JPS617386A - Pitch for making carbon fiber and production thereof - Google Patents

Pitch for making carbon fiber and production thereof

Info

Publication number
JPS617386A
JPS617386A JP12529084A JP12529084A JPS617386A JP S617386 A JPS617386 A JP S617386A JP 12529084 A JP12529084 A JP 12529084A JP 12529084 A JP12529084 A JP 12529084A JP S617386 A JPS617386 A JP S617386A
Authority
JP
Japan
Prior art keywords
pitch
content
raw material
weight
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12529084A
Other languages
Japanese (ja)
Other versions
JPH054999B2 (en
Inventor
Goro Muroga
室賀 五郎
Yoshikazu Nakamura
好和 中村
Kunihiko Moriya
守屋 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Eneos Corp
Original Assignee
Mitsubishi Oil Co Ltd
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Oil Co Ltd, Mitsui Petrochemical Industries Ltd filed Critical Mitsubishi Oil Co Ltd
Priority to JP12529084A priority Critical patent/JPS617386A/en
Publication of JPS617386A publication Critical patent/JPS617386A/en
Publication of JPH054999B2 publication Critical patent/JPH054999B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:A pitch as a starting material for producing carbon fibers of high strength and elasticity is obtained by heat-treating a specific heavy fraction of petroleum so that optically anisotropy does not develop, centrifuging solid or semisolid fractions, further separating into 2 phases and collecting the heavier fraction. CONSTITUTION:A petroleum heavy fraction which boils over 430 deg.C and contains less than 1.0wt% of S, less than 0.1ppm of Ni and V and less than 0.1wt% of asphalten is heat-treated in a non-oxidative atmosphere at 420-460 deg.C for 30min to 5hr so that optical anisotropy does not develop. Then, centrifugation is conducted in a non-oxidative atmosphere at 250-300 deg.C with 200-2,000G to remove solid or semisolid in the product. Further, the product is subjected to separation into 2 phases by effecting centrifugation with acceleration of 200-2,000G at 370-400 deg.C under 0.1-1.0Torr and the heavier fraction is collected as the objective pitch.

Description

【発明の詳細な説明】 本発明は高性能な炭素繊維を製造するに適した原料ピッ
チおよびその製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a raw material pitch suitable for producing high-performance carbon fibers and a method for producing the same.

ピッチを原料として炭素IIを¥J造する方法について
は古くから数多くの方法が開示されており、高強度高弾
性率の性能を有する高性能な炭素繊維を製造する方法も
多数開示されている。このような高性能炭素繊維を製造
する為には原料ピッチの性質は極めて重要であるが、ピ
ッチが分子量の大きな分子の混合物である為その性質を
直接的に測定する分析法も少く、したがって原料ピッチ
の性質を全体的且つ直接的に規定することはgllmで
あった。たとえば特開昭49−19127においては原
料ピッチとして40〜90重量%のメソ相を含有するピ
ッチを用いる事を特徴としている。この場合メソ相とは
偏光顕微鏡により光学的に異方性が観察され、キノリン
又は75℃のピリジンに不溶なものであるとして定義さ
れている。同特許においてこのようなピッチを非チキソ
トロピーになるような温瓜範囲で紡糸して焼成し炭素繊
維を得るとしているがキノリン不溶分40重量%以上を
含有するピッチを紡糸することはかなり困難であること
が予想される。工業的に高性能炭素Alt11を製造す
る為には紡糸工程は極めて重要であり、原料ピッチにお
いても紡糸性の良好な事が要求されるようになって来た
。特開昭54−55625においては原料ピッチとして
本質100%のメソ相からなり、連続フィラメントに紡
糸するに好適であり、しかも1000以下の平均分子量
、60重量%よりも多くない正味ピリジン不溶分を含有
するピッチを用いることが開示されている。この場合メ
ソ相はピッチ試料をエポキシ樹脂に埋め込んで研摩し直
交偏光器を用いる偏光顕微鏡で検査し光学異方性と認め
られるものと定義しており、(リジン不溶分量と光学異
方性相とは一致しないものとなっている。特開昭54−
160427においては炭素製品、特に炭素lINの製
造に適した原料ピッチの製造方法が開示されている。こ
の原料ピッチはネオメソ相ピッチと定義されており、本
ピッチは高度に配向しており、光学的に異方性であるが
、ピリジンやキノリンに実質的に溶解するとされている
。特開昭57−100186においては炭素繊維の原料
として紡糸性の良好な原料ピッチとして潜在的異方性ピ
ッチが開示されている。本ピッチは実質的にキノリン可
溶性多環多骨格の炭化水素を潜在的異方性形成成分とし
て含み、溶散状態でメソフェースは実質的に形成しない
で、全体的に均質でかつ光学的に等方性の単−相を形成
し外力を加えるとその方向へ配向性を示ずとされている
。また特開昭58−18421においては炭素繊維の原
料としてブリメソフェースを用いることが開示されてい
る。このプリメソフェースピッチは光学的に等方性であ
り、キノリンにも可溶であって可紡性に優れPAN系炭
素炭素繊維敵する性質を有する炭素繊維が製造できると
している。このように既に開示された特許を見ると比較
的初期の段階ではキノリンやピリジンといった溶剤に不
溶な光学的異方性成分を多量に含有したピッチを原料と
して高性能な炭素繊維を製造することになっていたもの
が、紡糸性の良否が炭素繊維の性能に極めて重要な因子
であることから次第にキノリンやピリジンに不溶な成分
の含有量の少ないものへ移行し、遂にはキノリン不溶分
も実質的に含まず光学的に等方性のピッチを原料とする
まで変化してきている。すなわち高性能な炭素繊維の原
料となるピッチとしては単なる光学異方性相の有無やキ
ノリン等の溶剤を用いた不溶解性成分の量だけで決定さ
れるものではない。我々は高強度、高弾性率炭素繊維を
製造する為の原料ピッチにつき研究を行った結果原料ピ
ッチとしては少なくとも次の条件を満足することが必要
であることが明らかとなった。
Many methods for manufacturing carbon II using pitch as a raw material have been disclosed for a long time, and many methods for manufacturing high-performance carbon fibers having high strength and high modulus of elasticity have also been disclosed. In order to produce such high-performance carbon fibers, the properties of the raw material pitch are extremely important, but since pitch is a mixture of molecules with large molecular weights, there are few analytical methods that can directly measure its properties. It was gllm to globally and directly define the nature of pitch. For example, JP-A-49-19127 is characterized in that pitch containing 40 to 90% by weight of mesophase is used as the raw material pitch. In this case, the mesophase is defined as one whose optical anisotropy is observed using a polarizing microscope and which is insoluble in quinoline or pyridine at 75°C. The patent states that carbon fibers are obtained by spinning and firing such pitch at a temperature that is non-thixotropic, but it is quite difficult to spin pitch containing 40% by weight or more of quinoline insoluble matter. It is expected that. In order to industrially produce high-performance carbon Alt11, the spinning process is extremely important, and the raw material pitch is also required to have good spinnability. JP-A-54-55625 discloses that the raw material pitch consists essentially of 100% mesophase, is suitable for spinning into continuous filaments, has an average molecular weight of 1000 or less, and contains a net pyridine insoluble content of no more than 60% by weight. It is disclosed to use a pitch of In this case, the mesophase is defined as a pitch sample that is embedded in epoxy resin, polished, and inspected with a polarizing microscope using an orthogonal polarizer, and found to be optically anisotropic. do not match.Unexamined Japanese Patent Publication No. 1973-
No. 160,427 discloses a method for producing raw pitch suitable for producing carbon products, in particular carbon IN. This raw material pitch is defined as neomesophase pitch, and although this pitch is highly oriented and optically anisotropic, it is said to be substantially soluble in pyridine and quinoline. JP-A-57-100186 discloses latent anisotropic pitch as a raw material pitch with good spinnability as a raw material for carbon fibers. This pitch substantially contains a quinoline-soluble polycyclic polyskeleton hydrocarbon as a potential anisotropy-forming component, and in the dissolved state substantially does not form mesophase, and is entirely homogeneous and optically isotropic. It is said that when a single phase is formed and an external force is applied, no orientation is exhibited in that direction. Furthermore, Japanese Patent Application Laid-Open No. 58-18421 discloses the use of brimesophase as a raw material for carbon fibers. This pre-mesoface pitch is optically isotropic and is soluble in quinoline, making it possible to produce carbon fibers with excellent spinnability and properties comparable to PAN-based carbon fibers. Looking at the patents that have already been disclosed, we can see that at a relatively early stage, it was possible to produce high-performance carbon fiber using pitch containing a large amount of optically anisotropic components that are insoluble in solvents, such as quinoline and pyridine. However, since the quality of spinnability is an extremely important factor in the performance of carbon fibers, the content of components insoluble in quinoline and pyridine gradually shifted to products with a low content of components insoluble in quinoline and pyridine. This is changing to the point where optically isotropic pitch is used as a raw material instead of containing pitch. That is, pitch, which is a raw material for high-performance carbon fibers, is not determined simply by the presence or absence of an optically anisotropic phase or the amount of components insoluble in solvents such as quinoline. As a result of our research on raw material pitch for producing high-strength, high-modulus carbon fibers, it became clear that the raw material pitch must satisfy at least the following conditions.

1)、紡糸あるいは焼成時において繊維中に繊維軸に平
行な分子配列ができること 2)、均質であり紡糸が円
滑に行えること 3)、不融化に際し融着を起′こさな
い事 4)、繊維に割れ目、空孔等の欠陥を生じないこ
と。
1) Molecular alignment parallel to the fiber axis is created in the fiber during spinning or firing. 2) It is homogeneous and can be spun smoothly. 3) It does not cause fusion during infusibility. 4) The fiber There shall be no defects such as cracks or holes.

これらの条件を満足する原料ピッチを製造すべく研究を
行ない本発明に至ったものである。すなわち温度25℃
における比重1.290〜1.330温度25℃におけ
る比誘電率が2.9〜3.2の範囲の性状を有する原料
ピッチを用いることで高性能な炭素繊維を製造できるこ
とを見出し、またこのような性状を有する原料ピッチを
製造する方法を−b見出したものである。前記のように
高強度、へ弾性率炭素繊維を製造するためには紡糸から
焼成迄の各段階において必要な条件があり、中には相反
する傾向を有する条件もある。したがってこれらの条件
を満足させるようなピッチの性状は極めて限定されたも
のとならざるを得ない。まず第1の条件である紡糸ある
いは焼成時において繊維中に繊維軸に平行な分子配列が
できるという点をピッチの構造に直すと分子配列を形成
するためには比較的大きな分子構造であり、紡糸等のプ
ロセス段階で配列が行われ、且つ最終的な炭素繊維の段
階では配列した炭素原子がそのまま黒鉛構造を形成し易
いことが好ましい性状ということになる。すなわち分子
量の比較的大きな芳香族環を有する化合物を多く含有し
たものということになる。第2の条件である均質であっ
て紡糸が円滑に行える事という点ではビッヂ中に夾雑物
の含有量が少く、分子量分布が比較的狭まく且つ分子量
はあまり大きくないという事と関連している。第1の条
件と第2の条件は相反(る傾向を示している。第3の条
件である不融化に際し融着しないことという点では不融
化の温度において変形をおこさないように比較的大きな
分子構造であることが必要であり、炭素繊維の製造時に
一般的に採用されている酸化不融化に際し、分子量が比
較的小さく、酸化し難い飽和炭化水素化合物の含有量が
できるだけ少い事と関連している。第4の条件である繊
維に割れ目、空孔等の欠陥を生じないことという点では
割れ目は第1の条件と共通した分子構造に関連し空孔、
欠陥については第2の条件と共通した分子構造に関連し
ている。実際に種々のピッチを用いて炭素繊維を製造し
ピッチの性状との関連について研究したところ好ましい
ピッチとしては芳香族環化合物を含有し比較的的分子量
も大きいという点より、比誘電率はある範囲の値を有す
る事が明らかとなった。一般的に同−原料からピッチを
製造する場合熱処理条件が苛酷になるにしたがって芳香
族化合物含有量が増加し比誘電率が高い値となる。しか
し過度の熱処理を行った場合ピッチの比誘電率は逆に減
少する。したがり−C好ましいピッチの比誘電率は2.
9〜3.2の範囲という狭い範囲に限定されることにな
る。このように比誘電率により好ましいピッチが規定さ
れるが比誘電率だけでは分子量分布等に関連する性状面
の規定が不充分であり、その点で比誘電率に加え比重が
限定された範囲にあることが必要である。これが比重1
.290〜1.330という範囲である。現在ピッチの
性状については物理的にも化学的にも直接的に分析する
手段に乏しい。これまで炭素繊維用原判ピッチについて
は全体というより1部の性状を測定しこれによって全体
を推測し規定する方法がとられて来たがこれは不完全な
ものである。本発明においてはピッチの性状を比誘電率
、比重というピッチ全体を表す性状からピッチと炭素域
M性状との関係について検討し、高強度、へ弾性率炭素
l1tIiの製造に適した原料ピッチを見出したもので
ある。本炭素繊維用原料ピッチとして所定の性状を満足
せしめることが可能であれば製造方法として特に限定す
るものではないが、好ましい製造方法として次のような
方法がある。すなわち沸点430℃以上の石油系重質留
分でイオウ含有量1゜0重量%以下、N1含有10.l
p++JX下、V含有量0.1ppn+以下、アスファ
ルテン含有量0゜1重量%以下の性状を有する原料を非
酸化性雰囲気下でガス吹き込みを行わず、減、圧および
加圧することなく加熱温度420〜460”C1加熱時
間30分〜5時間の範囲の条件下で加熱処理する。
The present invention was achieved through research to produce a raw material pitch that satisfies these conditions. i.e. temperature 25℃
We have discovered that it is possible to produce high-performance carbon fiber by using a raw material pitch with a specific gravity of 1.290 to 1.330 and a dielectric constant of 2.9 to 3.2 at a temperature of 25°C. A method for producing raw material pitch having such properties has been discovered. As mentioned above, in order to produce high-strength, high-modulus carbon fibers, there are necessary conditions at each stage from spinning to firing, and some of these conditions have contradictory tendencies. Therefore, the properties of the pitch that satisfy these conditions must be extremely limited. First of all, if we convert the first condition, which is that molecular alignment parallel to the fiber axis is formed in the fiber during spinning or firing, to the structure of pitch, it is necessary to have a relatively large molecular structure to form molecular alignment, and spinning It is preferable that carbon atoms are arranged in process steps such as carbon fibers, etc., and that the arranged carbon atoms easily form a graphite structure as they are in the final carbon fiber stage. In other words, it contains a large amount of a compound having an aromatic ring with a relatively large molecular weight. The second condition, which is homogeneity and allows smooth spinning, is related to the fact that the content of impurities in the bit is small, the molecular weight distribution is relatively narrow, and the molecular weight is not very large. . The first condition and the second condition tend to contradict each other.The third condition, which is not to fuse during infusibility, requires relatively large molecules to avoid deformation at the infusibility temperature. It is necessary for carbon fibers to have the same structure as possible, and in the oxidative infusibility that is commonly used in the production of carbon fibers, it is necessary to minimize the content of saturated hydrocarbon compounds that have a relatively small molecular weight and are difficult to oxidize. In terms of the fourth condition, which is that fibers do not have defects such as cracks and holes, cracks are related to the molecular structure that is common to the first condition.
The defects are related to the same molecular structure as the second condition. We actually manufactured carbon fibers using various pitches and researched the relationship between pitch properties and found that preferred pitches contain aromatic ring compounds and have a relatively large molecular weight, so the dielectric constant is within a certain range. It has become clear that the value of Generally, when pitch is manufactured from the same raw material, as the heat treatment conditions become more severe, the aromatic compound content increases and the dielectric constant becomes higher. However, when excessive heat treatment is performed, the dielectric constant of the pitch decreases. Therefore, the dielectric constant of the preferred pitch is 2.
It will be limited to a narrow range of 9 to 3.2. In this way, the preferred pitch is determined by the dielectric constant, but the dielectric constant alone is insufficient to define properties related to molecular weight distribution, etc., and in that respect, in addition to the dielectric constant, the specific gravity is also limited to a limited range. It is necessary that there be. This is specific gravity 1
.. It ranges from 290 to 1.330. Currently, there is a lack of means to directly analyze the properties of pitch, both physically and chemically. Up until now, the method used for carbon fiber original pitch has been to measure the properties of one part rather than the whole, and to estimate and define the whole from this, but this method is incomplete. In the present invention, we investigated the relationship between the pitch and carbon region M properties from the properties of the pitch, such as relative permittivity and specific gravity, which represent the entire pitch, and found a raw material pitch suitable for producing high strength, high modulus carbon l1tIi. It is something that The manufacturing method is not particularly limited as long as it is possible to satisfy predetermined properties as the raw material pitch for carbon fibers, but preferred manufacturing methods include the following method. That is, it is a petroleum heavy fraction with a boiling point of 430°C or higher, a sulfur content of 1.0% by weight or less, and a N1 content of 10. l
Under p++JX, raw materials having properties of V content of 0.1 ppn+ or less and asphaltene content of 0.1% by weight or less are heated at a temperature of 420 to 420 without blowing gas in a non-oxidizing atmosphere and without reducing, pressurizing or pressurizing. Heat treatment is performed under conditions of 460''C1 heating time ranging from 30 minutes to 5 hours.

この際還流を積極的に行い加熱処理時に生成する低沸点
留分が系外に出ることを極力抑制する。また加熱温度と
加熱時間は加熱終了時において加熱処理物中に常温下の
反射偏光顕微鏡観察(直交ニユル、倍率200倍)にお
いてメンフェースのごとき光学異方性相の発現を認めな
い範囲にする。
At this time, reflux is actively carried out to suppress as much as possible the low-boiling fraction generated during the heat treatment from exiting the system. Further, the heating temperature and heating time are set within a range such that no optically anisotropic phase such as menphasis is observed in the heated product when observed under a reflective polarizing microscope at room temperature (orthogonal lens, magnification: 200 times) at the end of heating.

このようにして得られた加熱処理物を非酸化雰囲気下で
温度250〜300℃、遠心効果200〜2000Gの
範囲の条件下で遠心分離し、この温度範囲で加熱処理物
中に固体あるいは半固体状で存在する物質を分離除去す
る。この遠心分離した加熱処理物をさらに第二段目の遠
心分離機において0.1〜1.0Torrの真空下、温
度370〜400℃、遠心効果100〜2000Gの範
囲で2相分離を行い、得られた重液を炭素繊維用原料ピ
ッチとするものである。かくして得られる炭素繊維用原
料ピッチの性状としては25℃にお1ノる比重が1.2
90〜1 、330.25℃における比誘電率が2.9
〜3.2の範囲の値を有することが必要であり、さらに
好ましくはトルエン不溶分の値よりキノリン不溶分の値
を差し引いた値が65〜80重量%であり、さらに好ま
しくはヘプタン可溶分が1.0重量%以下であることが
^性能炭素繊維の原料ピッチとして適したものである。
The heat-treated product obtained in this way is centrifuged in a non-oxidizing atmosphere at a temperature of 250 to 300°C and a centrifugal effect of 200 to 2000G. Separate and remove substances that exist in the form of This centrifuged and heated product is further subjected to two-phase separation in a second-stage centrifugal separator under a vacuum of 0.1 to 1.0 Torr at a temperature of 370 to 400°C and a centrifugal effect of 100 to 2000 G. The resulting heavy liquid is used as raw material pitch for carbon fibers. The properties of the carbon fiber raw material pitch obtained in this way have a specific gravity of 1.2 at 25°C.
90~1, relative dielectric constant at 330.25℃ is 2.9
-3.2, more preferably the value obtained by subtracting the quinoline insoluble content from the toluene insoluble content is 65 to 80% by weight, and even more preferably the heptane soluble content. is 1.0% by weight or less, which is suitable as a raw material pitch for high-performance carbon fiber.

ここで原料ピッチのの密度はJIS  K2425の中
のバーバード比重ビン比重測定方法により測定づる。
Here, the density of the raw material pitch is measured by the Barbard pycnometer specific gravity measurement method in JIS K2425.

また比誘電率はASTM  D−150に規定された方
法によって測定する。キノリン不溶分およびトルエン不
溶分はJIS  K2425に規定された方法で測定す
る。ヘプタン可溶分は粉砕したピッチ5gを平均孔径1
μの円筒ヒイルターに入れ、ソックスレー抽出器を用い
てn−ヘプタンで20時間熱抽出して得られた可溶性成
分を溶剤−を除去した後秤量することによって測定する
ものである。
Further, the dielectric constant is measured by the method specified in ASTM D-150. The quinoline-insoluble content and toluene-insoluble content are measured by the method specified in JIS K2425. For the heptane soluble content, 5 g of ground pitch was mixed with an average pore size of 1
The soluble components obtained by placing the sample in a μ cylindrical Hilter and performing heat extraction with n-heptane for 20 hours using a Soxhlet extractor are weighed after removing the solvent.

以下実施例により本発明をさらに詳細に説明する。The present invention will be explained in more detail with reference to Examples below.

実施例1 中東系原油の常圧蒸留残油を減圧蒸留し沸点300〜5
50℃の留分を採取した常圧蒸留留分をコバルト−モリ
ブデン系触媒の存在下で温度370℃、圧ノJ 60 
K9 / crA G 、液空間速度毎時1.9、水素
油比36ONTd/履の条件で水素化処理、ざらにゼオ
ライト系触媒を用いて温度500℃、圧力1.5に9/
cIllG、触媒油化9で接触分解反応を行わしめた。
Example 1 Atmospheric distillation residue of Middle Eastern crude oil was distilled under reduced pressure to boiling point 300-5
The atmospheric distillation fraction collected at 50°C was heated to 370°C and a pressure of J 60 in the presence of a cobalt-molybdenum catalyst.
Hydrogenation was carried out under the conditions of K9/crA G, liquid hourly space velocity of 1.9, and hydrogen/oil ratio of 36 ONTd/h, and the temperature was 500°C and the pressure was 1.59/h using a zeolite catalyst.
A catalytic cracking reaction was carried out using cIllG and Catalyst Oilification 9.

接触分解反応後に残留した重質油分を蒸留し沸点430
℃以上の重質留分を採取した。
The heavy oil remaining after the catalytic cracking reaction is distilled to a boiling point of 430
The heavy fraction above ℃ was collected.

この重質留分はイオウ含有量0.95重量%、N1含有
量0.021)l)Ill 、 V含有量0.O5pp
m、アスフ1ルチン含有10.02重量%の性状であっ
た。次いでこの重質留分を空気の侵入がない状態で常圧
下、加熱温度435℃、加熱時間2.5時間加熱処理し
た。この際反応器10部を冷却し加熱温度が保持可能な
範囲において低沸点留分が系外に出ることを抑制するよ
う還流をほどこす。この加熱処理物をポリエステル樹脂
に埋め込んで研摩し、反射偏光顕微により直交ニユル、
倍率200倍で観察したところ光学異方性相の存在は認
められなかった。この加熱処理物を温度280℃、遠心
効果1200Gの条件で遠心分離処理を行ってこの温度
における固体状物質を除去した。このようにして得られ
た加熱処理物をさらに第二段目の遠心分離機において0
.2iorrの真空上温度390℃、遠心効果1000
Gで2相遠心分離し、重液を採取し炭素繊維用原料ピッ
チを得た。この炭素繊維用原料ピッチの性状は25℃に
おける比重1.314.25℃における比誘電率3.0
、トルエン不溶分の値よりキノリン不溶分の値を差し引
いた値が70重量%、ヘプタン可溶分0.5重量%であ
った。この炭素繊維用原料ピッチをノズル丑径0.5m
φの紡糸ノズルを用いて紡糸湿度365℃、巻取り速度
500 m/min 、繊維直径13μで紡糸し、20
分間以上糸切れなく紡糸が可能であった。このピッチ繊
維を空気雰囲気中300℃で不融化した後、不活性ガス
雰囲気中で1000℃まで昇温しで炭化し炭素繊維を得
た。
This heavy fraction has a sulfur content of 0.95% by weight, an N1 content of 0.021)Ill, a V content of 0. O5pp
It had the following properties: 10.02% by weight of asfultin. Next, this heavy fraction was heat-treated under normal pressure at a heating temperature of 435° C. for a heating time of 2.5 hours without the intrusion of air. At this time, 10 parts of the reactor are cooled and reflux is applied within a range where the heating temperature can be maintained to prevent the low boiling point fraction from exiting the system. This heated product was embedded in polyester resin and polished, and then examined using a reflective polarization microscope to obtain orthogonal lenses.
When observed at a magnification of 200 times, no optically anisotropic phase was observed. This heated product was centrifuged at a temperature of 280° C. and a centrifugal effect of 1200 G to remove solid substances at this temperature. The heat-treated product obtained in this way is further passed through a second stage centrifugal separator.
.. 2iorr vacuum temperature 390℃, centrifugal effect 1000℃
Two-phase centrifugation was performed at G, and the heavy liquid was collected to obtain raw material pitch for carbon fibers. The properties of this raw material pitch for carbon fiber are: specific gravity at 25°C: 1.314; dielectric constant at 25°C: 3.0
The value obtained by subtracting the quinoline insoluble content from the toluene insoluble content was 70% by weight, and the heptane soluble content was 0.5% by weight. This raw material pitch for carbon fiber is passed through a nozzle with a diameter of 0.5 m.
Using a φ spinning nozzle, spinning was carried out at a spinning humidity of 365°C, a winding speed of 500 m/min, and a fiber diameter of 13 μm.
It was possible to spin the yarn for more than a minute without breaking the yarn. The pitch fibers were made infusible at 300° C. in an air atmosphere, and then carbonized by raising the temperature to 1000° C. in an inert gas atmosphere to obtain carbon fibers.

この炭素繊維につきJIS  R−7601に規定され
た炭素繊維引張り試験方法に準拠しゲージ長さ25順で
引張り試験を行ったところ試料数20本の平均として直
径10.2μ、引張り強度22゜2 T / cti、
弾性率1230T/cat、破断伸度1゜8%という値
を得た。
A tensile test was performed on this carbon fiber in accordance with the carbon fiber tensile test method specified in JIS R-7601 in order of 25 gauge lengths, and the average of 20 samples was 10.2μ in diameter and 22゜2T in tensile strength. /cti,
The elastic modulus was 1230 T/cat and the elongation at break was 1°8%.

比較例1 実施例1で用いたのと同じ重質留分を空気の侵入がない
状態で常圧下、加熱温度435℃、加熱時間2.5時間
の条件で加熱処理した。この加熱処理物を圧力1.2T
orrの真空上温度410℃で真空蒸留しピッチを得た
。このピッチの性状は25℃における比重1.321.
25℃における仕誘電率2.8トルエン不溶分の値より
キノリン不溶分の値を差し引いた値が52重間%、ヘプ
タン可溶分2.0重量%であった。本ピッチを実施例1
と同一の紡糸ノズルを用い紡糸温FI267℃で紡糸し
たところ繊維直径15μにおいて糸切れが甚だしく紡糸
は困難であった。このピッチ繊維を実施例1と同一条件
で焼成し、引張り試験を行ったところ直径12.0μ引
張り強r1112.2T/cd。
Comparative Example 1 The same heavy fraction as used in Example 1 was heat-treated under normal pressure at a heating temperature of 435°C and a heating time of 2.5 hours without the intrusion of air. This heat-treated material was heated to a pressure of 1.2T.
Pitch was obtained by vacuum distillation at a temperature of 410° C. above vacuum. The properties of this pitch are that the specific gravity at 25°C is 1.321.
The dielectric constant at 25°C was 2.8. The value obtained by subtracting the quinoline insoluble content from the toluene insoluble content was 52% by weight and the heptane soluble content was 2.0% by weight. Example 1 of this pitch
When spinning was performed using the same spinning nozzle as above at a spinning temperature FI of 267° C., yarn breakage was severe at a fiber diameter of 15 μm, and spinning was difficult. This pitch fiber was fired under the same conditions as in Example 1, and a tensile test was conducted to find a diameter of 12.0 μm and a tensile strength r of 1112.2 T/cd.

弾性率980T/Q11、破断伸度1.2%であった。The elastic modulus was 980T/Q11 and the elongation at break was 1.2%.

比較例2 実施例1で用いたのと同じ重質留分な空気の侵入がない
状態で常圧下、加熱mli/120℃、加熱時間6時間
の条件で加熱処理した。この加熱処理物を圧力1.2T
orrの真空上温度410℃で真空蒸留しピッチを得た
。このピッチの竹状は25℃における比重1.301.
25℃における比!!!電率2゜8トル工ン不溶分の値
よりキノリン不溶分の値を差し引いた値が82重量%、
ヘプタン可溶分2゜6重量%であった。本ピッチを実施
例1と同一の紡糸ノズルを用いて紡糸温度360℃で紡
糸したところ繊維直径13μにおいて3分に11程度の
糸切れで紡糸が可能であった。このピッチ繊維を実施例
1と同一条件で焼成し引張り試験を行ったところ直径1
0.5μ。引張り強度11.47/d1弾性率970T
/cd、破断伸度1.2%であった。
Comparative Example 2 The same heavy fraction as used in Example 1 was heat-treated under normal pressure, heating mli/120° C., and heating time for 6 hours without the intrusion of air. This heat-treated material was heated to a pressure of 1.2T.
Pitch was obtained by vacuum distillation at a temperature of 410° C. above vacuum. The bamboo-like shape of this pitch has a specific gravity of 1.301 at 25°C.
Ratio at 25℃! ! ! The value obtained by subtracting the value of the quinoline insoluble content from the value of the quinoline insoluble content is 82% by weight,
The heptane soluble content was 2.6% by weight. When this pitch was spun at a spinning temperature of 360° C. using the same spinning nozzle as in Example 1, spinning was possible with a fiber diameter of 13 μm and yarn breakage of about 11 every 3 minutes. When this pitch fiber was fired under the same conditions as in Example 1 and subjected to a tensile test, the diameter was 1.
0.5μ. Tensile strength 11.47/d1 Elastic modulus 970T
/cd, and the elongation at break was 1.2%.

以  上that's all

Claims (1)

【特許請求の範囲】 1 つぎの性状を有する炭素繊維用原料ピッチ温度25
℃における比重1.290〜1.330温度25℃にお
ける比誘電率2.9〜3.2 2 特許請求の範囲1においてトルエン不溶分の値より
キノリン不溶分の値を差し引いた値が65〜80重量%
の範囲であることを特徴とする炭素繊維原料ピッチ 3 特許請求の範囲1においてヘプタン可溶分1.0重
量%以下であることを特徴とする炭素繊維原料ピッチ 4 沸点430℃以上の石油系重質留分でイオウ含有量
1.0重量%以下、Ni含有量0.1ppm以下、V含
有量0.1ppm以下、アスファルテン含有量0.1重
量%以下の性状を有する原料を非酸化性雰囲気下で、ガ
ス吹き込みを行わず減圧および加圧することなく加熱温
度420〜460℃、加熱時間30分〜5時間の範囲の
条件下で加熱処理する。この加熱処理において還流をほ
どこし加熱処理時に生成する低沸点留分が系外に出るこ
とを抑制する。加熱処理の条件は加熱処理終了時におい
て加熱処理物中に常温下の反射偏光顕微鏡観察(直交ニ
ユル、倍率200倍)において、光学異方性相の発現を
認めない範囲にする。得られた加熱処理物を非酸化雰囲
気下で温度250℃〜300℃、遠心効果200〜20
00Gの範囲の条件下で遠心分離し、この温度範囲で加
熱処理物中に固体あるいは半固体状で存在する物質を分
離除去する。 この遠心分離した加熱処理物をさらに第二段目の遠心分
離機において0.1〜1.0Torrの真空下、温度3
70〜400℃、遠心効果100〜2000Gの範囲で
2相分離を行って重液を採取することにより得られる特
許請求の範囲1の性状を有する炭素繊維用原料ピッチの
製造法
[Claims] 1. Carbon fiber raw material pitch temperature 25 having the following properties:
Specific gravity at 1.290-1.330 °C, relative permittivity at 25 °C 2.9-3.2 2 In claim 1, the value obtained by subtracting the quinoline-insoluble content from the toluene-insoluble content is 65-80. weight%
Carbon fiber raw material pitch 3 characterized by having a heptane soluble content of 1.0% by weight or less in claim 1 Carbon fiber raw material pitch 4 characterized by having a heptane soluble content of 1.0% by weight or less Petroleum-based weight having a boiling point of 430°C or higher A raw material having a quality fraction of sulfur content of 1.0% by weight or less, Ni content of 0.1ppm or less, V content of 0.1ppm or less, and asphaltene content of 0.1% by weight or less is prepared in a non-oxidizing atmosphere. The heat treatment is carried out under conditions of a heating temperature of 420 to 460° C. and a heating time of 30 minutes to 5 hours without blowing gas or reducing or increasing pressure. In this heat treatment, reflux is applied to suppress the low boiling point fraction generated during the heat treatment from exiting the system. The conditions for the heat treatment are such that at the end of the heat treatment, no optically anisotropic phase is observed in the heat treated product when observed under a reflective polarizing microscope at room temperature (orthogonal lens, 200x magnification). The obtained heat-treated product was heated in a non-oxidizing atmosphere at a temperature of 250°C to 300°C and a centrifugal effect of 200 to 20°C.
Centrifugation is performed under conditions in the range of 00G to separate and remove substances present in the solid or semi-solid state in the heat-treated product in this temperature range. This centrifuged and heated product is further transferred to a second stage centrifuge under a vacuum of 0.1 to 1.0 Torr at a temperature of 3.
A method for producing raw material pitch for carbon fibers having the properties of claim 1 obtained by performing two-phase separation at 70 to 400°C and a centrifugal effect of 100 to 2000 G and collecting a heavy liquid.
JP12529084A 1984-06-20 1984-06-20 Pitch for making carbon fiber and production thereof Granted JPS617386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12529084A JPS617386A (en) 1984-06-20 1984-06-20 Pitch for making carbon fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12529084A JPS617386A (en) 1984-06-20 1984-06-20 Pitch for making carbon fiber and production thereof

Publications (2)

Publication Number Publication Date
JPS617386A true JPS617386A (en) 1986-01-14
JPH054999B2 JPH054999B2 (en) 1993-01-21

Family

ID=14906416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12529084A Granted JPS617386A (en) 1984-06-20 1984-06-20 Pitch for making carbon fiber and production thereof

Country Status (1)

Country Link
JP (1) JPS617386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348730A (en) * 2005-05-17 2006-12-28 Nippon Oil Corp Asphalt for pavement and its manufacturing method
CN109181732A (en) * 2018-09-30 2019-01-11 中国科学院山西煤炭化学研究所 A kind of method that coal tar preparation can spin pitch

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180585A (en) * 1982-04-19 1983-10-22 Toa Nenryo Kogyo Kk Improved preparation of optically anisotropic pitch
JPS5941387A (en) * 1982-08-30 1984-03-07 Osaka Gas Co Ltd Manufacture of quinoline-insoluble free-pitch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180585A (en) * 1982-04-19 1983-10-22 Toa Nenryo Kogyo Kk Improved preparation of optically anisotropic pitch
JPS5941387A (en) * 1982-08-30 1984-03-07 Osaka Gas Co Ltd Manufacture of quinoline-insoluble free-pitch

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006348730A (en) * 2005-05-17 2006-12-28 Nippon Oil Corp Asphalt for pavement and its manufacturing method
JP4698476B2 (en) * 2005-05-17 2011-06-08 Jx日鉱日石エネルギー株式会社 Paving asphalt and method for producing the same
CN109181732A (en) * 2018-09-30 2019-01-11 中国科学院山西煤炭化学研究所 A kind of method that coal tar preparation can spin pitch

Also Published As

Publication number Publication date
JPH054999B2 (en) 1993-01-21

Similar Documents

Publication Publication Date Title
US4454019A (en) Process for producing optically anisotropic carbonaceous pitch
US4277325A (en) Treatment of pitches in carbon artifact manufacture
JPS62270685A (en) Production of mesophase pitch
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
US4597853A (en) Pitch as a raw material for making carbon fibers and process for producing the same
JPS594683A (en) Formation of optically anisotropic pitch
JPS617386A (en) Pitch for making carbon fiber and production thereof
JPS6065090A (en) Preparation of pitch for carbon fiber spinning
JPH0432118B2 (en)
US5540905A (en) Optically anisotropic pitch for manufacturing high compressive strength carbon fibers and method of manufacturing high compressive strength carbon fibers
JPS58145782A (en) Preparation of pitch
JPH01247487A (en) Production of mesophase pitch
JP2917486B2 (en) Mesoface pitch for carbon materials
JPS6257678B2 (en)
JPH0455237B2 (en)
JPH03227396A (en) Production of optically anisotropic pitch
JPH01249887A (en) Production of mesophase pitch
JPS61190587A (en) Production of precursor pitch for carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH01254797A (en) Production of mesophase pitch
JPS6254789A (en) Production of precursor pitch for carbon fiber
JPH0324516B2 (en)
JPH04257321A (en) Production of pitch carbon fiber having high tensile elastic modulus and high compression strength
JPH0216190A (en) Production of precursor pitch for carbon fiber
JPH0617320A (en) High-compressive strength pitch-based carbon fiber