を含ま
ない油状又はタール状物質に、380〜460℃の範囲
の温度で1段目の熱処理を行ない、生成ピッチ中の光学
的異方性相が5〜20%生成したところで反応を止め、
光学的異方性相部分を分離除去した後、得られたピッチ
に380〜460℃の範囲の温度で2段目の熱処理を行
ない、光学的異方性相が20−70%生成した時点で反
応を止め、光学的異方性相部分を分離回収することを特
徴とする請求項(1)記載の光学的異方性ピッチの製造
方法。
(2) The boiling point converted to normal pressure obtained by distilling heavy residual oil by-product when petroleum is catalytically cracked is 50.
A fraction of 0 to 550°C, containing mainly aromatic and resin components soluble in n-heptane, and substantially free of asphaltene components insoluble in n-heptane, in the form of oil or tar. The substance is subjected to a first heat treatment at a temperature in the range of 380 to 460°C, and the reaction is stopped when 5 to 20% of the optically anisotropic phase in the generated pitch is formed.
After separating and removing the optically anisotropic phase portion, the obtained pitch is subjected to a second heat treatment at a temperature in the range of 380 to 460°C, and when 20 to 70% of the optically anisotropic phase has been formed, The method for producing optically anisotropic pitch according to claim 1, characterized in that the reaction is stopped and the optically anisotropic phase portion is separated and recovered.
JP30850089A 1989-11-28 1989-11-28 Optically anisotropic pitch and its manufacture Pending JPH03167291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30850089A JPH03167291A (en) 1989-11-28 1989-11-28 Optically anisotropic pitch and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30850089A JPH03167291A (en) 1989-11-28 1989-11-28 Optically anisotropic pitch and its manufacture

Publications (1)

Publication Number Publication Date
JPH03167291A true JPH03167291A (en) 1991-07-19

Family

ID=17981764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30850089A Pending JPH03167291A (en) 1989-11-28 1989-11-28 Optically anisotropic pitch and its manufacture

Country Status (1)

Country Link
JP (1) JPH03167291A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851315B2 (en) 2014-12-11 2017-12-26 Chevron U.S.A. Inc. Methods for quantitative characterization of asphaltenes in solutions using two-dimensional low-field NMR measurement
US10634746B2 (en) 2016-03-29 2020-04-28 Chevron U.S.A. Inc. NMR measured pore fluid phase behavior measurements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9851315B2 (en) 2014-12-11 2017-12-26 Chevron U.S.A. Inc. Methods for quantitative characterization of asphaltenes in solutions using two-dimensional low-field NMR measurement
US10634746B2 (en) 2016-03-29 2020-04-28 Chevron U.S.A. Inc. NMR measured pore fluid phase behavior measurements

Similar Documents

Publication Publication Date Title
EP0318843B1 (en) Mesophase pitch for use in the making of carbon materials and process for producing the same
EP0044714A2 (en) Process for producing mesophase pitch
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
US4597853A (en) Pitch as a raw material for making carbon fibers and process for producing the same
JPH0133568B2 (en)
US5182010A (en) Mesophase pitch for use in the making of carbon materials
JPH0328473B2 (en)
US4655902A (en) Optically anisotropic carbonaceous pitch
JPH03167291A (en) Optically anisotropic pitch and its manufacture
US4810437A (en) Process for manufacturing carbon fiber and graphite fiber
JPH01247487A (en) Production of mesophase pitch
JPS6224036B2 (en)
EP0865411B1 (en) Self-stabilizing pitch for carbon fiber manufacture
JP2917486B2 (en) Mesoface pitch for carbon materials
US5540905A (en) Optically anisotropic pitch for manufacturing high compressive strength carbon fibers and method of manufacturing high compressive strength carbon fibers
JPH03167319A (en) Production of carbon fiber and graphite fiber
JP2931593B2 (en) Mesoface pitch for carbon materials
JP3016089B2 (en) Ultra-low softening point, low viscosity mesophase pitch, method for producing the same, and method for producing high-strength, high-modulus carbon fiber
EP0430689A1 (en) Mesophase pitch for use in the making of carbon materials
JPH01249887A (en) Production of mesophase pitch
JPH03168296A (en) Optically anisotropic pitch and production thereof
JPH01254797A (en) Production of mesophase pitch
JP2689978B2 (en) Carbon fiber production method
JPH01268788A (en) Production of mesophase pitch for carbon fiber
JPH03227396A (en) Production of optically anisotropic pitch