JPS6224036B2 - - Google Patents

Info

Publication number
JPS6224036B2
JPS6224036B2 JP57065114A JP6511482A JPS6224036B2 JP S6224036 B2 JPS6224036 B2 JP S6224036B2 JP 57065114 A JP57065114 A JP 57065114A JP 6511482 A JP6511482 A JP 6511482A JP S6224036 B2 JPS6224036 B2 JP S6224036B2
Authority
JP
Japan
Prior art keywords
pitch
temperature
optically anisotropic
content
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57065114A
Other languages
Japanese (ja)
Other versions
JPS58180585A (en
Inventor
Takayuki Izumi
Kikuji Komine
Masahiko Uemura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to JP6511482A priority Critical patent/JPS58180585A/en
Publication of JPS58180585A publication Critical patent/JPS58180585A/en
Publication of JPS6224036B2 publication Critical patent/JPS6224036B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、軽量、高強度かつ高弾性率を有する
炭素質繊維およびその他の炭素材料を含む炭素材
を製造するために適した光学的異方性炭素質ピツ
チの製造方法及び該光学的異方性炭素質ピツチを
溶融紡糸、炭化、黒鉛化して炭素繊維、並びに黒
鉛繊維を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to the production of an optically anisotropic carbonaceous pitch suitable for producing carbonaceous materials including carbonaceous fibers and other carbonaceous materials that are lightweight, have high strength, and have a high modulus of elasticity. The present invention relates to a method and a method for producing carbon fibers and graphite fibers by melt spinning, carbonizing, and graphitizing the optically anisotropic carbonaceous pitch.

現在、各種産業分野例えば自動車、航空機その
他の広範な技術分野に於て、軽量、高強度、高弾
性という性質を有する、高性能素材の出現が強く
要望されている。しかして炭素繊維あるいは成形
炭素材料はこの要望を満足するものとして注目さ
れている。
Currently, in various industrial fields such as automobiles, aircraft, and a wide range of other technical fields, there is a strong demand for high-performance materials that are lightweight, have high strength, and have high elasticity. Carbon fibers or molded carbon materials are attracting attention as a material that satisfies this demand.

従来の光学的異方性ピツチ、例えば特開昭49−
19127号、同50−89635号、同50−118028号の各公
報に記載されている光学的異方性ピツチは、光学
的異方性相(以下APと略称する)部分のほとん
どがキノリン不溶分(またはピリジン不溶分)に
相当し、このようなものはAP部分を100%に近づ
けると、軟化点が著しく上昇し、紡糸温度が400
℃の近傍またはそれ以上となり、加えて紡糸時に
ピツチの分解ガスの発生および重合が惹起すると
いう欠点が見られた。そこで従来の炭素繊維紡糸
法はAP部分の含有量を90%以下、特に50%〜70
%に抑えて紡糸温度を熱分解および熱重合が顕著
に生じない温度で行なつていた。
Conventional optical anisotropy pitch, for example, JP-A-49-
In the optically anisotropic pitch described in the publications No. 19127, No. 50-89635, and No. 50-118028, most of the optically anisotropic phase (hereinafter abbreviated as AP) is composed of quinoline insoluble matter. (or pyridine-insoluble matter), and when the AP portion of this kind approaches 100%, the softening point increases significantly, and the spinning temperature increases to 400%.
℃ or higher, and in addition, the disadvantage was that pitch decomposition gas was generated and polymerization occurred during spinning. Therefore, the conventional carbon fiber spinning method reduces the content of AP part to 90% or less, especially 50% to 70%.
%, and spinning was carried out at a temperature at which thermal decomposition and thermal polymerization did not occur significantly.

ところで、そのようなピツチ組成物は、APと
相当量の光学的等方性相(以下IPと略称する)の
混合物、即ち所謂不均質なピツチであり、そのた
め紡糸時に糸切れがおこつたり、繊維の太さが不
均一になつたり、さらに繊維の強度が低いという
各種欠点を有するものであつた。
Incidentally, such a pitch composition is a mixture of AP and a considerable amount of optically isotropic phase (hereinafter abbreviated as IP), that is, a so-called heterogeneous pitch, and as a result, thread breakage occurs during spinning. It has various drawbacks such as non-uniform fiber thickness and low fiber strength.

また、特公昭49−8634号公報に開示されている
ピツチ物質は、APが実質的に100%のように見う
けられるが、化学構造の特定化された特殊のピツ
チである。すなわちクリセン、フエナンスレン、
テトラベンゾフエナジン等の高価な純物質の熱重
合により製造され、構造、分子量が比較的そろつ
たピツチである。その製法によつて、一般的な混
合原料で製造した場合には、軟化点が非常に高く
なることがさけられないものである。
Furthermore, the pitch substance disclosed in Japanese Patent Publication No. 49-8634 appears to have substantially 100% AP, but it is a special pitch with a specified chemical structure. namely chrysene, phenanthrene,
It is produced by thermal polymerization of expensive pure substances such as tetrabenzophenazine, and is a pitch with relatively uniform structure and molecular weight. Depending on the manufacturing method, if it is manufactured using common mixed raw materials, it is inevitable that the softening point will be extremely high.

一方、特公昭53−7533号公報に記載されている
炭素繊維製造用原料としてのピツチは、軟化点、
紡糸温度が低く、一応紡糸は容易であるが、AP
の含有率が開示されていない。また、原料炭化水
素を塩化アルミニウム等のルイス酸触媒を使用し
て重縮合しており、したがつてピツチの組成と構
造は特殊であり、そのピツチから製造された炭素
繊維の強度および弾性率は比較的低いものであつ
た。勿論使用触媒の完全な除去も困難であるとい
う問題を併せ有するものであつた。
On the other hand, pitch as a raw material for manufacturing carbon fiber described in Japanese Patent Publication No. 53-7533 has a softening point,
The spinning temperature is low and spinning is easy, but AP
The content is not disclosed. In addition, raw material hydrocarbons are polycondensed using a Lewis acid catalyst such as aluminum chloride, so the pitch has a special composition and structure, and the strength and elastic modulus of the carbon fiber produced from the pitch are unique. It was relatively low. Of course, there was also the problem that it was difficult to completely remove the catalyst used.

さらに、特開昭54−55625号公報に開示されて
いるピツチ物質は、完全に100%のAPから成る均
質ピツチであるが、その製造方法は、等物性ピツ
チ原料に終始熱反応のみを加えて、熱分解重縮合
を注意深く制御し、均質になるまで撹拌を加える
方法であり、結局は十分に熱重合されるために、
該ピツチ物質の軟化点は、約330℃以上であり、
そのため紡糸温度は400℃近傍に高める必要があ
り、そのような温度では、工業的に紡糸すること
は依然困難を伴うものであつた。
Furthermore, the pitch material disclosed in JP-A No. 54-55625 is a homogeneous pitch made entirely of 100% AP, but its production method involves adding only a thermal reaction from beginning to end to the pitch material having the same physical properties. , is a method of carefully controlling the thermal decomposition polycondensation and adding stirring until it becomes homogeneous, and in order to achieve sufficient thermal polymerization,
The softening point of the pitch material is about 330°C or higher,
Therefore, it is necessary to raise the spinning temperature to around 400°C, and it is still difficult to perform spinning industrially at such temperatures.

さらに、特開昭54−160427号、同55−58287
号、同55−130809号、同55−144087号および同56
−57881号公報に開示されているピツチ物質は、
等方性ピツチ又は微量のAPを含むピツチを溶剤
抽出して、大部分がAPを形成する成分で、かつ
キノリン不溶分の含有率の少ない部分を取り出し
て、これを溶融することにより得られるものであ
る。このような方法によつてもキノリン不溶分含
有率が特異的に25%以下であるようなものもでき
るが、その開示されている製法およびデータから
当業者が容易に推定できるように得られる製品
は、軟化点の高いものであり、それ故紡糸温度は
400℃近傍という高温となり、工業的に安定に紡
糸することは依然困難なものであろう。
Furthermore, JP-A-54-160427, JP-A No. 55-58287
No. 55-130809, No. 55-144087 and No. 56
The pitch material disclosed in Publication No. -57881 is
It is obtained by extracting isotropic pitch or pitch containing a small amount of AP with a solvent, extracting the part that contains mostly AP-forming components and having a small content of quinoline insoluble matter, and melting this. It is. Even with this method, it is possible to produce a product with a specific quinoline insoluble content of 25% or less, but the resulting product can be easily estimated by a person skilled in the art from the disclosed manufacturing method and data. has a high softening point, so the spinning temperature is
The high temperature is around 400°C, and it will still be difficult to stably spin the fiber industrially.

以上述べた如く、従来から知られているAPが
100%に近い均質な光学的異方性ピツチは、いず
れも軟化点が高く、安定した紡糸が困難なもので
ある。一方、公知の軟化点の低いピツチは、特殊
な出発原料から製造した特殊な組成、構造を有す
るものを除き、不均質であり、同様にその紡糸が
困難であつて、その結果品質の優れた炭素繊維を
得ることは極めて困難な事であつた。
As mentioned above, the conventionally known AP
All pitches with nearly 100% homogeneous optical anisotropy have high softening points, making stable spinning difficult. On the other hand, known pitches with a low softening point are non-uniform and difficult to spin, unless they are produced from special starting materials and have a special composition and structure. Obtaining carbon fiber was extremely difficult.

さらに、従来方法に於けるピツチ組成物の特性
の規定の仕方についてみると、一般に光学的異方
性ピツチを部分的な化学構造または平均分子量ま
たはキノリン不溶成分(もしくはピリジン不溶成
分)含有量で規定している。しかしこれらの規定
方法では、高性能炭素繊維その他の炭素材料を得
るため適当な、均質かつ低軟化点の光学的異方性
ピツチ組成物を特定することができず、いうまで
もなく不適確であつた。このことは、光学的異方
性ピツチと呼ばれる組成物が、極めて多種で複雑
な広範囲の化学構造、分子量例えば数百から数
万、場合によつてはコークスに近い分子量のもの
まで含むような化合物の混合物であり、それ故単
純に一部分の、または全体の平均的な化学構造の
特徴のみで規定できるものでないということに基
因する。
Furthermore, in terms of how to specify the properties of pitch compositions in conventional methods, optically anisotropic pitch is generally defined by the partial chemical structure, average molecular weight, or content of quinoline-insoluble components (or pyridine-insoluble components). are doing. However, these prescribed methods cannot specify a homogeneous, low softening point, optically anisotropic pitch composition suitable for obtaining high-performance carbon fibers and other carbon materials, and needless to say, they are inaccurate. It was hot. This means that the composition called optically anisotropic pitch contains extremely diverse and complex chemical structures with a wide range of chemical structures and molecular weights ranging from hundreds to tens of thousands, and in some cases even molecular weights close to that of coke. This is due to the fact that it is a mixture of chemical structures and therefore cannot be defined simply by the characteristics of the average chemical structure of a part or the whole.

本発明者は、高性能炭素繊維を製造するために
適した光学的異方性ピツチ組成物について鋭意研
究を重ねた。その結果、光学的異方性ピツチは、
縮合多環芳香族の積層構造の発達した分子配向性
の良いピツチであるが、実際には種々のものが混
在し、そのうち、軟化点が低く、均質な炭素繊維
の製造に適したものは特定の化学構造と組成を有
すること、すなわち光学的異方性ピツチにおい
て、n−ヘプタン可溶成分およびn−ヘプタン不
溶かつベンゼン可溶成分の組成、構造、分子量が
極めて重要であることを見出し、先に、特願昭55
−162972号(特開昭57−88016号公報参照)とし
て出願した。
The present inventor has conducted intensive research on optically anisotropic pitch compositions suitable for producing high-performance carbon fibers. As a result, the optical anisotropy pitch is
Pitch has a well-developed laminated structure of condensed polycyclic aromatics and has good molecular orientation, but in reality, there are a variety of them, and it is difficult to identify which one has a low softening point and is suitable for producing homogeneous carbon fibers. We discovered that the composition, structure, and molecular weight of the n-heptane soluble component and the n-heptane insoluble and benzene soluble component are extremely important in the optically anisotropic pitch. In 1987, a special request was made.
The application was filed as No.-162972 (see Japanese Unexamined Patent Publication No. 57-88016).

その後さらにピツチ中のAPとIPとの混合比率
およびその顕微鏡的形態について詳しく研究を続
けた結果、完全に単一相の実質的にAPが100%の
もので、軟化点が250℃〜300℃といつたピツチを
作ることもできるが、このようなピツチの製造条
件は比較的狭くまた原料の変化などに対応して常
に同じ十分低い軟化点ひいては、同じ適正紡糸温
度のピツチを、工業的に安定して製造すること
が、必らずしも容易ではないことを知見した。
After that, we continued to conduct detailed research on the mixing ratio of AP and IP in pitch and its microscopic morphology. As a result, we found that it is a completely single-phase, essentially 100% AP, with a softening point of 250℃ to 300℃. However, the manufacturing conditions for such pitches are relatively narrow, and in response to changes in raw materials, pitches with the same sufficiently low softening point and the same appropriate spinning temperature cannot be manufactured industrially. It has been found that stable production is not necessarily easy.

一方、IP部分を過度に含有するピツチ、例えば
30%以上もIPを含有するようなものは、一般に軟
化点を十分低くできるが、紡糸の際明らかに粘度
の異なる二つの混合液相として挙動し、紡糸性も
不良であること、したがつてそれから製造した炭
素繊維は性能が不良なことが確認された。
On the other hand, pitches containing too much IP moiety, e.g.
Products containing 30% or more IP can generally have a sufficiently low softening point, but during spinning they behave as a mixture of two liquid phases with clearly different viscosities and have poor spinnability. Carbon fibers produced therefrom were found to have poor performance.

さらに研究を進めたところ、IP部分が約20%以
下であり、好ましくは約10%以下であつて、しか
もAPマトリツクス中に分散しているIPの大部分
が直径約100μm以下、好ましくは約50μm以下
の球状体、さらに好ましくは直径約20μm以下の
極めて微小な球状体であるようなもので、しかも
軟化点の十分低いものが発見された。しかして、
このようなピツチは紡糸性が良好であり、十分な
性能の炭素繊維を製造するためのプリカーサー物
質として最適であり、加えてこのようなピツチ
は、工業的にほゞ同じ特性のものを安定して製造
することが容易であるという特徴を有することを
見出して、特願昭56−14078号(特開昭58−45277
号公報参照)として出願した。
Further research has shown that the IP portion is about 20% or less, preferably about 10% or less, and most of the IP dispersed in the AP matrix has a diameter of about 100 μm or less, preferably about 50 μm. The following spherical bodies, more preferably extremely minute spherical bodies with a diameter of about 20 μm or less, and those with sufficiently low softening points have been discovered. However,
This type of pitch has good spinnability and is ideal as a precursor material for producing carbon fiber with sufficient performance. Patent Application No. 56-14078 (Japanese Unexamined Patent Publication No. 58-45277)
(see Publication No.).

その後、本発明者らはこのような紡糸特性の良
好な、低い軟化点を有し、同時に高いAP含有率
を有する光学的異方性ピツチを、より安定的に、
経済的に製造する方法についてさらに研究を続け
てきた結果、以下のような諸知見を得た。
Subsequently, the present inventors developed optically anisotropic pitches with good spinning properties, low softening points, and high AP content at the same time to make them more stable.
As a result of further research into economical manufacturing methods, the following findings were obtained.

APを部分的に含有する炭素質ピツチを溶融状
態において遠心分離操作に付して、より比重の大
きいAP部分を遠心力方向へ迅速に遠沈かつ合体
せしめ、その結果出来るAPよりを多く含む部分
を、ほとんどIPから成る、より比重の小さい部分
から分離して取出すことにより一層改良された極
めて優れた光学的異方性ピツチの製造方法を達成
し得ることを見出した。
A carbonaceous pitch partially containing AP is subjected to a centrifugation operation in a molten state, and the AP portion with higher specific gravity is rapidly spun down and coalesced in the direction of centrifugal force, and the resulting portion contains more AP than the resulting portion. It has been found that by separating and extracting the IP from a portion with a lower specific gravity, which is mostly composed of IP, it is possible to achieve a further improved method for producing an extremely excellent optically anisotropic pitch.

すなわち、同一温度において重力場に静置して
APを沈降させるよりも、人為的に加えた遠心力
場によつて、APの沈降を格段に速く進めること
ができ、またAPの沈降のみならず、その沈降後
の合体による単一相を形成する現象も遠心力で加
速することができ、さらに加える遠心力加速度す
なわち遠心操作の回転速度を自由に制御すること
によつて、重力沈降法などよりも、より低い処理
温度を用いてはるかに短時間で、そして結果的に
十分高いAP濃度で、かつ、低軟化点の光学的異
方性ピツチを、再現性良く製造できることを見出
した。例えば、380℃という温度で2時間という
静置時間を要する重力沈降法に比べ、1000Gの遠
心操作では350℃でわずか2分という処理時間で
同じ品質のピツチを製造することができることが
わかつた。
In other words, if it is left stationary in a gravitational field at the same temperature,
By using an artificially applied centrifugal force field, the sedimentation of AP can proceed much faster than by sedimentation of AP, and a single phase is formed not only by sedimentation of AP but also by coalescence after sedimentation. This phenomenon can also be accelerated by centrifugal force, and by freely controlling the applied centrifugal force acceleration, that is, the rotational speed of centrifugation, the process can be performed in a much shorter time using lower processing temperatures than gravity sedimentation methods. We have found that it is possible to produce optically anisotropic pitches with a sufficiently high AP concentration and a low softening point with good reproducibility. For example, compared to the gravity sedimentation method, which requires 2 hours of standing time at a temperature of 380°C, it was found that centrifugation at 1000G can produce pitches of the same quality in just 2 minutes at 350°C.

また、ピツチを溶融状態で長時間連続して遠心
分離操作に付すためには、遠心分離装置の回転摺
動部、シーリングおよび制御バルブ等の耐熱性を
必要とする場合は350℃前後の十分可能な低い温
度領域を使用できること、さらにそのような温度
下では、機械的材質的に問題のない1000G程度の
十分低い遠心力加速度で、十分短時間の滞留時間
で目的が達せられることがわかつた。
In addition, in order to subject Pits in a molten state to continuous centrifugation for long periods of time, if the rotating sliding parts of the centrifugal separator, sealing, control valves, etc. require heat resistance, it is possible to maintain temperatures around 350℃. Furthermore, it was found that under such temperatures, the purpose could be achieved with a sufficiently low centrifugal acceleration of about 1000 G, which poses no mechanical problems with the material, and with a sufficiently short residence time.

また、遠心分離操作を用いる場合は、その原料
中間体炭素質ピツチとしては、より広い特性のも
のを用いることができる。すなわち、重力沈降法
の場合は、軟化点が高いときは、分離が難しいと
いう現象が起こつたが、遠心法の場合は、その制
約が緩和され、適応範囲がより広がることもわか
つた。
Furthermore, when centrifugation is used, the raw material intermediate carbonaceous pitch can have a wider range of characteristics. In other words, in the case of the gravity sedimentation method, separation was difficult when the softening point was high, but in the case of the centrifugation method, this restriction was relaxed and the range of application was wider.

本発明は上記の諸知見に基くものである。 The present invention is based on the above findings.

本発明の主たる目的は、高強度、高弾性率の炭
素材、特に炭素繊維を製造するのに適した、AP
含有率の高いかつ低軟化点を有する光学的異方性
炭素質ピツチの製造方法を提供することである。
The main object of the present invention is to provide an AP suitable for producing high strength, high modulus carbon materials, especially carbon fibers.
An object of the present invention is to provide a method for producing an optically anisotropic carbonaceous pitch having a high content and a low softening point.

本発明の他の目的は、高強度、高弾性率の炭素
材、特に炭素繊維を製造するために適した光学的
異方性ピツチであつて、高配向性かつ均質な光学
的異方性炭素質ピツチの製造方法を提供すること
である。
Another object of the present invention is to provide a highly oriented and homogeneous optically anisotropic pitch suitable for producing carbon materials having high strength and high modulus, especially carbon fibers. It is an object of the present invention to provide a method for producing quality pitches.

本発明の他の目的は、高強度、高弾性率の炭素
繊維を製造するために熱分解重縮合の顕著な温度
より十分低い温度で紡糸することができる、紡糸
性の良好な光学的異方性炭素質ピツチの製造方法
を提供することである。
Another object of the present invention is to have good optical anisotropy in spinnability, which can be spun at a temperature sufficiently lower than the significant temperature of pyrolytic polycondensation in order to produce carbon fibers with high strength and high modulus. An object of the present invention is to provide a method for producing carbonaceous pitch.

本発明の他の目的は、高強度、高弾性率の炭素
繊維を製造するために適した光学的異方性炭素質
ピツチを効率よく経済的に、かつ安定的に製造す
る方法を提供することである。
Another object of the present invention is to provide a method for efficiently, economically, and stably producing optically anisotropic carbonaceous pitches suitable for producing carbon fibers with high strength and high modulus. It is.

上述のごとく、本発明は高いAP含有率であり
ながら、低軟化点を有するピツチ物質の製造方法
を包含し、それは部分的にAPを含み、従つて残
りはIPから成るような段階におけるピツチを、溶
融状態に於て、熱分解重縮合が顕著に進行せず、
しかもAPの大部分が遠心力方向へ沈積合体する
ことが容易な粘度を与える温度に保つて、遠心分
離操作を加え、ピツチ中のAPの大部分を遠心力
方向へ沈積合体せしめて、この重質層部分のAP
濃度の大きい部分を、軽質層部分のAP濃度の小
さい部分から分離して取出すことを特徴とする方
法である。
As mentioned above, the present invention encompasses a method for producing a pitch material having a high AP content but a low softening point, which comprises pitch at a stage that partially contains AP and the remainder consists of IP. , in the molten state, thermal decomposition polycondensation does not proceed significantly;
Moreover, by maintaining the temperature at a temperature that gives a viscosity that makes it easy for most of the AP to sediment and coalesce in the direction of centrifugal force, and by adding a centrifugal separation operation, most of the AP in the pitch is deposited and coalesces in the direction of centrifugal force. AP of quality layer part
This method is characterized by separating and extracting the high concentration portion from the low AP concentration portion of the light layer portion.

本発明の製造法における中間体炭素質ピツチす
なわち部分的にAPを包含するピツチは、通常公
知の熱重質化反応による方法で製造することがで
きる。すなわち原料として、重質炭化水素油、い
わゆるタール、例えば接触分解残渣油、熱分解
(水蒸気分解)タール等および市販ピツチ等を用
いて、約380℃〜約460℃の温度を用いて必要な時
間熱反応せしめ、その後これより低い300℃〜380
℃といつた温度で脱揮(不活性ガスでのストリツ
ピングまたは減圧蒸留)するか、または原料を約
380℃〜約460℃の温度で必要な時間脱揮しつつ熱
反応せしめることによつて、前述の本発明の製法
の出発物質である部分的にAPを包含し、十分低
い、軟化点を有するピツチを製造することができ
る。
The intermediate carbonaceous pitch in the production method of the present invention, that is, the pitch partially containing AP, can be produced by a generally known method using a thermal heavyization reaction. That is, heavy hydrocarbon oil, so-called tar, such as catalytic cracking residue oil, thermal cracking (steam cracking) tar, etc., and commercially available pitcher are used as raw materials, and a temperature of about 380°C to about 460°C is used for the necessary time. Heat reaction, then lower than 300℃~380℃
devolatilization (stripping with inert gas or vacuum distillation) at temperatures such as
By thermally reacting with devolatilization at a temperature of 380°C to about 460°C for a necessary period of time, the starting material for the production method of the present invention, which partially contains AP, has a sufficiently low softening point. Pits can be manufactured.

しかし、好適な中間体炭素質ピツチの製造法は
次の如くある。すなわち、特願昭56−135296号明
細書(特開昭58−37084号公報参照)に示した如
き少なくとも主成分として沸点が540℃以上の成
分を含有する、主として炭素と水素から成る化合
物であつて、n−ヘプタン可溶成分として芳香族
油分及びレジン分を、又、n−ヘプタン不溶成分
としてアスフアルテン分を主に含有し、前記芳香
族油分及びレジン分の各々の芳香族炭素分率faが
0.7以上、数平均分子量が1000以下、かつ最高分
子量が2000以下とされたタール状物質を出発原料
として、前記の条件で熱反応させることである。
ここに、アスフアルテン分の芳香族炭素分率faが
0.7以上、数平均分子量が、1500以下かつ最高分
子量が4000以下のものが好ましい。前記芳香族炭
素分率faは赤外線吸収法で測定した芳香族構造の
炭素原子の全炭素原子に対する比率であり、最高
分子量は、低分子量側から99wt.%積算した点の
ゲルパーシエーシヨンクロマトグラフイーで測定
した分子量である。又、数平均分子量は蒸気圧平
衡法で測定したものである。このような出発原料
の一例として接触分解装置残渣油が好適である。
However, a suitable method for producing the intermediate carbonaceous pitch is as follows. That is, it is a compound mainly consisting of carbon and hydrogen, which contains at least a component having a boiling point of 540°C or higher as a main component, as shown in the specification of Japanese Patent Application No. 56-135296 (see Japanese Patent Application Laid-open No. 58-37084). It mainly contains an aromatic oil component and a resin component as n-heptane soluble components, and an asphaltene component as an n-heptane insoluble component, and the aromatic carbon fraction fa of each of the aromatic oil component and resin component is
A tar-like substance having a number average molecular weight of 0.7 or more, a number average molecular weight of 1000 or less, and a maximum molecular weight of 2000 or less is used as a starting material and subjected to a thermal reaction under the above conditions.
Here, the aromatic carbon fraction fa of asphaltenes is
It is preferable that the number average molecular weight is 0.7 or more, the number average molecular weight is 1500 or less, and the maximum molecular weight is 4000 or less. The aromatic carbon fraction fa is the ratio of carbon atoms in the aromatic structure to the total carbon atoms measured by infrared absorption method, and the highest molecular weight is the gel perfusion chromatograph at the point where 99wt.% is integrated from the low molecular weight side. This is the molecular weight measured by E. Further, the number average molecular weight is measured by vapor pressure equilibrium method. Catalytic cracker residual oil is suitable as an example of such a starting material.

また、上述の方法において、遠心分離工程で、
重質層のAP濃度の大きいピツチを分離した後
の、残余の軟質層のAP濃度の小さいピツチは、
熱分解重縮合、脱揮工程へリサイクルして、適度
のAP濃度、組成、軟化点に調製した後、再び遠
心分離工程にかけることができる。本発明に於い
てはこのようにして反復して、熱分解重縮合、遠
心分離を行なうことにより、高品質の光学的異方
性ピツチを収率よく製造することができる。
Furthermore, in the above method, in the centrifugation step,
After separating the pitches with high AP concentration in the heavy layer, the remaining pitches with low AP concentration in the soft layer are:
After being recycled to the pyrolysis polycondensation and devolatilization steps and adjusted to an appropriate AP concentration, composition, and softening point, it can be subjected to the centrifugation step again. In the present invention, by repeating the pyrolysis polycondensation and centrifugation in this manner, high quality optically anisotropic pitches can be produced with good yield.

また、上述の遠心分離操作後のAP濃度の大き
いピツチに、さらに軽度の熱重質化反応や溶剤処
理などの後処理工程を加えて、ピツチの特性を調
整することにより、所望の狭い巾の品質管理域内
に品質がそろつた高品質の光学的異方性ピツチを
製造することができる。
In addition, by adjusting the characteristics of the pitch by adding post-treatment steps such as a mild thermal massing reaction and solvent treatment to the pitch with a high AP concentration after the above-mentioned centrifugation operation, the desired narrow width can be obtained. It is possible to manufacture high-quality optically anisotropic pitches whose quality is within the quality control range.

また、本発明の遠心分離操作を含む処理工程で
製造された高いAP含有率を有する、低軟化点の
光学的異方性ピツチを紡糸し、その後酸化して熱
硬化性とした後、炭化さらには黒鉛化することに
よつて安定した品質の高強度、高弾性率の繊維を
得ることができる。
In addition, the optically anisotropic pitch with a low softening point having a high AP content produced by the process including the centrifugation operation of the present invention is spun, then oxidized to make it thermosetting, and then carbonized. By graphitizing, it is possible to obtain fibers with stable quality, high strength, and high elastic modulus.

次に本発明の説明に用いる用語および測定分析
方法を説明する。
Next, the terms and measurement and analysis methods used to explain the present invention will be explained.

本明細書で使用するピツチの「光学的異方性
相」という語句の意味は、必ずしも学界または
種々の技術文献において統一して用いられている
とは言い難いものである。
The meaning of Pitch's phrase "optically anisotropic phase" as used herein is not necessarily uniformly used in academia or in various technical literature.

本明細書では、「光学的異方性相(AP)」と
は、ピツチ構成成分の形態の一つであり、常温近
くで固化したピツチ塊の断面を研摩し、反射型偏
光顕微鏡で直交ニコル下で観察したとき、試料ま
たは直交ニコルを回転して光輝が認められる、す
なわち光学的異方性であるピツチの部分を意味
し、光輝が認められない、すなわち光学的等方性
であるピツチの部分は、光学的等方性相(IP)と
呼ぶ。
In this specification, "optically anisotropic phase (AP)" is one of the forms of pitch constituent components, and it is obtained by polishing a cross section of a pitch lump solidified near room temperature and using a reflective polarizing microscope to examine the orthogonal nicol phase. When observed below, by rotating the sample or crossed nicols, it means the part of the pitch where glitter is observed, that is, optically anisotropic; The part is called the optically isotropic phase (IP).

前記に於いてAPとIPの間には、明瞭な境界が
観察できる(一般には、APでもIPでもないゴ
ミ、気泡等の異物は明らかに識別できる)。ま
た、APは、いわゆる「メソ相」と同じと考えて
よいが、「メソ相」にはキノリンまたはピリジン
に実質上不溶のものと、キノリンまたはピリジン
に溶解する成分を多く含むものとの二種類があ
り、本発明でいうAPは主として後者の「メソ
相」である。
In the above, a clear boundary can be observed between AP and IP (generally, foreign objects such as dust and air bubbles that are neither AP nor IP can be clearly identified). In addition, AP can be thought of as the same as the so-called "meso phase," but there are two types of "meso phase": those that are virtually insoluble in quinoline or pyridine, and those that contain a large amount of components that are soluble in quinoline or pyridine. The AP referred to in the present invention is mainly the latter "meso phase."

さらにAPは、IPに比べて多環芳香族の縮合環
の平面性がより発達した化学構造の分子が主成分
で、平面を積層したかたちで凝集、会合してお
り、溶融温度では一種の液晶状態であると考えら
れる。従つてこれを細い口金から押し出して紡糸
するときは分子の平面が繊維状の方向に平行に近
い配列をするために、この光学的異方性ピツチか
ら作つた炭素繊維は高弾性を示すことになる。
Furthermore, compared to IP, AP is mainly composed of molecules with a chemical structure in which the flatness of polycyclic aromatic condensed rings is more developed, and the planes aggregate and associate in a layered manner, and at the melting temperature, they form a type of liquid crystal. It is considered to be a condition. Therefore, when this is extruded from a thin spinneret and spun, the planes of the molecules are aligned nearly parallel to the fiber direction, so carbon fibers made from this optically anisotropic pitch exhibit high elasticity. Become.

また、APまたはIPの定量は、偏光顕微鏡直交
ニコル下で観察、写真撮影してAPまたはIP部分
の占める面積率を測定して行なうのであるが、面
積率は、統計上実質的に体積%を表わす。
In addition, AP or IP is quantified by observing it under a polarizing microscope with crossed Nicols, taking a photograph, and measuring the area ratio occupied by the AP or IP portion. Statistically speaking, the area ratio is essentially a volume %. represent.

しかし、APとIPの比重差は0.05程度であるの
でこれらの定量値で、近似的には体積%と重量%
とはほゞ等しいと考えてよい。なお、高温の溶融
状態のAPとIPの状態は室温のそれとはやや異る
ものと思われるが、本明細書では、すべて室温で
観察したAPとIPの状態でそれを規定する。
However, since the difference in specific gravity between AP and IP is about 0.05, these quantitative values can be approximated as volume % and weight %.
can be considered to be almost equal. Although the states of AP and IP in the molten state at high temperatures are thought to be slightly different from those at room temperature, in this specification, they are all defined by the states of AP and IP observed at room temperature.

本明細書に於いてAPが大部分を占め、IPがそ
の中で球状または不定形の島状に包含されている
ピツチを、光学的異方性ピツチと呼ぶ。すなわ
ち、本発明において光学的異方性ピツチと呼ぶも
のは必らずしも実質的にAPを100%含有するもの
でない。この場合のAPの含有率は、IPの含有率
を測定し、これを100%から引算して求める。
In this specification, a pitch in which AP occupies the majority and IP is included in a spherical or irregular island shape is referred to as an optically anisotropic pitch. That is, what is referred to as an optically anisotropic pitch in the present invention does not necessarily contain substantially 100% AP. The AP content in this case is determined by measuring the IP content and subtracting it from 100%.

本発明ではさらに、ピツチの均質性に関して、
上述のIP含有率の測定結果が十分に小さく、反射
型顕微鏡観察でピツチ断面に固形粒子(粒径1μ
m以上)を実質上検出せず、溶融紡糸温度で揮発
物による発泡が実質上ないものが、実際の溶融紡
糸において良好な均質性を示すので、このような
ものを「実質上均質な光学的異方性ピツチ」と呼
ぶ。
In the present invention, further, regarding the homogeneity of the pitch,
The measurement result of the IP content mentioned above was small enough that solid particles (particle size 1μ) were observed on the pitch cross section by reflection microscope observation.
A material with substantially no foaming caused by volatile matter at the melt-spinning temperature exhibits good homogeneity in actual melt-spinning. It is called "anisotropic pitch".

本発明に於いては、IP含有率が約20%以下のも
のを実質上均質な光学的異方性ピツチと呼ぶこと
にする。
In the present invention, a pitch having an IP content of about 20% or less is referred to as a substantially homogeneous optically anisotropic pitch.

IPを20%より多く含有するピツチの場合、また
はIPが20%以下であつてもAP中に分散するIPの
形状が比較的大きい場合には、高粘度のAPと低
粘度のIPとの明らかな二相の混合物であるため
に、粘度の著しく異なるピツチ混合物を紡糸する
ことになり、糸切れ頻度が高く、高速紡糸がし難
く、十分細い繊維太さのものが得られず、また、
繊維太さにもバラツキがあり、結果として高性能
の炭素繊維が得られない。また、溶融紡糸のと
き、ピツチ中に不融性の固体微粒子や低分子量の
揮発性物質を含有すると、紡糸したピツチ繊維に
気泡や固形異方を含有することになり紡糸性が阻
害されることはいうまでもない。
In the case of pitches containing more than 20% IP, or even if the IP is less than 20%, the shape of the IP dispersed in the AP is relatively large, there is a clear distinction between high viscosity AP and low viscosity IP. Because it is a two-phase mixture, a pitch mixture with significantly different viscosities must be spun, resulting in frequent yarn breakage, difficulty in high-speed spinning, and difficulty in obtaining sufficiently thin fibers.
There are also variations in fiber thickness, and as a result, high-performance carbon fibers cannot be obtained. Additionally, during melt spinning, if the pitch contains infusible solid fine particles or low molecular weight volatile substances, the spun pitch fibers will contain air bubbles and solid anisotropy, which will impede the spinnability. Needless to say.

本発明でいう、「ピツチの軟化点」とは、ピツ
チの固−液転移温度をいう。これは差動走査型熱
量計を用い、ピツチの融解又は凝固する潜熱の
吸、放出ピーク温度から求められる。この温度は
ピツチ試料について他のリングアンドボール法、
微量融点法などで測定したものと±10℃の範囲で
一致する。
In the present invention, the "softening point of pitch" refers to the solid-liquid transition temperature of pitch. This is determined using a differential scanning calorimeter from the peak temperature of absorption and release of latent heat during melting or solidification of the pitch. This temperature is suitable for other ring-and-ball methods,
The results agree within a range of ±10°C with those measured using the micro-melting point method.

本発明でいう「低軟化点」とは、230℃〜320℃
の範囲の軟化点を意味する。該軟化点はピツチの
溶融紡糸温度と密接な関係がある。こゝにおい
て、紡糸温度とは、そのピツチを紡糸するために
紡糸装置の内部でピツチを溶融状態とする際の最
適なピツチの温度であつて、温度分布がある場合
はその最も高い部分の温度を意味する。それは必
らずしも紡糸口の温度ではなく、通常は、押出機
の脱気部分の近傍の温度である。ピツチにより多
少相違があるが、通常の紡糸法で紡糸する場合、
一般に軟化点より60℃〜100℃高い温度が紡糸に
適した粘度を示す温度である。従つて、320℃よ
り高い軟化点を示すピツチの場合、熱分解重縮合
が起る380℃より高い温度になることもあり、分
解ガスの発生および不融物の生成により紡糸性が
阻害されることはいうまでもなく、紡糸したピツ
チ繊維に気泡や固形異物を含有し、欠陥の原因と
なる。一方、230℃以下の低い軟化点を示すピツ
チの場合、不融化処理工程において低温で長時間
の処理が必要になるなど、複雑で高価な処理が必
要となり、いずれも好ましくない。
In the present invention, "low softening point" means 230℃ to 320℃
means a softening point in the range of The softening point is closely related to the pitch melt spinning temperature. In this case, the spinning temperature refers to the optimum temperature of the pitch when the pitch is brought into a molten state inside the spinning device in order to spin the pitch, and if there is a temperature distribution, it is the temperature at the highest point of the pitch. means. It is not necessarily the temperature at the spinneret, but usually the temperature near the degassing section of the extruder. There are some differences depending on the pitch, but when spinning using the normal spinning method,
Generally, a temperature 60°C to 100°C higher than the softening point is the temperature at which the viscosity is suitable for spinning. Therefore, in the case of pitch exhibiting a softening point higher than 320°C, the temperature may be higher than 380°C, where thermal decomposition polycondensation occurs, and spinnability is inhibited by the generation of cracked gas and the formation of infusible substances. Needless to say, the spun pitch fibers contain air bubbles and solid foreign matter, which can cause defects. On the other hand, in the case of pitch exhibiting a low softening point of 230° C. or lower, complicated and expensive treatments such as long-term treatment at low temperatures are required in the infusibility treatment step, which are both undesirable.

本発明でいう、ピツチ構成成分でのn−ヘプタ
ン可溶分、ヘプタン不溶分、ベンゼン不溶分、キ
ノリン不溶分は、次のように測定される。すなわ
ち、粉末ピツチを1μmの平均孔径を有する円筒
フイルターに入れ、ソツクスレー抽出器を用い
て、n−ヘプタンで20時間熱抽出して、可溶分を
定量してn−ヘプタン可溶分とし、不溶残分をn
−ヘプタン不溶分として定量し、次にこれをベン
ゼンで20時間熱抽出して得られる不溶残分をベン
ゼン不溶分とする。
In the present invention, the n-heptane soluble content, heptane insoluble content, benzene insoluble content, and quinoline insoluble content in pitch constituent components are measured as follows. That is, a powder pitch was placed in a cylindrical filter with an average pore size of 1 μm, and heat extracted with n-heptane for 20 hours using a Soxhlet extractor to quantify the soluble content, which was determined as the n-heptane soluble content, and the insoluble content was determined as n-heptane soluble content. The remainder is n
- Quantitate as heptane insoluble matter, then heat-extract it with benzene for 20 hours, and let the insoluble residue obtained be the benzene insoluble matter.

また、粉末ピツチをキノリンを溶剤としてJIS
−K−2425に基づいて遠心分離法で不溶分を測定
しキノリン不溶分が得られる。またベンゼン不溶
でキノリン可溶の成分は、上述の測定でベンゼン
不溶分含有率からキノリン不溶分含有率を差引い
て求められる。
In addition, JIS powder pitch is prepared using quinoline as a solvent.
-K-2425, the insoluble content is measured by centrifugation and the quinoline insoluble content is obtained. The benzene-insoluble and quinoline-soluble components can be determined by subtracting the quinoline-insoluble content from the benzene-insoluble content in the above measurement.

このような構成成分の分別定量は、例えば石油
学会誌第20巻第1号、第45頁(1977年)に記載の
方法により行なうことができる。
Such fractional quantification of the constituent components can be carried out, for example, by the method described in Journal of the Japan Petroleum Institute, Vol. 20, No. 1, p. 45 (1977).

次に、本発明をさらに詳しく説明する。 Next, the present invention will be explained in more detail.

従来、ピツチ製造用の一般的原料である重質炭
化水素油、タール、市販ピツチ等を、反応槽で
380℃〜500℃の温度にて撹拌しかつ不活性ガスで
脱揮しつつ、十分に熱分解重縮合して、残留ピツ
チのAPを高める方法が知られている。このよう
な方法では原料または温度にもよるが、一般に
APが80%以上となるときは、熱分解重縮合反応
が進みすぎキノリン不溶分も70重量%以上と大き
くなり、IPも微小球状の分散状態とはなりにく
く、かつ軟化点が300℃以上、多くの場合330℃以
上にもなる。
Traditionally, common raw materials for making pitutchi, such as heavy hydrocarbon oil, tar, and commercially available pitutchi, were processed in a reaction tank.
A method is known in which the AP of the residual pitch is increased by sufficiently carrying out thermal decomposition polycondensation while stirring and devolatilizing with an inert gas at a temperature of 380°C to 500°C. Depending on the raw material or temperature, such methods generally
When AP is 80% or more, the thermal decomposition polycondensation reaction progresses too much and the quinoline insoluble content increases to 70% by weight or more, the IP is difficult to form a microspherical dispersed state, and the softening point is 300℃ or more. Temperatures often exceed 330°C.

そこで本発明者は、先に熱分解重縮合を半ばで
打切つてその重縮合物を350℃〜400℃の範囲の温
度で保持して静置し、下層に密度の大きいADを
成長熟成させつつ沈積し、これを、上層の密度の
小さいIPの多い部分より分離して取り出すことに
よる、AP濃度の大きな光学的異方性ピツチの製
造方法に想到し、先に特願昭55−99646号(特開
昭57−119984号公報参照)として出願した。本発
明はこの方法をさらに改良した新規な製造方法に
関する。
Therefore, the present inventors first stopped the pyrolysis polycondensation in the middle, held the polycondensate at a temperature in the range of 350°C to 400°C, and allowed it to stand still while growing and aging the high-density AD in the lower layer. He came up with a method for producing optically anisotropic pitches with a high AP concentration by separating and extracting the deposited IP from the upper layer, which has a low density and a large amount of IP. (Refer to Japanese Patent Application Laid-Open No. 119984/1984). The present invention relates to a new manufacturing method that further improves this method.

本発明はAPを適度に含みそして未だ過度に重
質化されていない炭素質ピツチに、その溶融状態
で、遠心分離操作を加えることにより、AP部分
はIP部分よりも比重が大きいために迅速に沈降
し、合体成長しつつ下層(遠心力方向の層)へ集
積し、APが約80%以上で連続相を成し、その中
にわずかにIPを島状または微小な球状体の形で包
含するピツチが下層となり、一方上層はIPが大部
分で、その中にAPが微小な球状体で分散してい
る形態のピツチとなる。次いで、この上層と下層
との界面が明瞭であつて、しかも上層と下層の溶
融状態での粘度等が大きく異ることを利用して、
下層を上層より分離して取出し、軟化点の低い
AP含有率の大きい光学的異方性炭素質ピツチを
得ることを含む。
In the present invention, by applying a centrifugal separation operation to a carbonaceous pitch that contains an appropriate amount of AP and is not yet excessively heavy in its molten state, the AP part has a higher specific gravity than the IP part, so It settles, coalesces, and grows while accumulating in the lower layer (layer in the direction of centrifugal force), forming a continuous phase with approximately 80% or more AP, which contains a small amount of IP in the form of islands or minute spherules. The lower layer consists of the pitches that contain the particles, while the upper layer consists mostly of IP, with APs dispersed in tiny spherical bodies. Next, taking advantage of the fact that the interface between the upper and lower layers is clear and that the viscosity of the upper and lower layers in the molten state is greatly different,
Separate the lower layer from the upper layer and take it out, which has a low softening point.
It involves obtaining an optically anisotropic carbonaceous pitch with a high AP content.

まず遠心分離工程にかける原料ピツチとして
は、軟化点が好ましくは260℃以下であり、AP含
有率が約20%〜約70%であり、好ましくは含まれ
るAPの大部分または実質的に全てが直径500μm
以下、好ましくは300μm以下の球状体の状態に
あるピツチを使用する。すなわち、本発明のピツ
チ製造方法は、上述のような特性を有する原料ピ
ツチを調製し、これを溶融状態に保ち、AP球状
体が遠心力場で合体しつゝ容易に下方へ沈降し、
かつピツチ成分の熱分解重縮合反応が顕著に進行
しない条件下、すなわち中間体炭素質ピツチの軟
化点以上、好ましくは260℃〜390℃の温度範囲、
さらに好ましくは330℃〜360℃の温度範囲で、温
度と遠心力加速度の大きさに対応して十分かつ必
要な時間だけ遠心分離操作を加え、下層に密度の
大きいAPを連続相として集積させ、これを上層
のより密度の小さいIPを多く含む部分から分離し
て取出すことを含む。
First, the raw material pitch to be subjected to the centrifugation step preferably has a softening point of 260°C or lower and an AP content of about 20% to about 70%, preferably most or substantially all of the AP contained. Diameter 500μm
Hereinafter, pitches in the form of spheres of preferably 300 μm or less are used. That is, in the method for producing pitches of the present invention, a raw material pitch having the above-mentioned characteristics is prepared, kept in a molten state, AP spheres coalesce in a centrifugal force field, and easily settle downward.
and under conditions in which the thermal decomposition polycondensation reaction of the pitch component does not proceed significantly, that is, the temperature range is higher than the softening point of the intermediate carbonaceous pitch, preferably in the range of 260°C to 390°C,
More preferably, in a temperature range of 330°C to 360°C, centrifugation is performed for a sufficient and necessary time depending on the temperature and the magnitude of centrifugal acceleration to accumulate AP with a high density in the lower layer as a continuous phase, This involves separating and extracting this from the lower-density portion of the upper layer that contains a large amount of IP.

遠心分離操作とは、流体に高速回転作用を与
え、流体中のより比重の大きい相を下層(遠心力
の方向)へ集め、これを分離する処理操作であ
り、その実施態様の一つとしていわゆる遠心分離
機による操作、特に連続的に重相と軽相を分離排
出する連続型遠心分離機、液体サイクロン装置な
どを使用することが有利である。
A centrifugal separation operation is a processing operation that applies high-speed rotation to a fluid, collects a phase with a higher specific gravity in the fluid to a lower layer (in the direction of centrifugal force), and separates this. One of its implementations is the so-called It is advantageous to use a centrifugal operation, in particular a continuous centrifuge, a hydrocyclone device, etc., which continuously separates and discharges heavy and light phases.

前記遠心分離工程にかける原料ピツチの特性と
して、まず、APの含有率が20%より小さいとき
は、遠心分離工程での下層ピツチの収率が小さく
なるという欠点がある。また、下層ピツチの軟化
点は高くなり、加工性がやゝ劣るものが得られる
ので好ましくない。一方、APの含有率が70%以
上の大きいものを用いると、一般にピツチ全体の
分子量が過大であり、遠心分離工程で上層と下層
の分離の不良であるという欠点がみられる。ま
た、たとえ分離したとしても生成する下層ピツチ
の軟化点が高くなるという結果をもたらす。
As for the characteristics of the raw material pitch to be subjected to the centrifugation process, firstly, when the AP content is less than 20%, there is a drawback that the yield of the lower layer pitch in the centrifugation process is low. Furthermore, the softening point of the lower layer pitch becomes high, resulting in a product with somewhat inferior workability, which is not preferable. On the other hand, when a large AP content of 70% or more is used, the overall molecular weight of the pitch is generally too large, resulting in poor separation of the upper and lower layers during the centrifugation process. Furthermore, even if separated, the resulting lower layer pitch will have a higher softening point.

したがつて、本発明の光学的異方性ピツチを得
るためには、AP含有率として約20%以上約70%
以下のもの、より好ましくは約30%〜約50%の範
囲にあるものを、遠心分離工程にかける。さら
に、この段階のAPの好ましい形態について述べ
ると、APがまだあまり合体の進んでいない直径
が500μm以下の、真球体に近い状態で分散して
いるピツチ、さらに好ましくは直径が300μm以
下の、真球体に近い状態で分散しているピツチ
を、該遠心分離工程にかけることが望ましい。
Therefore, in order to obtain the optically anisotropic pitch of the present invention, the AP content should be approximately 20% or more and approximately 70%.
The following, more preferably in the range of about 30% to about 50%, are subjected to a centrifugation step. Furthermore, the preferred form of the AP at this stage is that the AP has not yet fully coalesced and is dispersed in a state close to a true sphere with a diameter of 500 μm or less, and more preferably a true sphere with a diameter of 300 μm or less. It is desirable to subject pitches that are dispersed in a nearly spherical state to the centrifugation step.

また、本発明においては、遠心分離操作へかけ
る前のピツチの組成として、キノリン不溶分が30
重量%以下の含有率であり、同時にベンゼン不溶
でキノリン可溶の成分が25重量%以上含有するも
のが好ましい。
In addition, in the present invention, the composition of the pitch before centrifugation is such that the quinoline insoluble content is 30%
Preferably, the content is 25% by weight or less, and at the same time 25% by weight or more of a component that is insoluble in benzene and soluble in quinoline.

さらに詳しく説明すれば、該遠心分離操作にか
けるピツチのキノリン不溶分が30重量%より多く
含有されているとき、またはベンゼン不溶でキノ
リン可溶な成分が25重量%より少く含有されてい
るときは、ふつうは、重質層のAP中にIPの大き
な球状体又は塊状体が残存しやすく、それを回避
するためには非常に高い温度又は大きな遠心力、
又は大きな滞留時間をとらねばならず、工程を不
経済なものにするし、分離された光学的異方性ピ
ツチ中のキノリン不溶分が約70重量%以上に濃縮
される傾向が生じ、その軟化点も高くなり、紡糸
性にも劣り、製品炭素材料の性能としても良いも
のが得にくい。
More specifically, when the pitch to be subjected to the centrifugal separation contains more than 30% by weight of quinoline-insoluble components, or less than 25% by weight of benzene-insoluble and quinoline-soluble components, , Usually, large spherules or lumps of IP tend to remain in the AP of the heavy layer, and to avoid this, very high temperature or large centrifugal force,
Otherwise, a long residence time is required, making the process uneconomical, and the quinoline insoluble content in the separated optically anisotropic pitch tends to be concentrated to about 70% by weight or more, resulting in its softening. The carbon material has a high score, the spinnability is poor, and it is difficult to obtain a carbon material with good performance.

次に、該遠心分離工程の好ましい条件について
説明すると、使用温度は遠心力の大きさにもよる
が、中間体炭素質ピツチの軟化点以上好ましくは
260℃〜390℃、さらに好ましくは330℃〜360℃の
範囲である。この範囲内の所定の一定温度でもよ
く、また必らずしも一定温度でなくてもよい。
Next, to explain the preferable conditions for the centrifugation step, the operating temperature depends on the magnitude of the centrifugal force, but is preferably at least the softening point of the intermediate carbonaceous pitch.
The temperature range is 260°C to 390°C, more preferably 330°C to 360°C. A predetermined constant temperature within this range may be used, and the temperature does not necessarily have to be constant.

この工程では、APの多くの部分を遠心力方向
へ沈積させ合体せしめることが主目的であり、熱
分解および重縮合反応はできるだけ避ける必要が
ある。従つて400℃以上の温度は好ましくない
し、また必要以上の高温は遠心分離装置の長時間
の連続運転を難しくするが、上述の温度では、そ
の問題もない。また上述の範囲よりも低温ではピ
ツチ系全体の、特にAP部分の粘度が大きいため
下層AP中に共沈したIPが脱けにくく、長時間の
かつ非常に大きいGを与えても分離が難しくな
る。
In this step, the main purpose is to deposit and coalesce many parts of AP in the direction of centrifugal force, and it is necessary to avoid thermal decomposition and polycondensation reactions as much as possible. Therefore, a temperature of 400° C. or higher is not preferable, and an unnecessarily high temperature makes it difficult to operate the centrifugal separator continuously for a long time, but at the above-mentioned temperature, there is no such problem. Furthermore, at temperatures lower than the above-mentioned range, the viscosity of the entire pitch system, especially the AP part, is high, making it difficult for the IP co-precipitated in the lower AP layer to come off, making it difficult to separate it even if a very large G is applied for a long time. .

該遠心分離工程の使用温度、遠心力の大きさお
よび滞留時間と関係が深いのは使用するピツチの
軟化点である。すなわち、上述の温度範囲を用い
るためには、該遠心分離工程にかけるピツチの軟
化点は260℃以下であることが好ましい。これ以
上高いものは、上述の温度範囲では、ピツチの特
にAP部分の溶融粘度が大きすぎて十分なAPの遠
心分離を達成するためには、過度に長い滞留時間
又は過大な遠心力を要する。
The softening point of the pitch used is closely related to the temperature used, the magnitude of the centrifugal force, and the residence time in the centrifugation step. That is, in order to use the above-mentioned temperature range, the softening point of the pitch to be subjected to the centrifugation step is preferably 260° C. or lower. If the temperature is higher than this, the melt viscosity of the pitch, especially the AP portion, is too high in the above temperature range, and an excessively long residence time or excessive centrifugal force is required to achieve sufficient centrifugation of AP.

本発明の特徴である該遠心分離操作の遠心力加
速度は、10000G以下で実施することが好まし
い。一方、数10分間という滞留時間をとるなら
ば、極めて小さい遠心力でもよい。技術的ならび
に経済的理由から、少なくとも50G以上を用いる
べきであり、3000G程度またはそれ以下が最も実
用的であり、このような遠心力加速度を用いれば
数分間の滞留時間で目的を達することができる。
The centrifugal force acceleration of the centrifugal separation operation, which is a feature of the present invention, is preferably carried out at 10,000 G or less. On the other hand, if a residence time of several tens of minutes is required, an extremely small centrifugal force may be sufficient. For technical and economical reasons, at least 50G or more should be used, and around 3000G or less is most practical, and with such centrifugal acceleration the objective can be achieved with a residence time of several minutes. .

また、該遠心分離工程の使用温度をより低く、
遠心力をより小さく、かつ滞留時間をより短くす
るために、原料ピツチの粘度を低下させる添加
物、例えば芳香族含有率の高い低軟化点のピツチ
等を用いることもできるが、通常はその必要がな
い。
In addition, the temperature used in the centrifugation step can be lowered,
In order to reduce the centrifugal force and shorten the residence time, additives that reduce the viscosity of the raw pitch, such as pitch with a high aromatic content and low softening point, can be used, but this is usually not necessary. There is no.

いずれにしても、本発明の方法によつて適度に
APを含有する炭素質ピツチに上述の遠心分離操
作を加えて、濃縮分離することにより、AP含有
率が80%以上の光学的異方性ピツチを容易に得る
ことができ、特にAP含有率が95%以上のものを
短時間に、経済的に、得ることができ、しかもそ
の軟化点は十分に低く、230℃〜320℃の範囲にあ
る。
In any case, by the method of the present invention, a moderate amount of
By applying the above-mentioned centrifugation to the carbonaceous pitch containing AP and concentrating it, it is possible to easily obtain an optically anisotropic pitch with an AP content of 80% or more. 95% or more can be obtained in a short time and economically, and its softening point is sufficiently low, ranging from 230°C to 320°C.

このような高いAP濃度と低い軟化点とを有す
る光学的異方性ピツチを短時間に、容易に製造す
る方法は他に類をみないものであり、これが本発
明の大きな特徴のひとつである。
The method for easily producing optically anisotropic pitches with such a high AP concentration and low softening point in a short time is unique, and this is one of the major features of the present invention. .

そして、このAP含有率の高い、特に95%以上
のAP含有率の、軟化点が230℃〜320℃の範囲の
光学的異方性ピツチは、溶融紡糸加工特性におい
て優れ、その均質性と高い分子配向性のために、
これから製造した炭素繊維および黒鉛繊維は特に
引張り強度、弾性率に優れたものとなる。
And this optically anisotropic pitch with a high AP content, especially an AP content of 95% or more, with a softening point in the range of 230°C to 320°C, has excellent melt spinning processing properties, and its homogeneity and high Due to molecular orientation,
Carbon fibers and graphite fibers produced from this have particularly excellent tensile strength and elastic modulus.

本発明のピツチの改良された製造方法は、上述
のように、適度のAPを含有し、完全には熱分解
および重縮合されていない中間体炭素質ピツチを
遠心分離工程にかけ、APを凝縮して抜き出すこ
とに特徴がある。
As described above, the improved method for producing pitch of the present invention involves subjecting intermediate carbonaceous pitch, which contains a moderate amount of AP and has not been completely thermally decomposed and polycondensed, to a centrifugation step to condense the AP. It is characterized by extracting it.

この方法において使用する適度のAPを含有す
る中間体炭素質ピツチの製法については、本発明
では特に限定するものではなく、如何なる方法で
製造したものも包含するが、特に、次に述べる方
法により製造することが容易である。
The method for producing the intermediate carbonaceous pitch containing an appropriate amount of AP used in this method is not particularly limited in the present invention, and includes products produced by any method, but in particular, production by the method described below. It is easy to do.

すなわち、出発原料として石油工業又は石炭工
業より副生するピツチ原料であつて、芳香族炭素
を多く含有する、沸点400℃以上の炭化水素を多
く含む、いわゆる重質炭化水素油タール、または
ピツチを使用し、特に石油の接触分解工程より副
生する重質油タールから、その中に含まれる触媒
微粒子等の異物を過や遠心分離等で0.01wt%以
下となるまで除いたものが適しており、これを約
380℃〜約460℃の温度で、好ましくは400℃〜430
℃の温度で、常圧下不活性ガスの流通下で、分解
生成物などの脱揮を促進しつつ、熱分解重縮合反
応を主とする熱反応に供し、前述の遠心分離工程
にかけるために適した特性範囲内のピツチが生成
した時点でこの反応を止め、遠心分離工程へ移
す。この際の反応を止める時期は、出発原料の特
性、不活性ガスの流速、反応温度の組合せによつ
て予め実験的に決めることができる。この場合の
不活性ガスの流量は、反応容器の形状液相滞留物
の量に支配され、特定はできないが、一般に液相
滞留物1Kg当り1/分以上の不活性ガスを流さ
ないと、目的のピツチを得ることは難しい。また
この場合、ガスは液相の表面上を流しても、液相
中にバブリングさせてもよい。また、別の方法で
上述のものと同じ出発原料を用いて、これを約
380℃〜約460℃の温度、好ましくは400℃〜430℃
の温度で熱分解重縮合を主とする熱反応を行なう
際、不活性ガスの流通を行なわず、還流の多い常
圧下または2Kg/cm2〜200Kg/cm2の加圧下で行な
い、分解生成物などの低分子量成分の脱揮除去
を、該熱分解重縮合を主とする熱反応の後、約
300℃〜約380℃、好ましくは330℃〜370℃の温度
で減圧下の蒸溜または不活性ガスの流通下のスト
リツピング蒸溜によつて行なうことも可能であ
る。この場合も、出発原料の特性に対応して熱分
解重縮合の温度と時間、脱揮蒸溜の温度と時間を
実験的に選び、前述の遠心分離工程へかけるため
の適正な範囲内の特性を有するピツチを調製する
ことができる。
That is, as a starting material, so-called heavy hydrocarbon oil tar or pitch, which is a by-product of the oil industry or coal industry and contains a lot of aromatic carbon and a lot of hydrocarbons with a boiling point of 400°C or higher, is used. Particularly suitable is heavy oil tar, which is a by-product of the petroleum catalytic cracking process, from which foreign substances such as catalyst particles have been removed by filtering or centrifugation until the amount is 0.01wt% or less. , this is about
At a temperature of 380℃ to about 460℃, preferably 400℃ to 430℃
℃, under atmospheric pressure and inert gas flow, while promoting the devolatilization of decomposition products etc., to undergo a thermal reaction mainly consisting of pyrolysis polycondensation reaction, and then subjected to the above-mentioned centrifugation process. When pitches with suitable properties are produced, the reaction is stopped and the process is moved to a centrifugation step. The timing at which the reaction is stopped can be determined in advance experimentally based on a combination of the characteristics of the starting materials, the flow rate of the inert gas, and the reaction temperature. The flow rate of the inert gas in this case is controlled by the shape of the reaction vessel and the amount of liquid phase retentate, and cannot be specified, but in general, if the inert gas is not flowed at a rate of 1/min or more per 1 kg of liquid phase retentate, the purpose of the flow is determined. It is difficult to get the right pitch. In this case, the gas may flow over the surface of the liquid phase or may be bubbled into the liquid phase. Alternatively, using the same starting materials as described above, this can be reduced to approx.
Temperature from 380℃ to about 460℃, preferably 400℃ to 430℃
When carrying out a thermal reaction mainly consisting of thermal decomposition polycondensation at a temperature of The devolatilization removal of low molecular weight components such as
It is also possible to carry out distillation under reduced pressure at a temperature of 300 DEG C. to about 380 DEG C., preferably 330 DEG C. to 370 DEG C., or by stripping distillation under a flow of inert gas. In this case as well, the temperature and time of pyrolysis polycondensation and the temperature and time of devolatilization are experimentally selected in accordance with the characteristics of the starting materials, and the characteristics are determined to be within an appropriate range for the centrifugation process described above. Pitch can be prepared with

前述の説明で用いた不活性ガスとは400℃前後
の温度で、ピツチ物質と顕著な化学反応を生じな
いガスである。例えばN2、Ar、スチームのほか
低分子量の炭化水素が実用的である。いうまでも
なくこれらのガスはリサイクルして再使用するこ
とができる。
The inert gas used in the above explanation is a gas that does not cause a significant chemical reaction with the pitch substance at a temperature of around 400°C. For example, N 2 , Ar, steam, and other low molecular weight hydrocarbons are practical. Needless to say, these gases can be recycled and reused.

また、本発明のピツチ製造方法においては、そ
の遠心分離工程の結果副製される上層ピツチ、す
なわち大部分がIPから成るピツチは、再度軽度の
熱分解重縮合反応を加え、次いで遠心分離工程に
かけるために適当な処理を行なうことができる。
このような操作を反復することによつて、最終的
なピツチの収率を向上させることができる。
In addition, in the pitch production method of the present invention, the upper layer pitch produced as a by-product as a result of the centrifugation step, that is, pitch consisting mostly of IP, is subjected to a mild pyrolysis polycondensation reaction again, and then subjected to the centrifugation step. Appropriate processing can be performed to apply the same.
By repeating such operations, the final pitch yield can be improved.

さらに、本発明の変法のひとつとして、遠心分
離工程の後に、適当な後処理仕上げ工程を加える
ことも可能である。すなわち、遠心分離工程で特
に短い滞留時間を用いて、軟化点は十分低いが、
AP含有率が約80%〜90%と、やゝ不充分な光学
的異方性ピツチを製造し、次にこれを300℃〜430
℃の温度で熱重質化反応処理を加えて、最終ピツ
チ製品の特性が狭い品質管理限界内に入るように
調節する方法である。
Furthermore, as a variant of the invention, it is also possible to add a suitable post-treatment finishing step after the centrifugation step. That is, by using a particularly short residence time in the centrifugation step, the softening point is sufficiently low, but
A pitch with an insufficient optical anisotropy of approximately 80% to 90% AP content was produced, and then this was heated at 300°C to 430°C.
This method involves the addition of a thermoheavy reaction treatment at a temperature of 10°C to adjust the properties of the final pitch product to within narrow quality control limits.

APを80〜90%含有する炭素質ピツチはIPを10
〜20%含有しているが、このIP部分はさらに熱重
質化反応処理を少し加えることによつて減少し、
また軟化点も次第に上昇することがわかつている
ので、適度に調節された温度と処理時間で、遠心
分離後のピツチを熱重質化することによつて、
APの含有率を95%以上、軟化点を280℃〜300℃
に調節することができ、この方法によつてその後
の工程すなわち溶融紡糸、不融化、炭化の工程条
件はほゞ一定で管理でき、また製品の炭素繊維の
品質も安定するという効果がある。
Carbonaceous pitch containing 80-90% AP has an IP of 10
It contains ~20%, but this IP portion can be further reduced by adding a small amount of thermal heavyization reaction treatment.
It is also known that the softening point gradually increases, so by thermograviding the pitch after centrifugation at appropriately controlled temperatures and processing times,
AP content over 95%, softening point 280℃~300℃
By this method, the process conditions of the subsequent steps, ie, melt spinning, infusibility, and carbonization, can be controlled to be approximately constant, and the quality of the carbon fiber of the product is also stabilized.

また、この後処理仕上げ工程には、熱重質化反
応以外に溶剤抽出、溶剤による洗浄なども用いう
ることはいうまでもない。
Further, it goes without saying that in this post-treatment finishing step, solvent extraction, washing with a solvent, etc. can be used in addition to the thermal heavy-weighting reaction.

次に本発明に従つて製造された光学的異方性炭
素質ピツチを用いて、炭素繊維およびいわゆる黒
鉛繊維を製造する方法およびその特徴について説
明する。
Next, a method for producing carbon fibers and so-called graphite fibers using the optically anisotropic carbonaceous pitch produced according to the present invention and its characteristics will be explained.

紡糸方法は、従来、使用されている方法を採用
することができる。例えば、下方に直径0.1mm〜
0.5mmの紡糸口金を有する、金属製紡糸容器にピ
ツチを張り込み、不活性ガス雰囲気下で、280℃
〜370℃の間の一定温度にピツチを保持し、溶融
状態に保つて、不活性ガスの圧力を数百mmHgに
上げると、口金より溶融ピツチが押出され流下す
る。そこでその流下部の温度、雰囲気を制御し
つゝ、流下したピツチ繊維を高速で回転するボビ
ンに巻取るか、または集束させて、気流で引取り
つゝ下方の集積箱の中へ集積する。この際、紡糸
容器へのピツチの供給を、予め溶融したピツチ
を、ギアポンプなどで加圧供給すると、連続的に
紡糸することが可能である。さらに上述の方法
で、口金の近傍で、一定に温度制御された高速で
下降するガスでピツチ繊維を延糸しつゝ引取り、
下方のベルトコンベア上に長繊維又は短繊維、あ
るいは相互に交絡したマツト状のピツチ繊維不織
布を作る方法も用いうる。
As the spinning method, a conventionally used method can be adopted. For example, downward diameter 0.1mm~
Pitch was placed in a metal spinning container with a 0.5 mm spinneret, and heated at 280℃ under an inert gas atmosphere.
The pitch is held at a constant temperature between ~370°C and kept in a molten state, and when the pressure of the inert gas is raised to several hundred mmHg, the molten pitch is extruded from the nozzle and flows down. There, while controlling the temperature and atmosphere in the downstream area, the pitch fibers that have flowed down are wound up on a bobbin that rotates at high speed, or are collected and collected in a collection box below while being taken up by an air current. At this time, continuous spinning is possible by supplying pitch to the spinning container by supplying pre-melted pitch under pressure using a gear pump or the like. Furthermore, in the above-mentioned method, the pitch fibers are drawn and drawn using a gas that descends at a high speed with a constant temperature control near the spinneret.
It is also possible to use a method of producing long fibers, short fibers, or a mat-like pitch fiber nonwoven fabric intertwined with each other on the lower belt conveyor.

また、周壁に紡糸口金を有する円筒状の紡糸容
器を高速で回転させ、これに溶融ピツチを連続的
に供給し、円筒紡糸器の同壁より遠心力で押し出
され、回転の作用で延糸されるピツチ繊維を集積
するような紡糸方法も用いうる。
In addition, a cylindrical spinning vessel with a spinneret on the peripheral wall is rotated at high speed, and molten pitch is continuously supplied to the spinning vessel, which is extruded by centrifugal force from the same wall of the cylindrical spinning machine, and drawn by the action of rotation. A spinning method in which pitch fibers are accumulated can also be used.

いずれの方法においても、本発明のピツチを用
いるときはその溶融状態で紡糸をするのに好適な
温度が、280℃〜370℃の範囲と、APの含有率が
95%以上と高いピツチを用いているにもかゝわら
ず従来よりも低いことが特徴である。従つて、紡
糸工程での熱分解や熱重合が極めて少く、その結
果紡糸後のピツチ繊維は、紡糸前のピツチ化学組
成物とほとんど同じ化学組成物であるという特徴
を有する。
In either method, when using the pitch of the present invention, the suitable temperature for spinning in the molten state is in the range of 280°C to 370°C, and the content of AP is in the range of 280°C to 370°C.
Although it uses a high pitch of over 95%, it is characterized by a lower pitch than conventional methods. Therefore, there is very little thermal decomposition or thermal polymerization during the spinning process, and as a result, the pitch fibers after spinning have a chemical composition that is almost the same as the pitch chemical composition before spinning.

また、このような低い紡糸温度においても、本
発明のピツチは、実用上ほとんどまたは完全に均
質な1相の物質のごとく挙動し、なめらかに、延
糸性良く、糸切れ頻度少なく、一定条件下ではほ
とんど一定の繊維径の繊維が紡糸できるという特
徴を有する。かくて通常は、7μm〜15μmの直
径を有するピツチ繊維が得られる。
Furthermore, even at such low spinning temperatures, the pitch of the present invention practically behaves like a nearly or completely homogeneous one-phase substance, exhibits smooth yarn drawability, low yarn breakage frequency, and can be used under certain conditions. It has the characteristic that fibers with an almost constant fiber diameter can be spun. Pitch fibers having a diameter of 7 .mu.m to 15 .mu.m are thus usually obtained.

従来のAP含有率は90%以上の光学的異方性ピ
ツチの場合、370℃〜430℃といつた高温で溶融状
態を保ち紡糸を行なつていた。そのような場合、
熱分解や熱重合が顕著に起こることからして、紡
糸後のピツチ繊維の組成構造は、紡糸前のピツチ
より炭化の進んだものとなることが多かつた。
Conventionally, in the case of an optically anisotropic pitch with an AP content of 90% or more, spinning was performed while maintaining the molten state at a high temperature of 370°C to 430°C. In such a case,
Since thermal decomposition and thermal polymerization occur significantly, the compositional structure of the pitch fibers after spinning was often more carbonized than the pitch before spinning.

一方、本発明のピツチ繊維の場合は、紡糸前後
のピツチ組成はほとんど変らないので、仮に紡糸
工程で何らかの故障があつてもピツチ繊維として
再溶融して用いることができるという利点があ
る。
On the other hand, in the case of the pitch fiber of the present invention, since the pitch composition before and after spinning hardly changes, there is an advantage that even if some kind of failure occurs during the spinning process, it can be remelted and used as pitch fiber.

本発明の光学的異方性炭素質ピツチから、上述
のようにして得られるピツチ繊維は、それを不飽
和ポリエステル樹脂で固めて研磨し、偏光顕微鏡
で観察すると、繊維軸方向に平行な面では、全面
が光学的異方性であり、しかも、配向層面がほと
んど繊維軸方向に平行であることが認められる。
そして、もはやピツチ塊のときのAP相中に分散
していた微小なIP球状体はふつう認められない。
これは紡糸孔を通るとき、および延糸されるとき
のせん断応力によつて、さらに小さく引伸される
か、またはIPがAPと相溶したものと考えられ
る。
The pitch fiber obtained from the optically anisotropic carbonaceous pitch of the present invention as described above is solidified with unsaturated polyester resin and polished, and when observed with a polarizing microscope, it is found that the pitch fiber is It is observed that the entire surface is optically anisotropic, and moreover, the orientation layer surface is almost parallel to the fiber axis direction.
And the minute IP spherules that were dispersed in the AP phase when it was a pitch lump are usually no longer recognized.
It is thought that this is caused by the shear stress that occurs when passing through the spinning hole and when the fiber is drawn, causing it to be further stretched to a smaller extent, or because the IP is compatible with the AP.

本発明へ光学的異方性炭素質ピツチ繊維は酸化
性雰囲気内で酸化して、不溶性の繊維とした後、
不活性雰囲気中で、少くとも1000℃の温度迄加熱
することによつて、高強度、高弾性率を有する炭
素繊維とすることができる。また、さらに高い温
度、少くとも2000℃の温度迄加熱することによつ
て、高強度でありながら、非常に大きい弾性率を
有する黒鉛繊維を製造することができる。
To the present invention, the optically anisotropic carbonaceous pitch fiber is oxidized in an oxidizing atmosphere to become an insoluble fiber, and then
By heating to a temperature of at least 1000° C. in an inert atmosphere, carbon fibers having high strength and high modulus of elasticity can be obtained. Furthermore, by heating to an even higher temperature, at least 2000° C., it is possible to produce graphite fibers that have high strength and a very large elastic modulus.

前述のピツチ繊維を酸化して不融性炭素質繊維
とする工程は、温度、使用する酸化剤、反応時間
の種々の組合せが存在する。
In the process of oxidizing pitch fibers to produce infusible carbonaceous fibers, there are various combinations of temperature, oxidizing agent used, and reaction time.

一般公知の方法も使用しうるが、本発明のピツ
チは軟化点の低いことが特徴のひとつであるか
ら、公知の光学的異方性ピツチ繊維の場合よりも
より低い温度で酸化反応を行なう。さもないと、
ピツチ繊維は部分的に融着したり、巻縮したりし
て、最終的に良い製品が得られない。200℃以下
の温度で、ハロゲン、NO2、オゾン等の酸化剤を
含んだ雰囲気で短時間処理する方法もよい方法で
あるが、酸素ガス雰囲気中で、まずピツチの軟化
点より30℃〜50℃の低い温度、すなわふつうは
200℃〜240℃の温度で、十分な不融性が得られる
迄温度に応じて10分〜2時間保持し、その後必要
により約300℃迄昇温して、不融化を終了させる
方法が容易かつ確実である。また、酸化剤を特に
用いない場合は、ピツチの軟化点に応じて150℃
〜250℃の空気中で、長時間放置し、次に短時間
で300℃〜350℃に昇温する方法もとりうる。本発
明のピツチのうち軟化点が280℃以上のものは空
気中で、230℃〜250℃の温度を用いて約30分〜2
時間保持し、不融化を行なうことができるのでさ
らに好ましい。
Although generally known methods may be used, since one of the characteristics of the pitch of the present invention is a low softening point, the oxidation reaction is carried out at a lower temperature than in the case of known optically anisotropic pitch fibers. Otherwise,
The pitch fibers are partially fused or crimped, making it impossible to obtain a good final product. A good method is to treat for a short time in an atmosphere containing an oxidizing agent such as halogen, NO 2 or ozone at a temperature of 200°C or less, but first heat the pitch at 30°C to 50°C below the softening point of the pitch in an oxygen gas atmosphere. The low temperature of ℃ is normal.
An easy method is to hold the material at a temperature of 200°C to 240°C for 10 minutes to 2 hours depending on the temperature until sufficient infusibility is achieved, and then raise the temperature to approximately 300°C if necessary to complete the infusibility. and reliable. In addition, if no oxidizing agent is used, the temperature should be increased to 150℃ depending on the softening point of pitch.
It is also possible to leave it in air at ~250°C for a long time and then raise the temperature to 300°C to 350°C in a short period of time. Among the pitches of the present invention, those having a softening point of 280°C or higher are heated in air at a temperature of 230°C to 250°C for about 30 minutes to 2 hours.
It is further preferred because it can be maintained for a long time and can be rendered infusible.

次に、この不融性となつた本発明の光学的異方
性炭素質ピツチ繊維を、真空中または化学的に不
活性なアルゴンまたは高純度窒素等のガス雰囲気
中で1000℃〜2000℃の範囲内の温度迄昇温して炭
化することによつて、いわゆる高強度高弾性率の
炭素繊維が得られ、2000℃〜3000℃の範囲内の温
度迄昇温して、さらに黒鉛化反応を進めていわゆ
る黒鉛化繊維が得られる。
Next, the optically anisotropic carbonaceous pitch fiber of the present invention, which has become infusible, is heated at 1000°C to 2000°C in a vacuum or in a chemically inert gas atmosphere such as argon or high-purity nitrogen. By raising the temperature to a temperature within this range and carbonizing it, a so-called high-strength, high-modulus carbon fiber can be obtained, and by raising the temperature to a temperature within a range of 2000°C to 3000°C, a graphitization reaction is further carried out. By proceeding, so-called graphitized fibers are obtained.

本発明においては、この炭化および黒鉛化の方
法の詳細について特に限定するものではなく、一
般公知の方法を用いることができる。とにかく本
発明の製法で得られる光学的異方性炭素質ピツチ
を原料として用いた場合、室温から最終炭化温度
まで、十分大きな昇温速度で、しかもほとんど一
定の勾配で昇温し、最終炭化温度での滞留時間は
不要であるという特徴があり、最終炭化温度に到
達した直後に急冷することができる。
In the present invention, the details of the carbonization and graphitization methods are not particularly limited, and generally known methods can be used. In any case, when the optically anisotropic carbonaceous pitch obtained by the production method of the present invention is used as a raw material, the temperature is raised from room temperature to the final carbonization temperature at a sufficiently large rate and with an almost constant gradient, and the final carbonization temperature It is characterized in that no residence time is required, and rapid cooling can be performed immediately after reaching the final carbonization temperature.

このことは、炭化炉の構造を簡略化し、炭化工
程の操作を容易にする。
This simplifies the structure of the carbonization furnace and facilitates the operation of the carbonization process.

以上の説明によつて、本発明の製法による光学
的異方性炭素質ピツチは、高性能の炭素繊維また
は黒鉛繊維を製造する目的に適した、分子配列が
高配向性であり、かつ紡糸成形する上で好都合の
より低い軟化点と、実用上均質であることを併せ
持つピツチであることが理解されるであろう。ま
た、上で説明された本発明の製法による光学的異
方性炭素質ピツチは前述の特定の、かつ制御され
た方法によつて、特に効率よく製造されることが
理解されたであろう。
As described above, the optically anisotropic carbonaceous pitch produced by the production method of the present invention has a highly oriented molecular arrangement suitable for producing high-performance carbon fibers or graphite fibers, and is spin-formable. It will be understood that the pitch has both a lower softening point, which is advantageous for the purpose of manufacturing, and is practically homogeneous. It will also be appreciated that the optically anisotropic carbonaceous pitches according to the inventive process described above are particularly efficiently produced by the specific and controlled method described above.

また、本発明の製法による光学的異方性ピツチ
は、APを95%以上含有する実質上均質なピツチ
であるにも拘らず、極めて低い軟化点(320℃以
下)を有するから、十分に低い溶融紡糸温度
(380℃以下、ふつう実施態様としては280℃〜370
℃)で紡糸することができ、また、一定の所望の
特動変動巾内の品質のピツチを制御して製造する
ことが容易であるから、次の効果が得られる。
Furthermore, although the optically anisotropic pitch produced by the manufacturing method of the present invention is a substantially homogeneous pitch containing 95% or more of AP, it has an extremely low softening point (below 320°C), so it has a sufficiently low softening point. Melt spinning temperature (below 380°C, typically 280°C to 370°C)
℃), and it is easy to manufacture by controlling the quality pitch within a certain desired special fluctuation range, so the following effects can be obtained.

すなわち、熱分解重縮合の顕著な温度より十分
低い温度であり、かつ、ほゞ一定の温度で紡糸す
ることができ、また、均質なピツチとして挙動す
るから、ピツチの紡糸性(糸切れ、糸の細さ、糸
径の均一さ)が良好かつ安定しており、紡糸工程
の生産性が向上する。
In other words, the temperature is sufficiently lower than the temperature at which pyrolysis polycondensation is noticeable, and it can be spun at a nearly constant temperature, and since it behaves as a homogeneous pitch, the spinnability of the pitch (thread breakage, thread breakage, etc.) The thinness of the yarn and the uniformity of the yarn diameter are good and stable, improving the productivity of the spinning process.

さらに、紡糸中のピツチの変質が生じないた
め、製品炭素繊維の品質が安定であること、紡糸
中の分解ガスの発生および不融物の発生が極めて
少ないから、紡糸されたピツチ繊維の欠陥(気泡
または固形異物粒子の含有)が少なく、製造した
炭素繊維の強度が大きくなること、加うるに本発
明の炭素質ピツチは、実質上ほとんど全体が分子
配向性の優れた液晶状であるから、これを紡糸し
て製造した炭素繊維は繊維軸方向の黒鉛構造の配
向性がよく発達し、配向性の不良なミクロ構造の
含有率が少く、その結果弾性率が大きく、かつ強
度も大きいこと、および製造した炭素繊維は、繊
維軸に直角方向の断面の構造が、ち密で、かつフ
イブリルの断面方向の配向が小さく、明らかな同
心円状とは放射状にならないために繊維軸方向に
割れ目のないものとなること等の効果があり、優
れた品質の炭素繊維、黒鉛繊維を与える。
In addition, the quality of the product carbon fiber is stable because no deterioration occurs in the pitch during spinning, and the generation of decomposed gas and infusible matter during spinning is extremely low, resulting in defects in the spun pitch fiber. In addition, the carbon fibers of the present invention have fewer air bubbles or solid foreign particles), and the strength of the produced carbon fibers is increased.In addition, the carbonaceous pitch of the present invention is substantially entirely liquid crystalline with excellent molecular orientation. The carbon fiber produced by spinning this has a well-developed graphite structure orientation in the fiber axis direction, has a low content of poorly oriented microstructures, and as a result has a high elastic modulus and high strength. The manufactured carbon fibers have a dense cross-sectional structure in the direction perpendicular to the fiber axis, and the orientation of the fibrils in the cross-sectional direction is small, and there are no cracks in the fiber axis direction because the fibrils are not clearly concentric or radial. It provides carbon fibers and graphite fibers of excellent quality.

次に、実施例を挙げて本発明を説明するが、も
ちろん本発明の範囲はこれに限定するものではな
い。
Next, the present invention will be explained with reference to Examples, but the scope of the present invention is of course not limited thereto.

実施例 1 石油の接触分解工程から副生するタール状重質
油24Kgを、内容積約30の反応槽に充填し、415
℃の温度で、窒素ガスを反応槽上部より約71/
minの流量で吹込みながら、撹拌しつつ、4時間
熱分解重縮合反応を行ない約4.44Kgの中間体炭素
質ピツチを得た。このピツチは軟化点228℃を示
し、APを直径300μm以下の球状体で、約45%の
含有率でIPの連続相の中に包含するものであり、
キノリン不溶分を18.6wt%、ベンゼン不溶分を
51.9wt%含有するものであつた。この中間体ピツ
チはこのまゝではAPとIPの明らかな混合相であ
り、紡糸温度は十分低く、310℃〜320℃で紡糸可
能であつたが、糸切れ頻度が多く、連続紡糸は全
く困難であつた。
Example 1 24 kg of tar-like heavy oil, which is a by-product from the petroleum catalytic cracking process, was charged into a reaction tank with an internal volume of approximately 30 kg.
Nitrogen gas is introduced from the top of the reaction tank at a temperature of approximately 71°C.
The pyrolysis polycondensation reaction was carried out for 4 hours while stirring and blowing at a flow rate of min. to obtain an intermediate carbonaceous pitch weighing about 4.44 kg. This pitch exhibits a softening point of 228°C, and contains AP in the continuous phase of IP in the form of spherical bodies with a diameter of 300 μm or less at a content of about 45%.
18.6wt% quinoline insoluble content, benzene insoluble content
It contained 51.9wt%. This intermediate pitch was clearly a mixed phase of AP and IP as it was, and the spinning temperature was low enough to allow spinning at 310°C to 320°C, but the yarn broke frequently and continuous spinning was completely difficult. It was hot.

次に、この中間体ピツチ50gr.を内径30mm、高
さ150mmのアルミナ製円筒容器に充填幹し、撹拌
しつつ355℃迄昇温し撹拌を止め、355℃に保持し
つつ3時間静置し、その後水中で急冷して、容器
ごとダイヤモンドカツターで鉛直方向に二分割
し、断面を研磨して観察すると、内容物のピツチ
の相分離はまだ不十分であり、上層と下層の境界
面は不明瞭であり、また下層の部分にはAPの連
続相の他にIPの部分が約10〜12%包含されてお
り、下層のAP含有率は約88〜90%と判断され
た。
Next, 50 gr. of this intermediate pitch was filled into an alumina cylindrical container with an inner diameter of 30 mm and a height of 150 mm, and the temperature was raised to 355°C while stirring, the stirring was stopped, and the temperature was kept at 355°C for 3 hours. After that, the container was rapidly cooled in water, divided vertically into two parts with a diamond cutter, and the cross section was polished and observed. It was found that the phase separation of the contents was still insufficient, and the interface between the upper and lower layers was The lower layer contains approximately 10-12% of IP in addition to the AP continuous phase, and the AP content of the lower layer was determined to be approximately 88-90%.

次に、上記の中間体炭素質ピツチを直径32mm長
さ10mmのアルミ製遠沈管に50gr.づつ充填し355℃
に加熱して溶融状態で撹拌しておき、加熱恒温槽
を備えた遠心分離機のローターを350℃に予熱
し、これに溶融ピツチの入つた遠沈管を移し、雰
囲気温度を約350℃になるように制御しつつロー
ターを回転し、遠心力加速度を約700Gで5分間
制御し、回転を急束に止め、すぐ遠沈管を取出し
て水冷した。そして遠沈管ごと縦方向に二分しそ
の断面を観察した。この場合は明瞭に上層と下層
に分離しており、上層は微小なAP球のみを微量
含むほとんどIPの層であり、下層はその中に2%
ほどIPの微小球を含む、AP含有率が約98%の光
学的異方性ピツチでありその吸率は断面の面積比
から計算して約40%であつた。この下層ピツチを
遠沈管より割り出し、その軟化点を調べると、そ
れは248℃であつた。
Next, 50 gr. of the above intermediate carbonaceous pitch was filled into an aluminum centrifuge tube with a diameter of 32 mm and a length of 10 mm, and heated to 355°C.
Preheat the rotor of a centrifuge equipped with a heating constant temperature bath to 350℃, transfer the centrifuge tube containing the molten pitch to this, and bring the ambient temperature to about 350℃. The rotor was rotated while controlling the centrifugal force acceleration at about 700 G for 5 minutes, the rotation was abruptly stopped, and the centrifuge tube was immediately taken out and cooled with water. The centrifuge tube was then vertically divided into two and its cross section was observed. In this case, it is clearly separated into an upper layer and a lower layer, and the upper layer is almost an IP layer containing only a small amount of minute AP spheres, and the lower layer contains 2%
It was an optically anisotropic pitch with an AP content of approximately 98%, containing IP microspheres, and its absorptivity was approximately 40%, calculated from the area ratio of the cross section. This lower pitch was extracted from a centrifuge tube and its softening point was determined to be 248°C.

この下層ピツチを、直ちゆう製の小型紡糸器に
約10gr.充填し、温度330℃に保ち窒素ガス圧約
120mmHgで、直径約0.5mmの紡糸口より押出し、
下方に設けた巻取りボビンで毎分約700mで巻取
つたところ、全く糸切れなく約30分にわたつて紡
糸できた。このピツチ繊維を、常法に従つて酸化
不融化し、次いで、不活性ガス中で1300℃迄昇温
して炭化し炭素繊維を得た。
Approximately 10 gr. of this lower layer pitch was filled into a small spinning machine made by Nachiyu, and the temperature was kept at 330℃, and the nitrogen gas pressure was kept at about 330℃.
Extruded through a spinneret with a diameter of approximately 0.5 mm at 120 mmHg,
When the yarn was wound at a speed of approximately 700 m/min using a winding bobbin installed below, the yarn could be spun for approximately 30 minutes without any breakage. This pitch fiber was made infusible by oxidation according to a conventional method, and then heated to 1300° C. in an inert gas to carbonize it to obtain carbon fiber.

その炭素繊維は平均直径6.8μmであり、平均
の引張強度は、2.6GPa、引張弾性率は1.7×
102GPaであつた。またこの炭素繊維の1部を、
さらに不活性ガス中で2000℃迄昇温して得た黒鉛
繊維は、平均直径6.7μmであつて、平均の引張
強度2.2GPa、引張弾性率45×102GPaを示した。
The carbon fibers have an average diameter of 6.8μm, an average tensile strength of 2.6GPa, and a tensile modulus of 1.7×
It was 10 2 GPa. In addition, a part of this carbon fiber,
Furthermore, graphite fibers obtained by heating up to 2000° C. in an inert gas had an average diameter of 6.7 μm, an average tensile strength of 2.2 GPa, and a tensile modulus of 45×10 2 GPa.

実施例 2 実施例1と同じ中間体炭素質ピツチを用い、遠
心分離の操作もほゞ同様であつて、温度が330
℃、遠心滞留時間が1分間の場合は、下層ピツチ
の内部にIPの残存が認められ、下層AP含有率は
6本の遠沈管の平均で84%であつた。
Example 2 The same intermediate carbonaceous pitch as in Example 1 was used, the centrifugation operation was almost the same, and the temperature was 330°C.
℃, and the centrifugation residence time was 1 minute, residual IP was observed inside the lower layer pitch, and the lower layer AP content was 84% on average for the 6 centrifuge tubes.

この下層ピツチを50gr.集め、内容積100mlのガ
ラス製反応器の中で撹拌しつつ400℃で2時間、
窒素ガスを0.2/minで流しつつ、再重質化し
た。
Collect 50g of this lower layer pitch and heat it at 400℃ for 2 hours while stirring in a glass reactor with an internal volume of 100ml.
While flowing nitrogen gas at a rate of 0.2/min, it was re-heaviized.

得られたピツチはIPを2%ほど含むAP含有率
としては約98%の光学的異方性ピツチであり、そ
の軟化点は288℃であつた。このピツチは、実施
例1と同じ紡糸機で365℃の温度を用いて良好に
紡糸され、得られたピツチ繊維を常法に従つて酸
化不融化し、次いで1300℃迄昇温して炭化し、炭
素繊維を得た。その炭素繊維は、平均直径が7.2
μmであり、その平均引張強度は2.4GPa、平均
引張弾性率は2.1×102GPaであつた。
The obtained pitch was an optically anisotropic pitch containing about 2% IP and an AP content of about 98%, and its softening point was 288°C. This pitch was successfully spun using the same spinning machine as in Example 1 at a temperature of 365°C, and the resulting pitch fiber was made infusible by oxidation according to a conventional method, and then heated to 1300°C to carbonize it. , carbon fiber was obtained. Its carbon fibers have an average diameter of 7.2
μm, its average tensile strength was 2.4 GPa, and its average tensile modulus was 2.1×10 2 GPa.

実施例 3 石油の接触分解工程から副生するタール状重質
油24Kgを、内容積約30の反応槽に充填し、415
℃の温度で、窒素ガスを反応槽上部より約75/
minの流量で吹込みながら、撹拌しつつ5時間熱
分解縮合反応を行ない約4.55Kgの中間体炭素ピツ
チを得た。このピツチは軟化点252℃を示し、AP
を直径500μm以下の球状体で約70%の含有率で
IPの連続相の中に包含するものであり、キノリン
不溶分を27.1%、ベンゼン不溶分を59.9%含有す
るものであつた。この中間体ピツチはこのまゝで
はAPとIPの明らかな混合相であり、紡糸温度は
十分低く、330℃〜340℃で紡糸可能であつたが、
糸切れ頻度が多く、連続紡糸は全く困難であつ
た。
Example 3 24 kg of tar-like heavy oil produced as a by-product from the petroleum catalytic cracking process was charged into a reaction tank with an internal volume of approximately 30 kg, and
Nitrogen gas is introduced from the top of the reaction tank at a temperature of approximately 75°C.
The thermal decomposition and condensation reaction was carried out for 5 hours while stirring and blowing at a flow rate of 10 min to obtain intermediate carbon pitches weighing about 4.55 kg. This pitch shows a softening point of 252℃ and has an AP
with a content of about 70% in spherical bodies with a diameter of 500 μm or less.
It was included in the continuous phase of IP, and contained 27.1% of quinoline insoluble matter and 59.9% of benzene insoluble matter. This intermediate pitch was clearly a mixed phase of AP and IP as it was, and the spinning temperature was sufficiently low that it could be spun at 330°C to 340°C.
The yarn broke frequently, making continuous spinning completely difficult.

次に、この中間体ピツチ50gr.を内径30mm、高
さ150mmのアルミ製円筒容器に充填し、撹拌し
つゝ355℃迄昇温し撹拌を止め、355℃に保持しつ
つ3時間静置し、その後水中で急冷して容器ごと
ダイヤモンドカツターで鉛直方向に二分割し、断
面を研磨して観察すると、内容物のピツチの相分
離はほとんど起つていない状態であり、上層と下
層の境界面は不明瞭であり、また下層の部分には
APの連続相の他にIPの部分が約20%包含されて
おり、下層のAP含有率は約80%と判断された。
Next, 50 gr. of this intermediate pitch was filled into an aluminum cylindrical container with an inner diameter of 30 mm and a height of 150 mm, the temperature was raised to 355°C while stirring, stirring was stopped, and the container was left standing for 3 hours while being maintained at 355°C. After that, the container was rapidly cooled in water, divided vertically into two with a diamond cutter, and when the cross section was polished and observed, it was found that almost no phase separation had occurred in the pitch of the contents, and there was no boundary between the upper and lower layers. The surface is unclear, and the lower part has
In addition to the AP continuous phase, approximately 20% of the IP portion was included, and the AP content of the lower layer was determined to be approximately 80%.

次に、上記の中間体炭素質ピツチを直径32mm長
さ100mmのアルミ製遠沈管に50gr.づつ充填し355
℃に加熱して溶融状態で撹拌しておき、加熱恒温
槽を備えた遠心分離機のローターを350℃に予熱
し、これに溶融ピツチの入つた遠心管を移し、雰
囲気温度を約350℃になるように制御しつつロー
ターを回転し、遠心力加速度を約2500Gで5分間
制御し、回転を急速に止め、すぐ遠沈管を取出し
て水冷した。そして遠沈管ごと縦方向に二分しそ
の断面を観察した。この場合は明瞭に上層と下層
に分離しており、上層は微小なAP球のみを微量
含むほとんどIPの層であり、下層はその中に2%
ほどIPの微小球を含む、AP含有率が約98%の光
学的異方性ピツチでありその収率は断面の面積比
から計算して約60%であつた。この下層ピツチを
遠沈管より割り出し、その軟化点を調べると、そ
れは266℃であつた。
Next, fill an aluminum centrifuge tube with a diameter of 32 mm and a length of 100 mm with 50 gr. of the above intermediate carbonaceous pitch.
℃ and stir it in a molten state, preheat the rotor of a centrifuge equipped with a heating constant temperature bath to 350℃, transfer the centrifuge tube containing the molten pitch to this, and bring the ambient temperature to about 350℃. The rotor was rotated while controlling the centrifugal force acceleration at approximately 2500 G for 5 minutes, the rotation was rapidly stopped, and the centrifuge tube was immediately taken out and cooled with water. The centrifuge tube was then vertically divided into two and its cross section was observed. In this case, there is a clear separation into an upper layer and a lower layer, with the upper layer being mostly an IP layer containing only a small amount of minute AP spheres, and the lower layer containing 2%
It was an optically anisotropic pitch with an AP content of about 98%, containing IP microspheres, and the yield was about 60%, calculated from the area ratio of the cross section. This lower pitch was extracted from a centrifuge tube and its softening point was determined to be 266°C.

Claims (1)

【特許請求の範囲】 1 光学的異方性相を直径500μm以下の球状体
で20〜70%の範囲で含有し、軟化点が260℃以下
の中間体炭素質ピツチを、260〜390℃の温度範囲
の溶融状態で遠心分離操作をすることによつて沈
積合体せしめ、光学的異方性相を80%以上含むピ
ツチ部分を光学的等方性相を多く含む部分から分
離して、光学的異方性相を高濃度で含有するピツ
チを製造することを特徴とする、低融点の光学的
異方性炭素質ピツチの製造方法。 2 中間体炭素質ピツチとして光学的異方性相を
直径300μm以下の球状体で光学的等方性相の中
に包含するものを用いる特許請求の範囲第1項記
載の光学的異方性炭素質ピツチの製造方法。 3 中間体炭素質ピツチとしてキノリン不溶分を
30重量%以下の含有率であり、かつベンゼン不溶
でキノリン可溶の成分を25重量%以上の含有率で
有するものを用いる特許請求の範囲第1項又は第
2項記載の光学的異方性炭素質ピツチの製造方
法。 4 遠心分離工程の温度が330℃〜360℃の範囲で
ある特許請求の範囲第1項記載の光学的異方性炭
素質ピツチの製造方法。 5 遠心分離工程において分離された、APを高
濃度に含有するピツチが95%以上のAP含有率を
有し、軟化点が230℃〜320℃の範囲にある、特許
請求の範囲第1項記載の光学的異方性炭素質ピツ
チの製造方法。 6 中間体炭素質ピツチが石油を接触分解する際
に副生する重質油タール状物質を熱分解重縮合し
て得られたものである、特許請求の範囲第1項記
載の光学的異方性炭素質ピツチの製造方法。 7 遠心分離操作が50〜3000Gの遠心力加速度で
行われる特許請求の範囲第1項記載の光学的異方
性炭素質ピツチの製造方法。
[Scope of Claims] 1. An intermediate carbonaceous pitch containing an optically anisotropic phase in the range of 20 to 70% in spherical bodies with a diameter of 500 μm or less and a softening point of 260°C or less is heated at 260 to 390°C. By performing a centrifugal separation operation in a molten state at a temperature range, the pitch portion containing 80% or more of the optically anisotropic phase is separated from the portion containing a large amount of the optically isotropic phase, and the optically A method for producing an optically anisotropic carbonaceous pitch having a low melting point, the method comprising producing a pitch containing a high concentration of anisotropic phase. 2. The optically anisotropic carbon according to claim 1, in which an optically anisotropic phase is contained in a spherical body with a diameter of 300 μm or less in an optically isotropic phase as an intermediate carbonaceous pitch. How to make quality pitutchi. 3 Insoluble quinoline content as intermediate carbonaceous pitch
Optical anisotropy according to claim 1 or 2, in which the content is 30% by weight or less, and the content is 25% by weight or more of a component that is insoluble in benzene and soluble in quinoline. Method for manufacturing carbonaceous pitch. 4. The method for producing an optically anisotropic carbonaceous pitch according to claim 1, wherein the temperature in the centrifugation step is in the range of 330°C to 360°C. 5. Claim 1, wherein the pitch separated in the centrifugation step and containing a high concentration of AP has an AP content of 95% or more and a softening point in the range of 230°C to 320°C. A method for producing an optically anisotropic carbonaceous pitch. 6. The optical anisotropy according to claim 1, wherein the intermediate carbonaceous pitch is obtained by thermally decomposing and polycondensing a heavy oil tar-like substance produced as a by-product during catalytic cracking of petroleum. A method for producing carbonaceous pitch. 7. The method for producing an optically anisotropic carbonaceous pitch according to claim 1, wherein the centrifugation operation is performed at a centrifugal acceleration of 50 to 3000 G.
JP6511482A 1982-04-19 1982-04-19 Improved preparation of optically anisotropic pitch Granted JPS58180585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6511482A JPS58180585A (en) 1982-04-19 1982-04-19 Improved preparation of optically anisotropic pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6511482A JPS58180585A (en) 1982-04-19 1982-04-19 Improved preparation of optically anisotropic pitch

Publications (2)

Publication Number Publication Date
JPS58180585A JPS58180585A (en) 1983-10-22
JPS6224036B2 true JPS6224036B2 (en) 1987-05-26

Family

ID=13277536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6511482A Granted JPS58180585A (en) 1982-04-19 1982-04-19 Improved preparation of optically anisotropic pitch

Country Status (1)

Country Link
JP (1) JPS58180585A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190917A (en) * 1988-01-26 1989-08-01 Mazda Motor Corp Intake device for engine

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6034619A (en) * 1983-07-29 1985-02-22 Toa Nenryo Kogyo Kk Manufacture of carbon fiber and graphite fiber
JPS6049085A (en) * 1983-08-29 1985-03-18 Osaka Gas Co Ltd Method for treating coal tar or coal tar pitch
JPS60133087A (en) * 1983-12-22 1985-07-16 Mitsubishi Oil Co Ltd Production of pitch as a starting material of carbon fiber
JPS617386A (en) * 1984-06-20 1986-01-14 Mitsubishi Oil Co Ltd Pitch for making carbon fiber and production thereof
US4832820A (en) * 1986-06-09 1989-05-23 Conoco Inc. Pressure settling of mesophase

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118028A (en) * 1974-03-04 1975-09-16
JPS541810A (en) * 1977-06-07 1979-01-09 Matsushita Electric Ind Co Ltd Electric motor
JPS5455625A (en) * 1977-10-03 1979-05-02 Union Carbide Corp Low molecular weight meso phase pitch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50118028A (en) * 1974-03-04 1975-09-16
JPS541810A (en) * 1977-06-07 1979-01-09 Matsushita Electric Ind Co Ltd Electric motor
JPS5455625A (en) * 1977-10-03 1979-05-02 Union Carbide Corp Low molecular weight meso phase pitch

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01190917A (en) * 1988-01-26 1989-08-01 Mazda Motor Corp Intake device for engine

Also Published As

Publication number Publication date
JPS58180585A (en) 1983-10-22

Similar Documents

Publication Publication Date Title
EP0044714B1 (en) Process for producing mesophase pitch
EP0084237B1 (en) Process for the manufacture of carbon fibers and feedstock therefor
EP0057108B1 (en) Process of producing optically anisotropic carbonaceous pitch
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
US4589974A (en) Optically anisotropic carbonaceous pitch and process for producing the same
JPS6224036B2 (en)
US4810437A (en) Process for manufacturing carbon fiber and graphite fiber
US4655902A (en) Optically anisotropic carbonaceous pitch
EP0089840B1 (en) Process for producing an optically anisotropic carbonaceous pitch
JPH01247487A (en) Production of mesophase pitch
JPH032298A (en) Production of meso-phase pitch
JPS6250514B2 (en)
JPH0415274B2 (en)
JPS6250515B2 (en)
JPH01249887A (en) Production of mesophase pitch
JPH03167291A (en) Optically anisotropic pitch and its manufacture
JPH03227396A (en) Production of optically anisotropic pitch
JPS61287961A (en) Precursor pitch for carbon fiber
JPS6250513B2 (en)
JPH0418126A (en) Production of carbon fiber and graphite fiber
JPH0418127A (en) Production of carbon fiber
JPH0534393B2 (en)
JPS6250516B2 (en)
JPH01268788A (en) Production of mesophase pitch for carbon fiber
JPH0411024A (en) Production of carbon fiber and graphite fiber