JPH04153326A - Production of pitch-based carbon fiber - Google Patents

Production of pitch-based carbon fiber

Info

Publication number
JPH04153326A
JPH04153326A JP27481190A JP27481190A JPH04153326A JP H04153326 A JPH04153326 A JP H04153326A JP 27481190 A JP27481190 A JP 27481190A JP 27481190 A JP27481190 A JP 27481190A JP H04153326 A JPH04153326 A JP H04153326A
Authority
JP
Japan
Prior art keywords
pitch
spinning
fiber
optically
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27481190A
Other languages
Japanese (ja)
Inventor
Eiji Kitajima
北嶋 栄二
Takashi Oyama
隆 大山
Tamotsu Tano
保 田野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP27481190A priority Critical patent/JPH04153326A/en
Publication of JPH04153326A publication Critical patent/JPH04153326A/en
Pending legal-status Critical Current

Links

Landscapes

  • Working-Up Tar And Pitch (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber having extremely high elastic modulus and compressive strength and useful for composite material, etc., by melt- spinning an optically anisotropic spinning pitch compounded with an optically isotropic spinning pitch, infusibilizing the spun fiber and subjecting to carbonization treatment and graphitization treatment. CONSTITUTION:The objective fiber is produced by melt-spinning an optically anisotropic spinning pitch compounded with 0.5-10wt.% (preferably 1.0-5wt.%) of an optically isotropic spinning pitch containing pitch-constituting aromatic hydrocarbon three-dimensionally crosslinked with oxygen atom and containing 0.5-2.0wt.% (preferably 1.0-1.5wt.%) of oxygen, infusibilizing the obtained fiber, carbonizing the product and graphitizing the carbonized fiber. The softening point difference between the optically isotropic spinning pitch and the optically anisotropic spinning pitch is preferably <=10 deg.C and the viscosity of the pitch in melt-spinning is preferably <=300 poise.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、高弾性率と高圧縮強度を兼有するピッチ系
炭素繊維の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for producing pitch-based carbon fibers having both high elastic modulus and high compressive strength.

従来の技術 炭素繊維は軽量で強度が高く、優れた耐熱性や耐薬品性
等の特性を有するために構造用複合材基材や高能性素材
等として多くの分野、例えば宇宙用、航空用、レジャー
用、スポーツ用および産業用の複合材料等の分野におい
て利用されている。
Conventional technology Carbon fiber is lightweight, has high strength, and has properties such as excellent heat resistance and chemical resistance, so it is used in many fields as a base material for structural composite materials and as a high-performance material, such as for space, aviation, etc. It is used in fields such as composite materials for leisure, sports, and industrial use.

炭素繊維はポリアクリロニトリル系(PAN系)炭素繊
維とピッチ系炭素繊維に大別されるが、ピッチ系炭素繊
維の中でも高性能品(HP)の炭素繊維は繊維軸に配向
した異方性の高い黒鉛結晶から構成されているために、
PAN系に比べて弾性率は高いが、圧縮強度が低いとい
う欠点があり、その改良が要請されている。特に、宇宙
用や航空用の先端複合材料等の分野においては、高弾性
率と高圧縮強度を兼有するピッチ系炭素繊維の開発が要
請されている。
Carbon fibers are broadly classified into polyacrylonitrile (PAN-based) carbon fibers and pitch-based carbon fibers, but among pitch-based carbon fibers, high-performance (HP) carbon fibers have high anisotropy and are oriented along the fiber axis. Because it is composed of graphite crystals,
Although it has a higher modulus of elasticity than the PAN type, it has the disadvantage of lower compressive strength, and improvements are needed. In particular, in the field of advanced composite materials for space and aviation applications, there is a demand for the development of pitch-based carbon fibers that have both high modulus of elasticity and high compressive strength.

この発明はこのような要請に応え、実用上十分に高弾性
率と高圧縮強度を兼有するピッチ系炭素繊維を提供する
ためになされたものである。
The present invention was made in response to such demands and to provide a pitch-based carbon fiber that has both a sufficiently high modulus of elasticity and high compressive strength for practical use.

課題を解決するための手段 即ち本発明は、ピッチを構成する芳香族炭化水素が酸素
原子によって三次元的に架橋された酸素を0.5〜2.
0重量%含有する光学的等方性紡糸ピッチを0.5〜I
O重量%配合した光学的異方性紡糸ピッチを溶融紡糸し
、得られた繊維を不融化処理に付した後、炭化処理に付
し、さらに黒鉛化処理に付すことを特徴とする高圧縮強
度と高弾性率を兼有するピッチ系炭素繊維の製法に関す
る。
Means for solving the problem, that is, the present invention, is an aromatic hydrocarbon constituting pitch that contains oxygen three-dimensionally cross-linked by oxygen atoms in an amount of 0.5 to 2.
The optically isotropic spinning pitch containing 0% by weight is 0.5 to I
High compressive strength characterized by melt-spinning an optically anisotropic spinning pitch containing 0% by weight, and subjecting the obtained fiber to an infusible treatment, followed by a carbonization treatment, and then a graphitization treatment. This invention relates to a method for producing pitch-based carbon fiber that has both high elasticity and high modulus.

本発明で使用する光学的等方性紡糸ピッチは、石油系ま
たは石炭系の重質油またはピッチを原料として調製され
得るが、例えば、空気を吹き込みながら熱処理すること
によっても調製することができる。この場合、通気量は
重質油1kgに対し1〜5M分であり、加熱温度は30
0〜350℃でおこなうことができる。
The optically isotropic spinning pitch used in the present invention can be prepared using petroleum-based or coal-based heavy oil or pitch as a raw material, but it can also be prepared, for example, by heat treatment while blowing air. In this case, the aeration amount is 1 to 5 M per 1 kg of heavy oil, and the heating temperature is 30
It can be carried out at 0 to 350°C.

上記のようにして酸素を含有させた等方性ピッチは、軟
化点を調整するために、通常、300〜320℃で、0
9l−1,0mmHgの条件下での減圧ストリッピング
処理に付される。調整される軟化点は、基材ピッチとし
て使用する光学的異方性紡糸ピッチの軟化点との差が1
0℃以内、好ましくは5℃以内になる温度である。両者
の軟化点の差がlOoCを越える場合には、両者の最適
紡糸温度が相違するために、紡糸性が著しく悪化する。
The isotropic pitch containing oxygen as described above is usually heated at 300 to 320°C to adjust the softening point.
It is subjected to a vacuum stripping treatment under conditions of 9 l-1.0 mmHg. The softening point to be adjusted has a difference of 1 from the softening point of the optically anisotropic spinning pitch used as the base material pitch.
The temperature is within 0°C, preferably within 5°C. If the difference in softening point between the two exceeds 10oC, the optimum spinning temperature will be different between the two, resulting in a marked deterioration in spinnability.

本発明で使用する光学的等方性紡糸ピッチは、上記のエ
アーブローイング法以外に、酸化剤、例えば、硝酸や混
酸等を用いて調製してもよい。
The optically isotropic spinning pitch used in the present invention may be prepared using an oxidizing agent such as nitric acid or a mixed acid, in addition to the above-mentioned air blowing method.

本発明で使用する光学的等方性紡糸ピッチは、ピッチを
構成する芳香族炭化水素が酸素原子によって三次元的に
架橋された構造を有すると考えられている。
The optically isotropic spinning pitch used in the present invention is thought to have a structure in which aromatic hydrocarbons constituting the pitch are three-dimensionally crosslinked by oxygen atoms.

該光学的等方性紡糸ピッチの酸素含有量は0゜5〜2.
0重量%、好ましくは1.0〜1.5重量%であり、0
.5重量%よりも少ない場合には、後述するように、異
方性紡糸ピッチとの相溶性が残るために圧縮強度を向上
させる効果が不充分となり好ましくない。また、2.0
重量%よりも多くなると、紡糸性が著しく悪化するため
、異方性ピッチを混合した混合ピッチにおいても紡糸性
が悪く、安定した紡糸を行うことができない。
The oxygen content of the optically isotropic spinning pitch is 0.5-2.
0% by weight, preferably 1.0 to 1.5% by weight, and 0% by weight, preferably 1.0 to 1.5% by weight.
.. If it is less than 5% by weight, as will be described later, compatibility with the anisotropic spinning pitch remains, so the effect of improving compressive strength becomes insufficient, which is not preferable. Also, 2.0
When the amount exceeds 1% by weight, the spinnability deteriorates significantly, and even a mixed pitch containing an anisotropic pitch has poor spinnability, making it impossible to perform stable spinning.

上記の酸素含有光学的等方性紡糸ピッチの配合量は0.
5〜lO重量%、好ましくは1.0〜5重量%であり、
0.5重量%よりも少ない場合には、圧縮強度を十分に
向上させることができず、また、10重量%よりも多く
なると、弾性率の低下をもたらすので好ましくない。
The blending amount of the above oxygen-containing optically isotropic spinning pitch is 0.
5 to 10% by weight, preferably 1.0 to 5% by weight,
If the amount is less than 0.5% by weight, the compressive strength cannot be sufficiently improved, and if it is more than 10% by weight, the modulus of elasticity will decrease, which is not preferable.

本発明に使用する光学的異方性紡糸ピッチは、石油系ま
たは石炭系の重質油またはピッチを原料とし、従来から
既知のいずれの製法によって調製してもよく、その製法
は特に限定的ではないが、光学的異方性成分の割合が9
0%以上、好ましくは95%以上になるように調整すれ
ばよい。このような光学的異方性紡糸ピッチの軟化点は
通常200〜280℃で、トルエン不溶分およびキノリ
ンネ溶分は通常それぞれ50〜90%および0〜40%
である。
The optically anisotropic spinning pitch used in the present invention may be prepared from petroleum-based or coal-based heavy oil or pitch by any conventionally known manufacturing method, and the manufacturing method is not particularly limited. However, the ratio of optically anisotropic components is 9
It may be adjusted to 0% or more, preferably 95% or more. The softening point of such optically anisotropic spinning pitch is usually 200-280°C, and the toluene-insoluble content and quinoline-soluble content are usually 50-90% and 0-40%, respectively.
It is.

上記の光学的等方性紡糸ピッチおよび光学的異方性紡糸
ピッチは、溶融紡糸機へ供給する前に、例えば300〜
360℃の温度で溶融撹拌混合することによって、前者
を後者に均一分散させた混合紡糸ピッチとする。
The above-mentioned optically isotropic spinning pitch and optically anisotropic spinning pitch are, for example, 300 to
By melting and stirring and mixing at a temperature of 360° C., a mixed spinning pitch is obtained in which the former is uniformly dispersed in the latter.

得られた混合紡糸ピッチは溶融紡糸工程に付される。溶
融紡糸条件は特に限定的ではなレフが、例えば以下の条
件下でおこなう。
The obtained mixed spinning pitch is subjected to a melt spinning process. Melt spinning conditions are not particularly limited, but the melt spinning is carried out, for example, under the following conditions.

ノズル孔の口径:0.05〜0 、5 mm紡糸温度=
300〜350℃ 紡糸粘度=100〜300ポイズ 紡糸速度:100〜500m/分 本発明における紡糸条件は混合紡糸ピッチの粘度が30
0ポイズ以下、好ましくは150〜200ポイズになる
温度で紡糸する。紡糸粘度が300ポイズよりも高くな
ると後述するように等方性ピッチの紡糸変形によるフィ
ブリル化が不充分になるため繊維の弾性率および引張強
度が低下するので好ましくない。
Nozzle hole diameter: 0.05~0,5 mm Spinning temperature =
300 to 350°C Spinning viscosity = 100 to 300 poise Spinning speed: 100 to 500 m/min The spinning conditions in the present invention are such that the viscosity of the mixed spinning pitch is 30
Spinning is carried out at a temperature of 0 poise or less, preferably 150 to 200 poise. If the spinning viscosity is higher than 300 poise, as will be described later, fibrillation due to isotropic pitch spinning deformation becomes insufficient and the elastic modulus and tensile strength of the fiber decrease, which is not preferable.

上記の溶融紡糸工程によって得られる繊維を常法に従っ
て、不融化処理に付した後、炭化処理に付し、さらに黒
鉛化処理に付すことによって、本発明による高弾性率と
高圧縮強度を兼有するピッチ系炭素繊維が得られる。
By subjecting the fiber obtained by the above melt-spinning process to an infusible treatment, a carbonization treatment, and a graphitization treatment in accordance with a conventional method, the present invention achieves both high elastic modulus and high compressive strength. Pitch-based carbon fibers are obtained.

不融化処理、炭化処理および黒鉛化処理の条件は例えば
以下の通りである。
The conditions for the infusibility treatment, carbonization treatment, and graphitization treatment are, for example, as follows.

不融化処理 処理温度:270〜300℃ 処理時間:10〜30分間 雰囲気: 空気 炭化処理 処理温度:800〜1000℃ 昇温速度:l〜5℃/分 処理時間:30〜90分間 雰囲気二 窒素ガス気流下 黒鉛化処理 処理温度:2500〜2800℃ 昇温速度:lO〜50℃/分 処理時間:1−10分間 雰囲気: アルゴンガス気流下 m−叫 本発明に使用する光学的等方性紡糸ピ・ソチは、ピッチ
の構成成分である芳香族炭化水素が酸素原子によって三
次元的に架橋した構造を有すると考えられるので、黒鉛
化処理によっても黒鉛構造をとらず、基材ピッチとして
使用する光学的異方性紡糸ピッチに対して相溶性を示さ
ない。このため両者を溶融混合すると、前者は約1〜5
μ程度の光学的等方性小球体となって後者に分散する。
Infusibility treatment temperature: 270-300°C Treatment time: 10-30 minutes Atmosphere: Air Carbonization treatment temperature: 800-1000°C Temperature rising rate: 1-5°C/min Treatment time: 30-90 minutes Atmosphere Nitrogen gas Graphitization treatment under airflow Treatment temperature: 2500-2800°C Temperature increase rate: 1O ~ 50°C/min Treatment time: 1-10 minutes Atmosphere: Optically isotropic spinning pipe used in the present invention under argon gas flow・Sochi is thought to have a structure in which aromatic hydrocarbons, which are the constituent components of pitch, are three-dimensionally cross-linked by oxygen atoms, so it does not take on a graphite structure even after graphitization, and is an optical material used as a base pitch. It shows no compatibility with anisotropic spinning pitch. Therefore, when both are melted and mixed, the former will be about 1 to 5
It becomes optically isotropic small spheres of about μ size and disperses in the latter.

このような相溶性のないピッチを混合紡糸することは従
来技術では不可能であるが、本発明においては、両者の
軟化点を近似させることによって最適紡糸粘度となる温
度が近接し、紡糸性を損なうことなく混合紡糸すること
が可能となる。
It is impossible with conventional technology to mix and spin such incompatible pitches, but in the present invention, by approximating the softening points of both pitches, the temperatures at which the optimum spinning viscosity is achieved are brought close to each other, improving spinnability. It becomes possible to perform mixed spinning without damage.

このような特性を有する混合ピッチを紡糸することによ
って、高弾性率と高圧縮強度を兼有する炭素繊維が得ら
れる理由は必ずしも明らかではないが、次の様に推察す
ることができる。即ち、光学的等方性紡糸ピッチは、紡
糸時の変形応力によって極めて細い針状体となって繊維
中にフィブリル状に分散するので繊維の圧縮方向の強度
を補強することが可能となり、炭素繊維の圧縮強度を向
上させることができる。また弾性率に関しては、繊維中
にフィブリル状に分散した光学的等方性紡糸ピッチの繊
維径が細く、さらに繊維断面を占める割合も小さいため
に、光学的異方性紡糸ピッチのみから得られる炭素繊維
の弾性率を、それほど損うことなく維持することが可能
となるので、高弾性率と高圧縮強度を兼有する炭素繊維
が得られると推察される。
The reason why carbon fibers having both high elastic modulus and high compressive strength can be obtained by spinning a mixed pitch having such characteristics is not necessarily clear, but it can be inferred as follows. In other words, the optically isotropic spinning pitch becomes extremely thin needle-like bodies due to the deformation stress during spinning and is dispersed in the fiber like fibrils, which makes it possible to reinforce the strength of the fiber in the compression direction. can improve the compressive strength of Regarding the elastic modulus, the fiber diameter of the optically isotropic spun pitch dispersed in the form of fibrils in the fiber is small, and the proportion of the fiber cross section is also small. Since it becomes possible to maintain the elastic modulus of the fiber without much loss, it is presumed that carbon fibers having both high elastic modulus and high compressive strength can be obtained.

以下、本発明を実施例によって説明する。Hereinafter, the present invention will be explained by examples.

実施例1 石油の接触分解で生成する重質油から得られた石油ピッ
チを減圧下での熱処理(400〜450’c/ l O
〜30 mmHg)に付すことによッテ、メンフェーズ
小球体含有ピッチを調製し、該メソフェーズピッチに、
原料油であるデカントオイルを常圧換算で430℃まで
蒸留して得られた留出油を凝集剤として添加することに
よって、光学的異方性紡糸ピッチA(異方性割合:99
%、軟化点:235℃1トル工ン不溶分ニア5%、キノ
リンネ溶分:25%)を分離した。
Example 1 Petroleum pitch obtained from heavy oil produced by catalytic cracking of petroleum was heat treated under reduced pressure (400-450'c/l O
~30 mmHg) to prepare a pitch containing mesophase microspheres, and the mesophase pitch was
Optically anisotropic spinning pitch A (anisotropy ratio: 99
%, Softening point: 235° C. 1 Torr, insoluble matter: 5%, quinoline soluble matter: 25%) were separated.

また、石油の接触分解で生成する重質油を430℃で蒸
留して得られた残留油1kgを、空気を4Q/分の割合
で吹き込みながら熱処理(320℃112時間)に付し
た後、300℃での減圧ストリ・ンピング処理に付すこ
とによって、光学的等方性紡糸ピッチ(酸素含有率=0
.9重量%、軟化点:235°O,)ルエン不溶分=5
3%、キノリンネ溶分二0%)を得た。
In addition, 1 kg of residual oil obtained by distilling heavy oil produced by catalytic cracking of petroleum at 430°C was subjected to heat treatment (320°C for 112 hours) while blowing air at a rate of 4Q/min, and then heated to 300°C for 112 hours. Optically isotropic spinning pitch (oxygen content = 0
.. 9% by weight, softening point: 235°O,) Luene insoluble content = 5
3%, quinoline solubility 20%).

上記のようにして調製した光学的異方性紡糸ピッチA9
8重量部および光学的等方性紡糸ピッチ2重量部を溶融
撹拌混合しく溶融温度=330℃)、該混合ピッチを0
 、3 mmのノズル孔を通して溶融紡糸した(紡糸温
度=333℃1紡糸粘度:170ポイズ)。この場合、
曳糸性は良好で、1時間以上にわたって糸切れは発生し
なかった。
Optically anisotropic spinning pitch A9 prepared as above
8 parts by weight and 2 parts by weight of optically isotropic spinning pitch were melt-stirred and mixed (melting temperature = 330°C), and the mixed pitch was
, through a 3 mm nozzle hole (spinning temperature = 333°C, 1-spinning viscosity: 170 poise). in this case,
Thread stringability was good, and no thread breakage occurred for more than 1 hour.

この繊維を不融化処理(空気中、280℃)に付し、次
いで炭化処理(N2気流中、1000℃)に付した後、
黒鉛化処理(Ar気流中、2800℃)に付すことによ
って、ピッチ系炭素繊維■を得た。
After subjecting this fiber to infusibility treatment (in air, 280°C) and then carbonization treatment (in N2 stream, 1000°C),
A pitch-based carbon fiber (2) was obtained by subjecting it to graphitization treatment (in an Ar air flow, at 2800°C).

得られたピッチ系炭素繊維Iの物性を以下の表−1に示
す。
The physical properties of the obtained pitch-based carbon fiber I are shown in Table 1 below.

実施例2 光学的異方性紡糸ピッチA90重量部および光学的等方
性紡糸ピッチ10重量部を溶融撹拌混合する以外は、実
施例1と同様にして、ピッチ系炭素繊維■を調製した。
Example 2 Pitch-based carbon fiber (2) was prepared in the same manner as in Example 1, except that 90 parts by weight of optically anisotropic spinning pitch A and 10 parts by weight of optically isotropic spinning pitch were melted and stirred.

得られたピッチ系炭素繊維■の物性を以下の表−1に示
す。
The physical properties of the pitch-based carbon fiber (2) obtained are shown in Table 1 below.

比較例) 原料紡糸ピッチとして、実施例1記載の方法によって調
製した光学的異方性紡糸ピッチAを単独で使用する以外
は、実施例1と同様にして、ピッチ系炭素繊維工′を製
造した。
Comparative Example) A pitch-based carbon fiber fabric was produced in the same manner as in Example 1, except that the optically anisotropic spinning pitch A prepared by the method described in Example 1 was used alone as the raw material spinning pitch. .

得られたピッチ系炭素繊維I′の物性を以下の表−1に
示す。
The physical properties of the obtained pitch-based carbon fiber I' are shown in Table 1 below.

比較例2 実施例1記載の異方性紡糸ピッチAの調製手順に準拠し
て、光学的異方性紡糸ピッチB(異方性割合:100%
、軟化点=260°O,l−ルエン不溶分ニア8%、キ
ノリンネ溶分:28%)を分離した。
Comparative Example 2 Based on the procedure for preparing anisotropic spinning pitch A described in Example 1, optically anisotropic spinning pitch B (anisotropic ratio: 100%
, softening point = 260°O, l-luene insoluble content: 8%, quinoline soluble content: 28%) were separated.

光学的異方性紡糸ピッチB98重量部および実施例1記
載の方法によって調製した光学的等方性紡糸ピッチ2重
量部を溶融撹拌混合し、該混合ピッチを実施例1と同様
の紡糸処理に付したところ、糸切れが頻発し、繊維を得
ることはできなかった。
98 parts by weight of optically anisotropic spinning pitch B and 2 parts by weight of optically isotropic spinning pitch prepared by the method described in Example 1 were melted and stirred, and the mixed pitch was subjected to the same spinning treatment as in Example 1. However, thread breakage occurred frequently and fibers could not be obtained.

比較例3 原料紡糸ピッチとして、実施例1記載の方法によって調
製した光学的等方性紡糸ピッチを単独で使用する以外は
、実施例1と同様にしてピッチ系炭素繊維■′を製造し
た。
Comparative Example 3 Pitch-based carbon fibers were produced in the same manner as in Example 1, except that the optically isotropic spinning pitch prepared by the method described in Example 1 was used alone as the raw material spinning pitch.

得られたピッチ系炭素繊維■′の物性を以下の表−1に
示す。
The physical properties of the obtained pitch-based carbon fibers are shown in Table 1 below.

I (1)ループ法による繊維自体の圧縮強度発明の効果 本発明によれば、従来法では製造することのできなかっ
た高弾性率と高圧縮強度を兼有するピッチ系炭素繊維を
簡易な方法によって低コストで製造することができる。
I (1) Effect of the invention on compressive strength of the fiber itself using the loop method According to the present invention, pitch-based carbon fibers having both high elastic modulus and high compressive strength, which could not be produced using conventional methods, can be produced using a simple method. Can be manufactured at low cost.

Claims (1)

【特許請求の範囲】 1、ピッチを構成する芳香族炭化水素が酸素原子によっ
て三次元的に架橋された酸素を0.5〜2.0重量%含
有する光学的等方性紡糸ピッチを0.5〜10重量%配
合した光学的異方性紡糸ピッチを溶融紡糸し、得られた
繊維を不融化処理に付した後、炭化処理に付し、さらに
、黒鉛化処理に付すことを特徴とする高圧縮強度と高弾
性率を兼有するピッチ系炭素繊維の製法。 2、光学的等方性紡糸ピッチと光学的異方性紡糸ピッチ
の軟化点差が10℃以下である請求項1記載の方法。 3、溶融紡糸時の粘度が300ポイズ以下である請求項
1記載の方法。 4、請求項1から3いずれかに記載の方法によって製造
されるピッチ系炭素繊維。
[Scope of Claims] 1. An optically isotropic spinning pitch containing 0.5 to 2.0% by weight of oxygen in which the aromatic hydrocarbon constituting the pitch is three-dimensionally cross-linked with oxygen atoms. It is characterized by melt spinning an optically anisotropic spinning pitch containing 5 to 10% by weight, and subjecting the obtained fiber to an infusible treatment, followed by a carbonization treatment, and then a graphitization treatment. A method for producing pitch-based carbon fiber that has both high compressive strength and high modulus. 2. The method according to claim 1, wherein the softening point difference between the optically isotropic spinning pitch and the optically anisotropic spinning pitch is 10° C. or less. 3. The method according to claim 1, wherein the viscosity during melt spinning is 300 poise or less. 4. A pitch-based carbon fiber produced by the method according to any one of claims 1 to 3.
JP27481190A 1990-10-11 1990-10-11 Production of pitch-based carbon fiber Pending JPH04153326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27481190A JPH04153326A (en) 1990-10-11 1990-10-11 Production of pitch-based carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27481190A JPH04153326A (en) 1990-10-11 1990-10-11 Production of pitch-based carbon fiber

Publications (1)

Publication Number Publication Date
JPH04153326A true JPH04153326A (en) 1992-05-26

Family

ID=17546898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27481190A Pending JPH04153326A (en) 1990-10-11 1990-10-11 Production of pitch-based carbon fiber

Country Status (1)

Country Link
JP (1) JPH04153326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030189A (en) * 2007-07-25 2009-02-12 Teijin Ltd Carbon fiber and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030189A (en) * 2007-07-25 2009-02-12 Teijin Ltd Carbon fiber and method for producing the same

Similar Documents

Publication Publication Date Title
US4115527A (en) Production of carbon fibers having high anisotropy
JPH0791372B2 (en) Method for manufacturing raw material pitch for carbon material
JP2870659B2 (en) Manufacturing method of carbon molded product
JPH04153326A (en) Production of pitch-based carbon fiber
JPH0532494B2 (en)
JPH0150275B2 (en)
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JP2849156B2 (en) Method for producing hollow carbon fiber
JP3406696B2 (en) Method for producing high thermal conductivity carbon fiber
JPS59164386A (en) Preparation of precursor pitch for carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPS6183319A (en) Carbon fiber and its production
JPH0247311A (en) Production of carbon fiber
US5643547A (en) Process for producing carbon fibers
JPH0413450B2 (en)
JPH04257321A (en) Production of pitch carbon fiber having high tensile elastic modulus and high compression strength
JPH06272117A (en) Production of active carbon fiber
JPH0827628A (en) Method for producing carbon fiber
JP2766521B2 (en) Method for producing pitch-based carbon fiber
JP2000017526A (en) Production of carbon fiber
JPS6327595A (en) Production of spinning-grade pitch for producing carbon fiber
JPH054433B2 (en)
JPS61258026A (en) Production of carbon yarn
JPS63175122A (en) Production of carbon fiber tow