JPH04257321A - Production of pitch carbon fiber having high tensile elastic modulus and high compression strength - Google Patents

Production of pitch carbon fiber having high tensile elastic modulus and high compression strength

Info

Publication number
JPH04257321A
JPH04257321A JP41653990A JP41653990A JPH04257321A JP H04257321 A JPH04257321 A JP H04257321A JP 41653990 A JP41653990 A JP 41653990A JP 41653990 A JP41653990 A JP 41653990A JP H04257321 A JPH04257321 A JP H04257321A
Authority
JP
Japan
Prior art keywords
pitch
nozzle
compressive strength
liquid crystal
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41653990A
Other languages
Japanese (ja)
Inventor
Hiroshi Toshima
宏 戸島
Takashi Hino
日野 隆
Kazuyuki Murakami
一幸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP41653990A priority Critical patent/JPH04257321A/en
Publication of JPH04257321A publication Critical patent/JPH04257321A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To produce a pitch carbon fiber having a high tensile elastic modulus and a high compression strength, the compression strength being largely improved in comparison with conventional carbon fibers while the tensile elastic modulus is maintained in the high state. CONSTITUTION:A liquid crystalline pitch having an optically anisotropic phase content of >=955 and an average mol.wt. of <=1600 is melt-spun through a fine diameter nozzle having a diameter of 0.10-0.25mm under a shear stress of 0.2-7.0kg/cm<2>, followed by subjecting the produced pitch fiber to a thermal treatment to provide a pitch carbon fiber having a high tensile elastic modulus and a high compression strength.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、一般にはピッチ系炭素
繊維に関するものであり、特に引張弾性率が高く、しか
も圧縮強度が大であるピッチ系炭素繊維の製造方法に関
するものである。本発明にて得られた、高引張弾性率、
高圧縮強度ピッチ系炭素繊維は、宇宙・航空産業、自動
車産業又は建築産業などの種々の産業分野にて使用され
る複合材料の強化繊維として好適に使用し得るものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention generally relates to pitch-based carbon fibers, and more particularly to a method for producing pitch-based carbon fibers that have a high tensile modulus and a high compressive strength. High tensile modulus obtained in the present invention,
High compressive strength pitch-based carbon fibers can be suitably used as reinforcing fibers for composite materials used in various industrial fields such as the space and aviation industry, the automobile industry, and the construction industry.

【0002】0002

【従来の技術】近年、宇宙・航空機、自動車、建築分野
、その他種々の産業分野にて、軽量且つ高強度、高弾性
の複合材料の強化繊維として低コストの高性能炭素繊維
が強く要望されている。
[Prior Art] In recent years, there has been a strong demand for low-cost, high-performance carbon fibers as reinforcing fibers for lightweight, high-strength, and high-elasticity composite materials in the space/aircraft, automobile, construction, and other various industrial fields. There is.

【0003】従来より、例えば高引張強度、高引張弾性
率を有する炭素繊維としてはポリアクリロニトリルを原
料とするPAN系炭素繊維、或はレーヨン系炭素繊維が
多く使用されているが、原料が高価であり、又炭化収率
が悪く、経済性の点で問題を有している。
Conventionally, for example, PAN-based carbon fibers made from polyacrylonitrile or rayon-based carbon fibers have been widely used as carbon fibers having high tensile strength and high tensile modulus, but the raw materials are expensive and However, the carbonization yield is poor and there are problems in economic efficiency.

【0004】これに対して、原料が安価であり且つ炭化
収率がより高いという点から石油系ピッチ或は石炭系ピ
ッチを原料とした炭素繊維の研究開発が近年盛んに行な
われている。石油系ピッチ或は石炭系ピッチなどの炭素
質原料ピッチから、例えば高強度、高弾性率の炭素繊維
を得るには、光学的異方性相が95%以上の、実質的に
100%とされる液晶ピッチを得ることが必要であるこ
とが知られている。例えば、特開昭54−55625号
公報は、不活性ガスのバブリングと撹拌とを併用して、
長時間熱分解重縮合を行ない、光学的異方性相が実質的
に100%とされる液晶ピッチを得る方法を、又、特開
昭54−160427号公報は、溶剤抽出方法により光
学的異方性相が実質的に100%とされる液晶ピッチを
得る方法を開示している。又、特公昭61−38755
号公報は、原料ピッチを熱処理して光学的異方性相含有
ピッチを生成し、その後、比重差分離を行なう方法によ
って、光学的異方性相が実質的に100%とされる液晶
ピッチを得る方法を開示している。この方法によると、
軟化点が230〜320℃程度とされ、上記特開昭54
−55625号公報或は特開昭54−160427号公
報などに記載されるようなピッチ系炭素繊維用液晶ピッ
チに比較すると、極めて低い軟化点を有した光学的異方
性相が実質的に100%とされる液晶ピッチが得られ、
従って、280〜380℃の紡糸温度にて安定して紡糸
することができるという利点を有している。
On the other hand, research and development of carbon fibers using petroleum-based pitch or coal-based pitch as raw materials has been actively conducted in recent years because the raw materials are inexpensive and the carbonization yield is higher. In order to obtain, for example, high-strength, high-modulus carbon fiber from carbonaceous raw material pitch such as petroleum-based pitch or coal-based pitch, the optically anisotropic phase must be 95% or more, substantially 100%. It is known that it is necessary to obtain a liquid crystal pitch that is For example, Japanese Patent Application Laid-open No. 54-55625 discloses that using inert gas bubbling and stirring together,
JP-A-54-160427 discloses a method of obtaining liquid crystal pitch in which the optically anisotropic phase is substantially 100% by performing long-term thermal decomposition polycondensation. A method for obtaining a liquid crystal pitch with substantially 100% orthogonal phase is disclosed. Also, special public service No. 61-38755
The publication discloses that a liquid crystal pitch containing substantially 100% of the optically anisotropic phase is produced by heat-treating raw material pitch to produce a pitch containing an optically anisotropic phase, and then performing specific gravity separation. discloses how to obtain it. According to this method,
The softening point is said to be about 230 to 320°C, and the
Compared to liquid crystal pitch for pitch-based carbon fibers as described in Japanese Patent Application Laid-Open No. 55625 or Japanese Patent Application Laid-Open No. 54-160427, the optically anisotropic phase with an extremely low softening point is substantially 100% % liquid crystal pitch is obtained,
Therefore, it has the advantage that spinning can be stably performed at a spinning temperature of 280 to 380°C.

【0005】このようにして得られた液晶ピッチは、例
えば280〜380℃の温度で溶融紡糸することにより
ピッチ繊維とし、これを酸化性ガス雰囲気下にて200
〜350℃で不融化し、更に不活性ガス雰囲気下にて5
00〜3000℃の温度で高温焼成することによって炭
素化或は黒鉛化し、炭素繊維が製造された。又、必要に
応じて、不融化或は高温焼成などの熱処理工程において
、熱処理と同時に延伸処理が施されることもある。
The liquid crystal pitch thus obtained is melt-spun, for example, at a temperature of 280 to 380°C to form pitch fibers, which are then spun at 200° C. in an oxidizing gas atmosphere.
It is made infusible at ~350°C and further heated under an inert gas atmosphere for 5
Carbonization or graphitization was performed by high-temperature firing at a temperature of 00 to 3,000°C to produce carbon fibers. Further, if necessary, in a heat treatment process such as infusibility or high temperature firing, stretching treatment may be performed simultaneously with the heat treatment.

【0006】このようにして製造されたピッチ系炭素繊
維は、溶融紡糸によりピッチ構成成分の繊維軸配向性が
強化され、それによって結晶の軸方向配向が高度に達成
され、又、高温焼成による液晶ピッチのメチル、ナフテ
ン基等の重縮合反応による黒鉛化の促進、結晶サイズの
向上が図られ、高引張強度(σt)及び高引張弾性率(
Et)が達成される。更には、斯かるピッチ系炭素繊維
は、高熱伝導特性及び高電気伝導特性をも有している。
In the pitch-based carbon fiber produced in this way, the fiber axis orientation of the pitch component is strengthened by melt spinning, thereby achieving a high degree of axial orientation of the crystals, and liquid crystal by high temperature firing. The polycondensation reaction of methyl and naphthenic groups in pitch promotes graphitization and improves crystal size, resulting in high tensile strength (σt) and high tensile modulus (
Et) is achieved. Furthermore, such pitch-based carbon fibers also have high thermal conductivity and high electrical conductivity.

【0007】[0007]

【発明が解決しようとする課題】このように、ピッチ系
炭素繊維は、高温焼成に伴う炭素繊維の黒鉛結晶化度の
向上、これに伴う引張物性、特に引張弾性率(Et)の
著しい向上がある反面、結晶化度の向上に伴って圧縮強
度(σc)が非常に低くなるという大きな問題点を有し
ている。現状のピッチ系炭素繊維は、引張弾性率が50
T/mm2 程度とされた場合に、圧縮強度(σc)は
40〜50kg/mm2 とされ、又、引張弾性率が7
0T/mm2 程度とされる場合には圧縮強度は35〜
40kg/mm2と非常に低くなる。
[Problems to be Solved by the Invention] As described above, pitch-based carbon fibers exhibit an improvement in the degree of graphite crystallinity of the carbon fibers due to high-temperature firing, and an accompanying significant improvement in tensile properties, especially tensile modulus (Et). On the other hand, it has a major problem in that the compressive strength (σc) becomes extremely low as the degree of crystallinity increases. The current pitch-based carbon fiber has a tensile modulus of 50
T/mm2, the compressive strength (σc) is 40 to 50 kg/mm2, and the tensile modulus is 7.
If it is about 0T/mm2, the compressive strength is 35~
It becomes very low at 40 kg/mm2.

【0008】最近、技術の進歩に伴って、宇宙・航空機
、自動車、建築分野、その他種々の産業分野にて、軽量
且つ高引張強度、高引張弾性率であると共に、圧縮強度
の高い低コストの高性能炭素繊維が、複合材料の素材と
して希求されている。
[0008] Recently, with the advancement of technology, in the space/aircraft, automobile, architectural, and other various industrial fields, low-cost products that are lightweight, have high tensile strength, high tensile modulus, and high compressive strength are being used. High-performance carbon fiber is desired as a material for composite materials.

【0009】本発明者らは、斯かる要望に合致した、特
に高引張弾性率、高圧縮強度の炭素繊維を得るべく多く
の研究実験を行なった。
[0009] The present inventors conducted many research experiments in order to obtain a carbon fiber having particularly high tensile modulus and high compressive strength, which met these demands.

【0010】従来より、ピッチ系炭素繊維の圧縮強度が
低いという欠点は、高温焼成に伴う高結晶化に起因する
ものであって、一般的には、高温焼成に伴い引張弾性率
が向上し、圧縮強度が低下するので、引張弾性率を高い
状態に保持して圧縮強度を向上させるには、液晶ピッチ
の紡糸工程以降の製造条件の最適化を図り、できるだけ
低温熱処理において引張弾性率の増大を図ることが不可
欠であると考えられる。
[0010] Conventionally, the disadvantage of low compressive strength of pitch-based carbon fibers is due to high crystallization accompanying high-temperature firing, and in general, the tensile modulus improves with high-temperature firing. Since the compressive strength decreases, in order to maintain the tensile modulus at a high level and improve the compressive strength, it is necessary to optimize the manufacturing conditions after the liquid crystal pitch spinning process and increase the tensile modulus through low-temperature heat treatment as much as possible. It is considered essential to

【0011】本発明者らは、多くの研究実験の過程にて
、ピッチ系炭素繊維の引張弾性率は、前述のように、一
般的にはピッチ繊維の熱処理温度により制御するが、ピ
ッチ繊維の紡糸工程も、高引張弾性率のピッチ系炭素繊
維を得るためには、非常に重要な工程であることを見出
した。
[0011] In the course of many research experiments, the present inventors found that the tensile modulus of pitch-based carbon fibers is generally controlled by the heat treatment temperature of the pitch fibers, as described above. We have found that the spinning process is also a very important process in order to obtain pitch-based carbon fibers with high tensile modulus.

【0012】つまり、紡糸工程での制御は、一般的に液
晶ピッチの溶融粘度により応じて行なわれるが、本発明
者らは、紡糸ノズルのノズル径を細径化すること、及び
ノズル剪断応力(τ)が0.2〜7.0kg/cm2 
という非常に高い状態下で紡糸することにより、紡糸時
に付与される液晶ピッチのメソフェーズ分子の繊維軸配
向、生成炭素繊維の結晶軸配向及び引張弾性率の制御を
おこなうことができ、このようにして製造されたピッチ
系炭素繊維は、従来法で製造したものと比べ引張弾性率
(Et)/圧縮強度(σc)比が小さくなり、結果とし
て高引張弾性率、高圧縮強度のピッチ系炭素繊維が得ら
れることが分かった。本発明は斯かる新規な知見に基づ
きなされたものである。
In other words, control in the spinning process is generally carried out according to the melt viscosity of the liquid crystal pitch, but the present inventors have attempted to reduce the nozzle diameter of the spinning nozzle and reduce the nozzle shear stress ( τ) is 0.2 to 7.0 kg/cm2
By spinning under extremely high conditions such as The produced pitch-based carbon fiber has a lower tensile modulus (Et)/compressive strength (σc) ratio than that produced by conventional methods, and as a result, pitch-based carbon fiber with high tensile modulus and high compressive strength is produced. I found out that I can get it. The present invention has been made based on this new knowledge.

【0013】従って、本発明の目的は、液晶ピッチの紡
糸工程におけるノズル及び紡糸条件を最適化し、製造さ
れた炭素繊維の引張弾性率を高い状態に維持したまま、
圧縮強度を従来の炭素繊維に比して、大幅に向上させる
ことのできる、高引張弾性率、高圧縮強度ピッチ系炭素
繊維の製造方法を提供することである。
Therefore, an object of the present invention is to optimize the nozzle and spinning conditions in the liquid crystal pitch spinning process, and to maintain the tensile modulus of the manufactured carbon fiber at a high level.
An object of the present invention is to provide a method for producing pitch-based carbon fibers with high tensile modulus and high compressive strength, which can significantly improve compressive strength compared to conventional carbon fibers.

【0014】[0014]

【課題を解決するための手段】上記目的は本発明に係る
高引張弾性率、高圧縮強度ピッチ系炭素繊維の製造方法
にて達成される。要約すれば、本発明は、光学的異方性
相含有量95%以上、平均分子量1600以下である液
晶ピッチを、ノズル径が0.10〜0.25mmの細径
ノズルを用いて、剪断応力0.2〜7.0kg/cm2
 下で溶融紡糸することによりピッチ繊維を紡糸し、次
いで該ピッチ繊維を熱処理することを特徴とする高引張
弾性率、高圧縮強度ピッチ系炭素繊維の製造方法である
。 好ましくは、液晶ピッチの平均分子量は1000〜15
00であり、ノズル内の剪断応力は1.0〜5.0kg
/cm2 とされる。又、使用される液晶ピッチの光学
的異方性相含有量は98%以上であるのが好適である。
[Means for Solving the Problems] The above objects are achieved by a method for producing pitch-based carbon fibers with high tensile modulus and high compressive strength according to the present invention. In summary, the present invention provides liquid crystal pitch having an optically anisotropic phase content of 95% or more and an average molecular weight of 1600 or less, by using a small nozzle with a nozzle diameter of 0.10 to 0.25 mm to reduce shear stress. 0.2-7.0kg/cm2
This is a method for producing pitch-based carbon fibers with high tensile modulus and high compressive strength, which is characterized by spinning pitch fibers by melt-spinning the pitch fibers and then heat-treating the pitch fibers. Preferably, the average molecular weight of the liquid crystal pitch is 1000 to 15
00, and the shear stress in the nozzle is 1.0 to 5.0 kg
/cm2. Further, it is preferable that the optically anisotropic phase content of the liquid crystal pitch used is 98% or more.

【0015】このようにして得られた炭素繊維は、引張
弾性率が25T/mm2 以上、圧縮強度が45kg/
mm2 以上であって、且つ引張弾性率(T/mm2 
)/圧縮強度(kg/mm2 )が1.6より小さくさ
れる。より具体的に言えば、本発明に従って製造された
ピッチ系炭素繊維は、引張弾性率が50T/mm2 程
度とされた場合に、圧縮強度(σc)は65kg/mm
2 程度とされ、又、引張弾性率が70T/mm2 程
度とされる場合には圧縮強度は47kg/mm2 程度
と非常に高い物性値を示す。
The carbon fiber thus obtained has a tensile modulus of 25 T/mm2 or more and a compressive strength of 45 kg/mm2.
mm2 or more, and tensile modulus (T/mm2
)/compressive strength (kg/mm2) is made smaller than 1.6. More specifically, the pitch-based carbon fiber produced according to the present invention has a compressive strength (σc) of 65 kg/mm when the tensile modulus is about 50 T/mm2.
When the tensile modulus is about 70 T/mm2, the compressive strength is about 47 kg/mm2, which is a very high physical property value.

【0016】更に説明すると、上述のように、高引張弾
性率のピッチ系炭素繊維を製造するに際しては、一般的
にはピッチ繊維の熱処理温度を制御するが、本発明では
特に、ピッチ繊維の紡糸条件が制御される。即ち、ピッ
チ繊維の紡糸に使用される紡糸ノズルのノズル径は細径
化され、ノズル径が0.10〜0.25mm、好ましく
は、0.15〜0.20mmの細径ノズルが用いられる
。もし、ノズル径が0.10mm未満の紡糸ノズルを使
用した場合には、紡糸時に頻繁に糸切れを生じ、紡糸が
困難となる。又、例え得られたピッチ繊維を熱処理して
炭素繊維を得たとしても、炭素繊維にラジアルクラック
が生じ、高性能の炭素繊維を得ることができない。一方
、ノズル径が0.25mmを超える紡糸ノズルを使用し
た場合には、紡糸時に付与される液晶ピッチのメソフェ
ーズ分子の繊維軸配向が十分に行なわれず、結果として
、後続の高温焼成時における炭素繊維の結晶軸配向性が
悪く、引張弾性率の高い炭素繊維を得ることができない
To further explain, as mentioned above, when producing pitch-based carbon fibers with a high tensile modulus, the heat treatment temperature of the pitch fibers is generally controlled, but in the present invention, in particular, the pitch fiber spinning process is Conditions are controlled. That is, the nozzle diameter of the spinning nozzle used for spinning pitch fibers is reduced, and a small diameter nozzle having a nozzle diameter of 0.10 to 0.25 mm, preferably 0.15 to 0.20 mm is used. If a spinning nozzle with a nozzle diameter of less than 0.10 mm is used, thread breakage occurs frequently during spinning, making spinning difficult. Moreover, even if carbon fibers are obtained by heat-treating the obtained pitch fibers, radial cracks occur in the carbon fibers, making it impossible to obtain high-performance carbon fibers. On the other hand, when a spinning nozzle with a nozzle diameter exceeding 0.25 mm is used, the fiber axis orientation of the mesophase molecules of the liquid crystal pitch imparted during spinning is not sufficiently performed, and as a result, carbon fibers are The crystal axis orientation of carbon fibers is poor, making it impossible to obtain carbon fibers with high tensile modulus.

【0017】又、本発明によると、液晶ピッチが紡糸ノ
ズル内を通過する時に付与されるノズル剪断応力(τ)
は、0.2〜7.0kg/cm2 、好ましくは、1.
0〜5.0kg/cm2 という非常に高い値とされる
。ノズル剪断応力が0.2kg/cm2 未満の場合に
は、例え紡糸ノズルとして細径ノズルを使用したとして
もメソフェーズ分子の繊維軸配向が十分に行なわれない
。又、ノズル剪断応力が7.0kg/cm2 を超える
と、紡糸時に頻繁に糸切れを生じ、紡糸が困難となる。 又、例え得られたピッチ繊維を熱処理して炭素繊維を得
たとしても、炭素繊維にラジアルクラックが生じ、高性
能の炭素繊維を得ることができない。
Further, according to the present invention, the nozzle shear stress (τ) applied when the liquid crystal pitch passes through the spinning nozzle
is 0.2 to 7.0 kg/cm2, preferably 1.
It is considered to be a very high value of 0 to 5.0 kg/cm2. If the nozzle shear stress is less than 0.2 kg/cm2, even if a small diameter nozzle is used as the spinning nozzle, the fiber axis orientation of mesophase molecules will not be achieved sufficiently. Furthermore, if the nozzle shear stress exceeds 7.0 kg/cm2, yarn breakage occurs frequently during spinning, making spinning difficult. Moreover, even if carbon fibers are obtained by heat-treating the obtained pitch fibers, radial cracks occur in the carbon fibers, making it impossible to obtain high-performance carbon fibers.

【0018】本発明によれば、液晶ピッチとしては、石
油系ピッチ或は石炭系ピッチ、更には芳香族炭化水素類
を原料とするピッチを使用することができ、該ピッチを
、従来の上記諸方法にて光学的異方性相含有量95%以
上、平均分子量1600以下である液晶ピッチが調製さ
れる。好ましくは、液晶ピッチは、平均分子量が100
0〜1500とされ、又、光学的異方性相含有量は98
%以上、即ち、実質的に100%とされのが好適である
。使用する液晶ピッチの光学的異方性含有量が95%未
満である場合、或は、平均分子量が1600を超えた場
合には、高引張強度、高引張弾性率のピッチ系炭素繊維
を製造するのが困難となり、好ましくない。
According to the present invention, petroleum-based pitch, coal-based pitch, or pitch made from aromatic hydrocarbons can be used as the liquid crystal pitch, and this pitch can be used as a liquid crystal pitch using the above-mentioned conventional methods. By this method, a liquid crystal pitch having an optically anisotropic phase content of 95% or more and an average molecular weight of 1600 or less is prepared. Preferably, the liquid crystal pitch has an average molecular weight of 100
0 to 1500, and the optically anisotropic phase content is 98
% or more, ie, substantially 100%. When the optical anisotropy content of the liquid crystal pitch used is less than 95%, or when the average molecular weight exceeds 1600, pitch-based carbon fibers with high tensile strength and high tensile modulus are produced. This makes it difficult and undesirable.

【0019】本発明によれば、このような性状とされる
液晶ピッチは、上記紡糸条件下にて、例えば280〜3
80℃の温度で溶融紡糸することによりピッチ繊維とさ
れる。該ピッチ繊維は、次いで、酸化性ガス雰囲気下に
て200〜350℃で不融化し、更に不活性ガス雰囲気
下にて500〜3000℃の温度で高温焼成することに
よって炭素化或は黒鉛化し、炭素繊維とされる。又、必
要に応じて、不融化或は高温焼成などの熱処理工程にお
いて、熱処理と同時に延伸処理が施される。
According to the present invention, the liquid crystal pitch having such properties is, for example, 280 to 3
Pitch fibers are obtained by melt spinning at a temperature of 80°C. The pitch fibers are then made infusible at 200 to 350°C in an oxidizing gas atmosphere, and then carbonized or graphitized by firing at a high temperature of 500 to 3000°C in an inert gas atmosphere. Considered to be carbon fiber. Further, if necessary, in a heat treatment process such as infusibility or high-temperature firing, a stretching treatment is performed simultaneously with the heat treatment.

【0020】このように、本発明に従って製造されたピ
ッチ系炭素繊維は、引張弾性率が50T/mm2 程度
とされた場合に、圧縮強度(σc)は大略65kg/m
m2 とされ、又、引張弾性率が70T/mm2 程度
とされる場合には圧縮強度は大略47kg/mm2 と
され、上述した従来のピッチ系炭素繊維に比較して、圧
縮強度が極めて高くなる。従って、本発明によるピッチ
系炭素繊維は、従来法で製造したものと比べ引張弾性率
(Et)/圧縮強度(σc)が向上し、即ち、1.6よ
り小さくされ、高引張強度、高圧縮強度のピッチ系炭素
繊維が得られる。
As described above, the pitch-based carbon fiber produced according to the present invention has a compressive strength (σc) of approximately 65 kg/m2 when the tensile modulus is approximately 50 T/mm2.
m2, and when the tensile modulus is about 70 T/mm2, the compressive strength is approximately 47 kg/mm2, which is extremely high compared to the conventional pitch-based carbon fibers mentioned above. Therefore, the pitch-based carbon fiber according to the present invention has improved tensile modulus (Et)/compressive strength (σc), that is, lower than 1.6, compared to those produced by the conventional method, and has high tensile strength and high compressive strength. A strong pitch-based carbon fiber can be obtained.

【0021】尚、本明細書で使用される「光学的異方性
相」という語句の意味は、必ずしも学界又は種々の技術
文献において統一して用いられているとは言い難いので
、本明細書では、「光学的異方性相」とは、ピッチ構成
成分の一つであり、常温近くで固化したピッチ塊の断面
を研摩し、反射型偏光顕微鏡で直交ニコル下で観察した
とき、試料又は直交ニコルを回転して光輝が認められる
、即ち光学的異方性である部分を意味し、これに対し、
光輝が認められない、即ち光学的等方性である部分は光
学的等方性相と呼ぶ。
[0021] It should be noted that the meaning of the phrase "optically anisotropic phase" used in this specification is not necessarily uniformly used in academic circles or in various technical documents, so the meaning of the phrase "optically anisotropic phase" used in this specification The "optically anisotropic phase" is one of the constituent components of pitch, and when a cross section of a pitch lump solidified near room temperature is polished and observed under crossed Nicols with a reflective polarizing microscope, it shows that the sample or It means the part where brightness is observed by rotating the orthogonal nicols, that is, the part that is optically anisotropic, and on the other hand,
A portion where no brightness is observed, that is, an optically isotropic portion is called an optically isotropic phase.

【0022】光学的異方性相は、光学的等方性相に比べ
て多環芳香族の縮合環の平面性がより発達した化学構造
の分子が主成分で、平面を積層したかたちで凝集、会合
しており、溶融温度では一種の液晶状態であると考えら
れる。従ってこれを細い口金(紡糸ノズル)から押し出
して紡糸するときは分子の平面が繊維軸の方向に平行に
近い配列をするために、この光学的異方性ピッチから作
った炭素繊維は高強度、高弾性を示すことになる。又、
光学的異方性相の定量は偏光顕微鏡直交ニコル下で観察
、写真撮影して光学的異方性部分の占める面積率を測定
して行うので、これは実質的に体積%を表わす。
The optically anisotropic phase is mainly composed of molecules with a chemical structure in which the flatness of polycyclic aromatic condensed rings is more developed than that of the optically isotropic phase, and the optically anisotropic phase aggregates in the form of a stack of planes. , and are considered to be in a kind of liquid crystal state at the melting temperature. Therefore, when extruded from a thin spinneret (spinning nozzle) and spun, the planes of the molecules are aligned nearly parallel to the direction of the fiber axis, so carbon fibers made from this optically anisotropic pitch have high strength and It shows high elasticity. or,
The optically anisotropic phase is quantified by observing it under a polarizing microscope under crossed nicols, taking a photograph, and measuring the area ratio occupied by the optically anisotropic portion, which essentially represents volume %.

【0023】「平均分子量」の測定法に関して言えば、
ピッチ成分の分子量測定は、溶剤に可溶な部分はクロロ
ホルム溶媒に溶解して蒸気圧平衡法(VPO)で測定し
、不溶な部分は金属リチウムとエチレンジアミンを用い
る温和な水添反応により可溶化後上述の蒸気圧平衡法で
測定し、それから平均分子量を求めた。
Regarding the method of measuring "average molecular weight",
The molecular weight of the pitch component is measured by dissolving the soluble part in a chloroform solvent and measuring it by vapor pressure equilibrium (VPO), and measuring the insoluble part by solubilizing it by a mild hydrogenation reaction using metallic lithium and ethylenediamine. The average molecular weight was determined by the vapor pressure equilibrium method described above.

【0024】又、「ノズル剪断応力」の測定は、液晶ピ
ッチの紡糸ノズル内での流れが円管内層流であるとし、
次式により表されるハーゲン−ポアズイユ(Hagen
−Poiseulle)式を用いて計算した。 τ=32μQ/gc・π・D3  ここで、τ:剪断応力 μ:ピッチ溶融粘度 Q:ピッチ吐出量 gc:重力加速度 D:紡糸ノズル径 更に、「圧縮強度」は、炭素繊維の繊維軸方向の圧縮強
度とし、該圧縮強度の測定は、ASTM  D3410
に準拠して行なった。又、本明細書にて圧縮強度の表示
は、Vf(Volume fraction)60%(
体積換算で複合材中に炭素繊維が60%存在することを
意味する)の複合材圧縮強度の値を用いた。
[0024] Furthermore, the measurement of "nozzle shear stress" assumes that the flow of liquid crystal pitch in the spinning nozzle is a laminar flow in a circular tube,
Hagen-Poiseuille (Hagen
-Poiseulle) formula. τ=32μQ/gc・π・D3 Here, τ: Shear stress μ: Pitch melt viscosity Q: Pitch discharge amount gc: Gravitational acceleration D: Spinning nozzle diameter Furthermore, “compressive strength” is The compressive strength is measured according to ASTM D3410.
This was done in accordance with the. In addition, in this specification, compressive strength is expressed as Vf (Volume fraction) 60% (
The composite compressive strength value (meaning that carbon fibers are present in the composite material in an amount of 60% in terms of volume) was used.

【0025】次に、本発明を実施例について更に詳しく
説明する。
Next, the present invention will be explained in more detail with reference to examples.

【0026】[0026]

【実施例】実施例1 液晶ピッチを製造するに当たり、光学的異方性相を40
%含有し、軟化点が220℃である炭素質ピッチを前駆
体ピッチとして使用した。この前駆体ピッチを遠心分離
により光学的異方性相の多いピッチと光学的等方性相の
多いピッチとを連続的に分離し、それぞれ抜き出した。
[Example] Example 1 In producing liquid crystal pitch, 40% of the optically anisotropic phase was
% and a softening point of 220° C. was used as the precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

【0027】得られた光学的異方性相を多く含む液晶ピ
ッチAは、光学的異方性相を100%含み、平均分子量
は1150、軟化点は270℃、キノリン不溶分は25
.0重量%であった。該液晶ピッチAを、ノズル1(ノ
ズル径D=0.15mm、ノズル長L=0.60mm)
を用い、剪断応力τ=1.45kg/cm2 、温度3
10℃にて紡糸し、13μm径のピッチ繊維を得た。 得られたピッチ繊維束を酸化性雰囲気下で、最高温度2
95℃で不融化した後、不活性雰囲気下、種々の温度で
炭化を行い、約10μm径の炭素繊維を得た。得られた
炭素繊維の引張物性及び圧縮強度は表1に示す通りであ
り、従来品よりも引張弾性率に対する圧縮強度の割合が
20〜30%程度向上していることが分かる。尚、σt
は引張強度を表す。
The obtained liquid crystal pitch A containing a large amount of optically anisotropic phase contains 100% optically anisotropic phase, has an average molecular weight of 1150, a softening point of 270°C, and a quinoline insoluble content of 25%.
.. It was 0% by weight. The liquid crystal pitch A is determined by nozzle 1 (nozzle diameter D = 0.15 mm, nozzle length L = 0.60 mm)
using, shear stress τ = 1.45 kg/cm2, temperature 3
Spinning was performed at 10°C to obtain pitch fibers with a diameter of 13 μm. The obtained pitch fiber bundle was heated to a maximum temperature of 2 in an oxidizing atmosphere.
After being infusible at 95° C., carbonization was performed at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 μm. The tensile properties and compressive strength of the obtained carbon fiber are shown in Table 1, and it can be seen that the ratio of compressive strength to tensile modulus is improved by about 20 to 30% compared to the conventional product. Furthermore, σt
represents tensile strength.

【0028】[0028]

【表1】[Table 1]

【0029】実施例2 実施例1で用いた液晶ピッチAを、ノズル2(ノズル径
D=0.20mm、ノズル長L=0.80mm)を用い
、剪断応力τ=4.0kg/cm2 、温度290℃に
て紡糸し、13μm径のピッチ繊維を得た。得られたピ
ッチ繊維束を酸化性雰囲気下で、最高温度295℃で不
融化した後、不活性雰囲気下、種々の温度で炭化を行い
、約10μm径の炭素繊維を得た。得られた炭素繊維の
引張物性及び圧縮強度は表2に示す通りであり、従来品
よりも引張弾性率に対する圧縮強度の割合が20%程度
向上していることが分かる。尚、σtは引張強度を表す
Example 2 The liquid crystal pitch A used in Example 1 was used with nozzle 2 (nozzle diameter D = 0.20 mm, nozzle length L = 0.80 mm), shear stress τ = 4.0 kg/cm2, and temperature. Spinning was performed at 290°C to obtain pitch fibers with a diameter of 13 μm. The obtained pitch fiber bundles were infusible in an oxidizing atmosphere at a maximum temperature of 295° C., and then carbonized at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 μm. The tensile properties and compressive strength of the obtained carbon fiber are shown in Table 2, and it can be seen that the ratio of compressive strength to tensile modulus is improved by about 20% compared to the conventional product. Note that σt represents tensile strength.

【0030】[0030]

【表2】[Table 2]

【0031】比較例1 液晶ピッチを製造するに当たり、光学的異方性相を50
%含有し、軟化点が235℃である炭素質ピッチを前駆
体ピッチとして使用した。この前駆体ピッチを遠心分離
により光学的異方性相の多いピッチと光学的等方性相の
多いピッチとを連続的に分離し、それぞれ抜き出した。
Comparative Example 1 In producing liquid crystal pitch, 50% of the optically anisotropic phase was
% and a softening point of 235° C. was used as the precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

【0032】得られた光学的異方性相を多く含む液晶ピ
ッチBは、光学的異方性相を100%含み、平均分子量
は1700、軟化点は310℃、キノリン不溶分は40
重量%であった。該液晶ピッチBを、ノズル1(ノズル
径D=0.15mm、ノズル長L=0.60mm)を用
い、剪断応力τ=5.00kg/cm2 、温度320
℃にて紡糸し、13μm径のピッチ繊維を得た。得られ
たピッチ繊維束を酸化性雰囲気下で、最高温度295℃
で不融化した後、不活性雰囲気下、種々の温度で炭化を
行い、約10μm径の炭素繊維を得た。得られた炭素繊
維の引張物性及び圧縮強度は表3に示す通りであり、引
張弾性率に対する圧縮強度の割合は低いものであった。 尚、σtは引張強度を表す。
The obtained liquid crystal pitch B containing a large amount of optically anisotropic phase contains 100% optically anisotropic phase, has an average molecular weight of 1700, a softening point of 310°C, and a quinoline insoluble content of 40%.
% by weight. The liquid crystal pitch B was adjusted using nozzle 1 (nozzle diameter D = 0.15 mm, nozzle length L = 0.60 mm), shear stress τ = 5.00 kg/cm2, and temperature 320 mm.
The fibers were spun at ℃ to obtain pitch fibers with a diameter of 13 μm. The obtained pitch fiber bundle was heated to a maximum temperature of 295°C in an oxidizing atmosphere.
After infusibility, carbonization was performed at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 μm. The tensile properties and compressive strength of the obtained carbon fibers are as shown in Table 3, and the ratio of compressive strength to tensile modulus was low. Note that σt represents tensile strength.

【0033】[0033]

【表3】[Table 3]

【0034】比較例2 液晶ピッチを製造するに当たり、光学的異方性相を40
%含有し、軟化点が215℃である炭素質ピッチを前駆
体ピッチとして使用した。この前駆体ピッチを遠心分離
により光学的異方性相の多いピッチと光学的等方性相の
多いピッチとを連続的に分離し、それぞれ抜き出した。
Comparative Example 2 In producing liquid crystal pitch, an optically anisotropic phase of 40
% and a softening point of 215° C. was used as the precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

【0035】得られた光学的異方性相を多く含む液晶ピ
ッチCは、光学的異方性相を85%含み、平均分子量は
1100、軟化点は265℃、キノリン不溶分は22.
0重量%であった。該液晶ピッチCを、ノズル1(ノズ
ル径D=0.15mm、ノズル長L=0.60mm)を
用い、剪断応力τ=1.50kg/cm2 、温度30
0℃にて紡糸し、13μm径のピッチ繊維を得た。得ら
れたピッチ繊維束を酸化性雰囲気下で、最高温度295
℃で不融化した後、不活性雰囲気下、種々の温度で炭化
を行い、約10μm径の炭素繊維を得た。得られた炭素
繊維の引張物性及び圧縮強度は表4に示す通りであり、
引張弾性率に対する圧縮強度の割合は低いものであった
。 尚、σtは引張強度を表す。
The obtained liquid crystal pitch C containing a large amount of optically anisotropic phase contains 85% optically anisotropic phase, has an average molecular weight of 1100, a softening point of 265°C, and a quinoline insoluble content of 22.
It was 0% by weight. The liquid crystal pitch C was prepared using nozzle 1 (nozzle diameter D = 0.15 mm, nozzle length L = 0.60 mm), shear stress τ = 1.50 kg/cm2, and temperature 30.
Spinning was carried out at 0°C to obtain pitch fibers with a diameter of 13 μm. The obtained pitch fiber bundle was heated to a maximum temperature of 295 ml under an oxidizing atmosphere.
After being infusible at 0.degree. C., carbonization was performed at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 .mu.m. The tensile properties and compressive strength of the obtained carbon fibers are as shown in Table 4,
The ratio of compressive strength to tensile modulus was low. Note that σt represents tensile strength.

【0036】[0036]

【表4】[Table 4]

【0037】比較例3 実施例1で用いた液晶ピッチAを、ノズル3(ノズル径
D=0.30mm、ノズル長L=1.20mm)を用い
、剪断応力τ=1.00kg/cm2 、温度325℃
にて紡糸し、13μm径のピッチ繊維を得た。得られた
ピッチ繊維束を酸化性雰囲気下で、最高温度295℃で
不融化した後、不活性雰囲気下、種々の温度で炭化を行
い、約10μm径の炭素繊維を得た。得られた炭素繊維
の引張物性及び圧縮強度は表5に示す通りであり、引張
弾性率に対する圧縮強度の割合は低いものであった。 尚、σtは引張強度を表す。
Comparative Example 3 Using the liquid crystal pitch A used in Example 1, using nozzle 3 (nozzle diameter D = 0.30 mm, nozzle length L = 1.20 mm), shear stress τ = 1.00 kg/cm2, temperature 325℃
The fibers were spun to obtain pitch fibers with a diameter of 13 μm. The obtained pitch fiber bundles were infusible in an oxidizing atmosphere at a maximum temperature of 295° C., and then carbonized at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 μm. The tensile properties and compressive strength of the obtained carbon fibers are as shown in Table 5, and the ratio of compressive strength to tensile modulus was low. Note that σt represents tensile strength.

【0038】[0038]

【表5】[Table 5]

【0039】比較例4 実施例1で用いた液晶ピッチAを、ノズル4(ノズル径
D=0.10mm、ノズル長L=0.4mm)を用い、
剪断応力τ=9.10kg/cm2 、温度310℃に
て紡糸した所、頻繁に糸切れを生じ、紡糸が困難であっ
た。又、得られたピッチ繊維束を酸化性雰囲気下で、最
高温度295℃で不融化した後、不活性雰囲気下、種々
の温度で炭化を行い、約10μm径の炭素繊維を得たが
、得られた炭素繊維にはラジアルクラックが生じており
、高性能の炭素繊維は得られなかった。
Comparative Example 4 The liquid crystal pitch A used in Example 1 was changed using nozzle 4 (nozzle diameter D = 0.10 mm, nozzle length L = 0.4 mm).
When spinning was performed at a shear stress τ = 9.10 kg/cm2 and a temperature of 310°C, yarn breakage occurred frequently and spinning was difficult. Further, the obtained pitch fiber bundle was made infusible in an oxidizing atmosphere at a maximum temperature of 295°C, and then carbonized at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 μm. The resulting carbon fibers had radial cracks, and high-performance carbon fibers could not be obtained.

【0040】比較例5 実施例1で用いた液晶ピッチAを、ノズル1(ノズル径
D=0.15mm、ノズル長L=0.60mm)を用い
、剪断応力τ=0.10kg/cm2 、温度335℃
にて紡糸し、13μm径のピッチ繊維を得た。得られた
ピッチ繊維束を酸化性雰囲気下で、最高温度295℃で
不融化した後、不活性雰囲気下、種々の温度で炭化を行
い、約10μm径の炭素繊維を得た。得られた炭素繊維
の引張物性及び圧縮強度は表6に示す通りであり、引張
弾性率に対する圧縮強度の割合は低いものであった。 尚、σtは引張強度を表す。
Comparative Example 5 Using the liquid crystal pitch A used in Example 1, using nozzle 1 (nozzle diameter D = 0.15 mm, nozzle length L = 0.60 mm), shear stress τ = 0.10 kg/cm2, temperature 335℃
The fibers were spun to obtain pitch fibers with a diameter of 13 μm. The obtained pitch fiber bundles were infusible in an oxidizing atmosphere at a maximum temperature of 295° C., and then carbonized at various temperatures in an inert atmosphere to obtain carbon fibers with a diameter of about 10 μm. The tensile properties and compressive strength of the obtained carbon fibers are as shown in Table 6, and the ratio of compressive strength to tensile modulus was low. Note that σt represents tensile strength.

【0041】[0041]

【表6】[Table 6]

【0042】[0042]

【発明の効果】以上の如くに構成される本発明の製造方
法によれば、液晶ピッチの紡糸工程におけるノズル及び
紡糸条件を最適化し、引張弾性率を高い状態に維持した
まま、圧縮強度を従来の炭素繊維に比して、大幅に向上
させることができ、高引張弾性率、高圧縮強度ピッチ系
炭素繊維を好適に製造し得る。
Effects of the Invention According to the manufacturing method of the present invention configured as described above, the nozzle and spinning conditions in the liquid crystal pitch spinning process are optimized, and the compressive strength is lower than that of the conventional one while maintaining the tensile modulus at a high level. It is possible to suitably produce pitch-based carbon fibers with high tensile modulus and high compressive strength.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  光学的異方性相含有量95%以上、平
均分子量1600以下である液晶ピッチを、ノズル径が
0.10〜0.25mmの細径ノズルを用いて、剪断応
力0.2〜7.0kg/cm2 下で溶融紡糸すること
によりピッチ繊維を紡糸し、次いで該ピッチ繊維を熱処
理することを特徴とする高引張弾性率、高圧縮強度ピッ
チ系炭素繊維の製造方法。
[Claim 1] Liquid crystal pitch having an optically anisotropic phase content of 95% or more and an average molecular weight of 1600 or less is processed using a small diameter nozzle with a nozzle diameter of 0.10 to 0.25 mm at a shear stress of 0.2. A method for producing pitch-based carbon fibers with high tensile modulus and high compressive strength, which comprises spinning pitch fibers by melt spinning under ~7.0 kg/cm2, and then heat-treating the pitch fibers.
【請求項2】  得られた炭素繊維の引張弾性率が25
T/mm2 以上、圧縮強度が45kg/mm2 以上
であって、且つ引張弾性率(T/mm2 )/圧縮強度
(kg/mm2 )が1.6より小さくされる請求項1
の製造方法。
[Claim 2] The obtained carbon fiber has a tensile modulus of 25
Claim 1: T/mm2 or more, compressive strength is 45kg/mm2 or more, and tensile modulus (T/mm2)/compressive strength (kg/mm2) is less than 1.6.
manufacturing method.
【請求項3】  液晶ピッチの平均分子量は1000〜
1500であり、ノズル内の剪断応力は1.0〜5.0
kg/cm2 である請求項1又は請求項2の製造方法
[Claim 3] The average molecular weight of the liquid crystal pitch is 1000~
1500, and the shear stress in the nozzle is 1.0-5.0
The manufacturing method according to claim 1 or claim 2, wherein the amount is kg/cm2.
【請求項4】  液晶ピッチの光学的異方性相含有量は
98%以上である請求項1、請求項2又は請求項3の製
造方法。
4. The manufacturing method according to claim 1, wherein the optically anisotropic phase content of the liquid crystal pitch is 98% or more.
JP41653990A 1990-12-28 1990-12-28 Production of pitch carbon fiber having high tensile elastic modulus and high compression strength Pending JPH04257321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41653990A JPH04257321A (en) 1990-12-28 1990-12-28 Production of pitch carbon fiber having high tensile elastic modulus and high compression strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41653990A JPH04257321A (en) 1990-12-28 1990-12-28 Production of pitch carbon fiber having high tensile elastic modulus and high compression strength

Publications (1)

Publication Number Publication Date
JPH04257321A true JPH04257321A (en) 1992-09-11

Family

ID=18524760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41653990A Pending JPH04257321A (en) 1990-12-28 1990-12-28 Production of pitch carbon fiber having high tensile elastic modulus and high compression strength

Country Status (1)

Country Link
JP (1) JPH04257321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577408A2 (en) * 1992-06-30 1994-01-05 Tonen Corporation High compressive strength pitch based carbon fiber
CN103122503A (en) * 2013-01-28 2013-05-29 江苏国正新材料科技有限公司 Preparation method of high-strength and high-modulus pitch-based fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0577408A2 (en) * 1992-06-30 1994-01-05 Tonen Corporation High compressive strength pitch based carbon fiber
CN103122503A (en) * 2013-01-28 2013-05-29 江苏国正新材料科技有限公司 Preparation method of high-strength and high-modulus pitch-based fiber

Similar Documents

Publication Publication Date Title
JPS5818421A (en) Preparation of carbon fiber
US20240141559A1 (en) Fabrication of carbon fibers with high mechanical properties
KR910005574B1 (en) Process for producing pitch for carbon
JPH04257321A (en) Production of pitch carbon fiber having high tensile elastic modulus and high compression strength
CN115369520A (en) Mesophase pitch-based carbon fiber with mixed structure and preparation method thereof
JPH0617320A (en) High-compressive strength pitch-based carbon fiber
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
US6241923B1 (en) Process for the production of carbon fibers
JP2000319664A (en) Mesophase pitch for carbon material and production of carbon fiber
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH05287618A (en) High-elasticity and high-compression strength pitch-base carbon fiber and its production
US5540905A (en) Optically anisotropic pitch for manufacturing high compressive strength carbon fibers and method of manufacturing high compressive strength carbon fibers
JPS6278220A (en) Production of ribbon-like carbon fiber
JPH0437167B2 (en)
JP3016089B2 (en) Ultra-low softening point, low viscosity mesophase pitch, method for producing the same, and method for producing high-strength, high-modulus carbon fiber
JP2998396B2 (en) Pitch-based carbon fiber, production method thereof and pitch for spinning raw material
JPS59184287A (en) Preparation of spun pitch for carbon fiber
JPH04153326A (en) Production of pitch-based carbon fiber
JP3239490B2 (en) Optically anisotropic pitch for high compressive strength carbon fiber and method for producing carbon fiber
JPS6183319A (en) Carbon fiber and its production
JP3018660B2 (en) Spinning pitch for carbon fiber and method for producing the same
JP2689978B2 (en) Carbon fiber production method
JPH0112851B2 (en)
JPH0811844B2 (en) Method for producing pitch-based carbon fiber