JPH03167319A - Production of carbon fiber and graphite fiber - Google Patents

Production of carbon fiber and graphite fiber

Info

Publication number
JPH03167319A
JPH03167319A JP30850289A JP30850289A JPH03167319A JP H03167319 A JPH03167319 A JP H03167319A JP 30850289 A JP30850289 A JP 30850289A JP 30850289 A JP30850289 A JP 30850289A JP H03167319 A JPH03167319 A JP H03167319A
Authority
JP
Japan
Prior art keywords
pitch
optically anisotropic
temperature
fibers
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30850289A
Other languages
Japanese (ja)
Inventor
Kazuyuki Murakami
一幸 村上
Masaru Miura
勝 三浦
Tsutomu Naito
勉 内藤
Takashi Hino
日野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP30850289A priority Critical patent/JPH03167319A/en
Publication of JPH03167319A publication Critical patent/JPH03167319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain a high-performance carbon fiber and graphite fiber having high strength and modulus and good appearance by using an optically anisotropic pitch containing an optically anisotropic phase at a specific ratio and having specific changing ratio of orientation of magnetic field. CONSTITUTION:An optically anisotropic pitch containing >=95% optically anisotropic phase, being 2000-3000sec in longitudinal relax time by solid and wide <1>H-NMR, 0.20-0.50 in changing ratio of orientation of magnetic field by pyrene-added high-temperature <13>C-NMR and preferably containing >=95% content of optically anisotropic phase is melt-spun and 0.01-10wt.% lubricant is attached to the spun yarn and load is applied to the fiber bundle and then the fiber bundle is treated e.g. at <=200 deg.C in atmosphere of oxidation agent of halogen, NO2, etc., for a short time to infusibilize the fiber bundle and the infusibilized fiber bundle is subjected to preliminary carbonization under atmosphere of argon gas, etc., at 500-1000 deg.C and carbonization at 1000-2000 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高性能炭素繊維及び黒鉛繊維の製造方法に関す
る.更に詳しくは,本発明は特定の会合特性を有する光
学的異方性ピッチを原料として用いる高性能炭素繊維及
び黒鉛繊維の製造方法に関する. 〔従来の技術〕 従来,自動車,航空機その他の各種産業分野にわたって
,軽量,高強度、高弾性率等を有する高性能素材の開発
が要望されており、か)る観点から炭素繊維(黒鉛繊維
を含む)が注目されている.現在市販の炭素繊維は依然
としてポリアクリロニトリルを原料とするPAN系炭素
繊維が主流であるが、石炭又は石油系ピッチ類を原料と
する炭素繊維も原料が安価で、炭化工程での歩留りが高
く,弾性率の高い繊維が得られるなどの利点から重要視
され,活発な開発研究が行なわれている.光学的に等方
性のピッチから得られる炭素繊維は強度、弾性率ともに
低いが、光学的等方性ピッチを熱処理して得られる光学
的異方性ピッチからは高性能炭素繊維が得られる.光学
的異方性ピッチの1111造に関しては、ビッチ12造
用の一般原料である重質炭化水素抽、タール,市販等方
性ピッチ等を、例えば、単に加熱処理する(特開昭49
−19127y,同57−42924号各公報),光学
的等方性ピッチを溶媒で抽出しその不溶分を加熱処理す
る(特開昭54−160427号公報等)、不活性ガス
を吹込みながら加熱処理する(特開昭5Jl−1686
87号公報),部分水添した後、加熱処理する(特開昭
s7−tootgs珍,同58−18421号各公報)
,熱分解重縮合を半ばで打切って、比重差によって沈積
分離又は遠心分離して高濃度異方性ピッチを得る(特公
昭61−38755号,同62−24036号各公報)
方法などが提案されている.〔発明が解決しようとする
課題〕 ところが、このような方法によって得られた光学的異方
性相が95%以上のピッチを用いて炭素繊維を製造した
場合には,通常,ピッチの会合性が強すぎて,長時間の
安定紡糸条件範囲が狭く、紡糸による繊維構造制御が困
難で、このため炭化及び黒鉛化時の結晶成長を最適化す
ることが難しく、その結果、高性能炭素繊維を得ること
が難しいという問題がある. 従って,本発明の目的は、このような問題点を克服した
,即ち従来の光学的異方性ピッチとは異なる特殊な会合
特性を有するピッチを原料として使用する、紡糸安定性
が高く,繊維構造制御が容易で,安定的に高性能炭素繊
維を得ることができる.炭素繊維及び黒鉛繊維の製造方
法を提供することにある. 〔課題を解決するための手段〕 本発明によれば、光学的異方性相を95%以上含有し、
しかも固体広幅2H−NMRにより測定される縦緩和時
間が2,000−3,000tsecであって,且つピ
レン添加高温”C−NMRにより測定される磁場配向変
化率が0.20〜0.50である光学的異方性ピッチを
原料として用い、これを溶融紡糸し、不融化し、炭化し
、更に場合により黒鉛化することを特徴とする炭素繊維
及び黒鉛繊維の製造方法が提供される.なお,本発明で
いう光学的異方性ピッチとは,常温で固化したピッチ塊
の断面を研摩し,反射型偏光顕微鏡で直交ニコルを回転
して光輝が認められるピッチ,即ち実質的に光学的異方
性であるピッチが大部分であるピッチを意味し,光輝が
認められず光学的等方性であるピッチについては,本明
細書では光学的等方性ピッチと呼称する.従って,本明
細書における光学的異方性ピッチには,純粋な光学的異
方性ピッチのみならず、光学的異方性相の中に光学的等
方性相が球状又は不定形の島状に包含されている場合も
含まれる.これとは逆に,光学的等方性ピッチには,光
学的等方性ピッチ中に,少量の光学的異方性相を包含す
るものも含まれる.また,本明細書における光学的異方
性相は,所謂メソフェースと同様と考えられるが,メソ
フェースにはキノリン又はピリジンに不溶なものとキノ
リン又はピリジンに可溶な成分を多く含むものとの二種
類があり,本明細書でいう光学的異方性相は主として,
後者のメソフェースである. なお,本発明でいう光学的異方性相の含有量とは,試料
を偏光顕微鏡で直交二コル下でllllt察写真撮影し
て,試料中の光学的異方性相部分の占める面積割合を測
定することにより求めたものである.なお本発明でいう
ピッチの軟化点とは、ピッチの固一液転移温度をいうが
,差動走査型熱量計を用い、ピッチの融解又は凝固する
潜熱の吸,放出ピーク温度から求めたものである.この
温度はピッチ試料について他のリングアンドポール法、
微量融点法などで測定したものと±10℃の範囲で一致
する. 以下、本発明の炭素繊維及び黒鉛繊維の製造方法につい
て詳細に説明する. (1) H料光学的異方性ピッチ (1)ピッチの物性 本発明において原料として用いる光学的異方性ピッチは
,光学的異方性相を9錦以上含有し,しかも固体広1[
1H−NMRにより測定される縦緩和時間が2 , 0
00−3 , OOOmsec (好ましくは2,20
0−2,700msec)であって、且つピレン添加高
温″”C−NMRにより測定される磁場配向変化率が0
.20−0.50(好ましくは0.30−0.48)で
あることを特徴としている.なお,ここでいう縦緩和時
間とは,ピッチ分子中の水素の回りの環境(側鎖構造、
芳香環骨格構造,ピッチ分子間の相互作用など)を反映
しており,この値が大きくなる程,側鎖が多く逆に芳香
環骨格が小さく,分子全体としては動き易い.また,こ
の値が小さくなる程、側鎖が少なく芳香環骨格が発達し
て,分子全体として動き難くなる.従って,縦緩和時間
は分子構造に帰因した会合特性を表わすパラメータであ
り.それは次のようにして求められる. 使用装I!:固体広幅’ H−NMR 試  料:ビッチ粉末約1006 測定法:試料を5■内径サンプルチューブに詰め、約1
0−” torr以下で真空脱気下後チューブ長さが4
0■醜以下になるように封管する.試料をセットし、l
8〇一τ−90゜パルスで取り込み時間(τ)を0.O
l秒〜約20秒の間で変化させ10−15点スペクトル
強度(▲τ)を測定する.縦緩和時間(T,)は各取り
込み時間でのスペクトル強度から下記式(1)によ って求められる. Aω:τ無限大の時のスペクトル強度 Aτ:時間τの時のスペクトル強度 一方,磁場配向変化率は,光学的異方性ピッチに外部か
ら溶媒を加えて会合状態を変えた時の変化のしやすさを
示すものであり,この値が大きい程,ピッチ分子間の相
互作用が強く、溶媒の影響が低く、またこの値が小さい
程、ピッチ分子間の相互作用が弱く,溶媒の影響を受け
易いことを示している.従って、磁場配向変化率はピッ
チ分子間の会合力を表わすパラメータであり,次のよう
にして求められる. 装 置:溶液”C−NMR、13C高温プローブ試 料
:ピッチ約1g,ピレン(試薬特級、mp149℃、b
p3g6℃)約o. Ig 測定法:ビッチにピレンを重量比で10重量%添加し乳
鉢で粉砕混合する.混合物を5園園内径サンプルチュー
ブに詰め、予め300℃に加熱して置いたブロックバス
中で窒 素置換しながら溶融させ試料を充分に 充填する.別にピッチのみの試料も用 意する.試料をブローブ中で所定の温 度まで昇温させ. Gated−Decoupling
法によりスペクトルを得る.積算回数は 約2000回である.測定温度はピッチのみで200〜
300poise、ピッチ/ピレン系で20〜30po
igeになるような温度で測定する. 磁場配向変化率(R)は下記式(II)によって求めら
れる. ?n。:芳香族炭素(磁場配向分子)強度■■,。:芳
香族炭素(自由分子)強度Ill。.,:芳香族炭素(
磁場配向分子)強度、ピレン10重量算添加 I1m。.,:芳香族炭素(自由分子)強度,ピレン1
0重量算添加、但しモル比換算でピレンの強度を差引く 本発明で用いられる光学的異方性ピッチは,前記゛した
特定の縦緩和時間と磁場配向変化率を併せ持つため、適
正な会合性を有する.そのため,このピッチを用いると
,可紡糸範囲が広く,紡糸工程での構造制御が容易であ
り,その結果,高強度,高弾性率の炭iI4Jlm維を
容易に得ることができる.なお,ピッチの縦緩和時間が
2,000msec未満では,分子構造的に動き難いピ
ッチであるため,結果的に会合性が強くなり過ぎて,紡
糸安定性が低く、紡糸による繊維構造制御が困難であり
,その結果、炭化及び黒鉛化時の結晶或長を最適化する
ことが難しく,高強度、高弾性の炭素繊維を得ることが
困難となる.逆に、縦緩和時間が3,000s+seC
を越えると,分子構造的に動き易い形になるため会合性
が弱く,場合によっては光学的等方性相が含まれてくる
ので,紡糸性が悪い.また、反応性の高い側鎖構造が増
えるため,不融化及び炭化工程での制御が難しくなる. 一方,ピッチの磁場配向変化率が0.50超過では,分
子間の会合力が強くなり過ぎて、紡糸安定性が低く、高
強度,高弾性の炭素繊維を得ることが困難であり,逆に
0.20未満では,光学的等方性相が阿以上に増えるた
め,光学的異方性相との粘度差から,紡糸性が著しく悪
くなる. (n)ピッチの製造 本発明で用いられる適正な会合性を有する光学的異方性
ピッチは、特定の石油系炭素質原料を選択し、光学的異
方性相部分の分離除去を含む多段熱処理及び光学的異方
性相部分の回収処理を行なうことによって製造すること
ができる.詳しくいうと,本発明で使用される光学的異
方性ピッチは、特定の組或及び構造を有する石油系の油
状又はタール状物質を出発原料として使用し,これに3
80〜460℃の範囲の温度で1段目の熱処理を行ない
、生或ビッチ中の光学的異方性相が5〜20%生成した
ところで反応を止め.光学的異方性相部分を分離除去し
た後、得られた光学的等方性ピッチに380〜460℃
の範囲の温度で2段目の熱処理を行ない,光学的異方性
相が20〜70%生成した時点で反応を止め,光学的異
方性相部分を分離回収することによって、容易に製造さ
れる. この製造方法においては,出発原料として,石油を接触
分解した際副生ずる重質残油を減圧蒸留することによっ
て得られる常圧に換算した沸点が500〜550℃の留
分であって,n−へブタン可溶成分の芳香族分及びレジ
ン分を主成分として含有し、実質的にn−へブタン不溶
成分としてのアスファルテン分を含まない、油状又はタ
ール状物質が使用される. 該出発原料は,強度低下の原因となる固形異物や熱処理
反応により高分子物質を形成する高分子量成分を含有し
ない. この製造方法においては、前記炭素質原料を熱分解重縮
合するために、該原料に2段階の熱処理を行ない、1段
目の熱処理後に光学的異方性相部分の分離除去処理が,
また2段目の熱処理後に光学的異方性相部分の分離回収
処理が行なわれる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high-performance carbon fibers and graphite fibers. More specifically, the present invention relates to a method for producing high-performance carbon fibers and graphite fibers using optically anisotropic pitch having specific association properties as a raw material. [Conventional technology] There has been a demand for the development of high-performance materials with light weight, high strength, and high modulus of elasticity in various industrial fields such as automobiles and aircraft. ) are attracting attention. Currently, the mainstream carbon fibers on the market are still PAN-based carbon fibers made from polyacrylonitrile, but carbon fibers made from coal or petroleum-based pitches are also cheaper raw materials, have a high yield in the carbonization process, and have good elasticity. It is regarded as important due to its advantages such as the ability to obtain fibers with high fiber content, and active research and development efforts are being carried out. Carbon fibers obtained from optically isotropic pitch have low strength and elastic modulus, but high-performance carbon fibers can be obtained from optically anisotropic pitch obtained by heat-treating optically isotropic pitch. Regarding optically anisotropic pitch 1111 production, for example, general raw materials for pitch 12 production such as heavy hydrocarbon extraction, tar, commercially available isotropic pitch, etc. are simply heat-treated (Japanese Patent Laid-Open No. 49
-19127y, No. 57-42924), extracting the optically isotropic pitch with a solvent and heat-treating the insoluble content (Japanese Patent Application Laid-open No. 160427/1984, etc.), heating while blowing inert gas. Process (Unexamined Japanese Patent Publication No. 5 Jl-1686
No. 87), heat treatment after partial hydrogenation (Japanese Patent Application Laid-open No. 18-18421)
, The pyrolysis polycondensation is stopped in the middle and high concentration anisotropic pitch is obtained by sedimentation separation or centrifugation depending on the difference in specific gravity (Japanese Patent Publications No. 61-38755 and No. 62-24036)
Several methods have been proposed. [Problems to be Solved by the Invention] However, when carbon fibers are produced using a pitch in which the optically anisotropic phase obtained by such a method has a pitch of 95% or more, the associativity of the pitch usually decreases. It is too strong, the range of long-term stable spinning conditions is narrow, and it is difficult to control the fiber structure by spinning. Therefore, it is difficult to optimize crystal growth during carbonization and graphitization, and as a result, it is difficult to obtain high-performance carbon fibers. The problem is that it is difficult to Therefore, the object of the present invention is to overcome these problems, that is, to create a fiber structure with high spinning stability and using pitch as a raw material that has special association characteristics different from conventional optically anisotropic pitch. It is easy to control and can stably produce high-performance carbon fiber. The purpose of this invention is to provide a method for producing carbon fiber and graphite fiber. [Means for Solving the Problems] According to the present invention, containing 95% or more of an optically anisotropic phase,
Moreover, the longitudinal relaxation time measured by solid-state wide-width 2H-NMR is 2,000-3,000 tsec, and the magnetic field orientation change rate measured by pyrene-added high-temperature C-NMR is 0.20-0.50. Provided is a method for producing carbon fibers and graphite fibers, which is characterized in that a certain optically anisotropic pitch is used as a raw material, which is melt-spun, made infusible, carbonized, and optionally graphitized. In the present invention, optically anisotropic pitch refers to a pitch that shows brightness by polishing the cross section of a pitch lump solidified at room temperature and rotating crossed nicols using a reflective polarizing microscope, that is, a pitch that has substantially no optical anisotropy. This refers to a pitch in which most of the pitches are tropic, and a pitch that is optically isotropic without any brilliance is referred to as an optically isotropic pitch in this specification. The optically anisotropic pitch includes not only a pure optically anisotropic pitch but also an optically isotropic phase contained in an optically anisotropic phase in the form of a spherical or irregularly shaped island. Conversely, optically isotropic pitch also includes a small amount of optically anisotropic phase in the optically isotropic pitch. The optically anisotropic phase in is considered to be similar to the so-called mesophase, but there are two types of mesophase: one that is insoluble in quinoline or pyridine, and one that contains a large amount of components that are soluble in quinoline or pyridine. The optically anisotropic phase referred to in the book is mainly
This is the latter mesoface. In addition, the content of the optically anisotropic phase in the present invention refers to the area ratio occupied by the optically anisotropic phase in the sample obtained by photographing the sample under orthogonal polarization using a polarizing microscope. It was determined by measurement. The softening point of pitch in the present invention refers to the solid-liquid transition temperature of pitch, which is determined from the peak temperature of absorption and release of latent heat during melting or solidification of pitch using a differential scanning calorimeter. be. This temperature is suitable for other ring-and-pole methods for pitch samples,
It agrees within a range of ±10°C with that measured by the micro-melting point method. The method for producing carbon fibers and graphite fibers of the present invention will be explained in detail below. (1) Optically anisotropic pitch of H material (1) Physical properties of pitch The optically anisotropic pitch used as a raw material in the present invention contains 9 or more optically anisotropic phases and has a solid wide 1[
The longitudinal relaxation time measured by 1H-NMR is 2,0
00-3, OOOmsec (preferably 2,20
0-2,700 msec), and the magnetic field orientation change rate measured by pyrene-added high-temperature C-NMR is 0.
.. 20-0.50 (preferably 0.30-0.48). Note that the longitudinal relaxation time here refers to the environment around the hydrogen in the pitch molecule (side chain structure,
(aromatic ring skeleton structure, interactions between pitch molecules, etc.); the larger this value, the more side chains there are, the smaller the aromatic ring skeleton, and the easier the molecule as a whole is to move. Also, as this value decreases, the number of side chains decreases and the aromatic ring skeleton develops, making it difficult for the molecule as a whole to move. Therefore, the longitudinal relaxation time is a parameter that represents the association characteristics attributed to the molecular structure. It can be found as follows. Use I! :Solid wide width'H-NMR Sample: Bitch powder approx. 1006 Measurement method: Pack the sample into a 5-inch inner diameter sample tube
After vacuum degassing under 0-” torr, the tube length is 4
0 ■ Seal the tube so that it is no more than ugly. Set the sample and
801 τ - 90° pulse with acquisition time (τ) of 0. O
Measure the spectral intensity (▲τ) at 10-15 points by varying the time from 1 second to about 20 seconds. The longitudinal relaxation time (T,) is calculated from the spectral intensity at each acquisition time using the following formula (1). Aω: Spectral intensity when τ is infinite Aτ: Spectral intensity when time τ is reached The larger this value is, the stronger the interaction between pitch molecules is and the less affected by the solvent, and the smaller this value is, the weaker the interaction between pitch molecules is, which is less affected by the solvent. It shows that it is easy. Therefore, the magnetic field orientation change rate is a parameter that represents the association force between pitch molecules, and can be found as follows. Equipment: Solution "C-NMR, 13C high temperature probe Sample: Pitch approx. 1g, pyrene (reagent special grade, mp149℃, b
p3g6℃) approx. Ig measurement method: Add 10% by weight of pyrene to bitch and grind and mix in a mortar. Pack the mixture into a sample tube with an internal diameter of 5, and melt it in a block bath preheated to 300°C while purging with nitrogen to fully fill it with the sample. Separately, prepare a pitch-only sample. The sample is heated to a specified temperature in a probe. Gated-Decoupling
Obtain the spectrum using the method. The cumulative number of times is approximately 2000. Measured temperature is 200~ for pitch only
300poise, 20-30poise for pitch/pyrene system
Measure at a temperature that will result in . The magnetic field orientation change rate (R) is determined by the following formula (II). ? n. : Aromatic carbon (magnetic field oriented molecules) strength ■■,. : Aromatic carbon (free molecule) intensity Ill. .. , : aromatic carbon (
Magnetic field orientation molecules) strength, pyrene 10 weight addition I1m. .. , : aromatic carbon (free molecule) strength, pyrene 1
The optically anisotropic pitch used in the present invention, in which the strength of pyrene is subtracted in terms of molar ratio, has the above-mentioned specific longitudinal relaxation time and magnetic field orientation change rate, so it has appropriate associativity. has. Therefore, when this pitch is used, the spinnable range is wide and the structure control in the spinning process is easy, and as a result, carbon iI4Jlm fibers with high strength and high elastic modulus can be easily obtained. If the longitudinal relaxation time of the pitch is less than 2,000 msec, the pitch is difficult to move due to its molecular structure, and as a result, the associative properties become too strong, resulting in low spinning stability and difficulty in controlling the fiber structure by spinning. As a result, it is difficult to optimize the crystal length during carbonization and graphitization, making it difficult to obtain carbon fibers with high strength and high elasticity. Conversely, the longitudinal relaxation time is 3,000s+seC
If this value is exceeded, the molecular structure becomes more mobile, resulting in weak association, and in some cases optically isotropic phases may be included, resulting in poor spinnability. Additionally, since the number of highly reactive side chain structures increases, control during the infusibility and carbonization processes becomes difficult. On the other hand, if the pitch magnetic field orientation change rate exceeds 0.50, the association force between molecules becomes too strong, resulting in low spinning stability and difficulty in obtaining high-strength, high-elastic carbon fibers; If it is less than 0.20, the optically isotropic phase increases more than A, and the spinnability deteriorates significantly due to the viscosity difference with the optically anisotropic phase. (n) Production of pitch The optically anisotropic pitch with appropriate associativity used in the present invention is obtained by selecting a specific petroleum-based carbonaceous raw material and undergoing multi-stage heat treatment including separation and removal of the optically anisotropic phase portion. It can be produced by recovering the optically anisotropic phase portion. Specifically, the optically anisotropic pitch used in the present invention uses a petroleum-based oily or tar-like substance having a specific composition and structure as a starting material, and
The first stage heat treatment is carried out at a temperature in the range of 80 to 460°C, and the reaction is stopped when 5 to 20% of the optically anisotropic phase in the raw or bit is formed. After separating and removing the optically anisotropic phase portion, the obtained optically isotropic pitch was heated at 380 to 460°C.
It can be easily produced by carrying out a second heat treatment at a temperature in the range of Ru. In this production method, the starting material is a fraction with a boiling point of 500 to 550°C calculated at normal pressure, which is obtained by vacuum distillation of heavy residual oil that is a by-product when petroleum is catalytically cracked. An oily or tar-like substance is used which contains aromatic components and resin components which are hebutane-soluble components as main components and does not substantially contain asphaltene components which are n-hebutane-insoluble components. The starting material does not contain solid foreign matter that causes a decrease in strength or high molecular weight components that form polymer substances through heat treatment reactions. In this production method, in order to subject the carbonaceous raw material to thermal decomposition polycondensation, the raw material is subjected to two stages of heat treatment, and after the first stage of heat treatment, the optically anisotropic phase portion is separated and removed.
Further, after the second heat treatment, the optically anisotropic phase portion is separated and recovered.

なお熱分解重縮合とは,重質炭化水素の熱分解反応と重
縮合反応とが、ともに主反応として併列的に起ることに
より、ピッチ成分分子の化学構造を変化させる反応を意
味し、この反応の結果、パラフィン鎖構造の切断、脱水
素,閉環,重縮合による多環縮合芳香族の平面構造の発
達等が進行するものである. この反応のために、前記炭素質原料は約380〜約46
0℃、好ましくは400〜430℃で2段階に分けて熱
処理される.熱処理においては、反応温度が約460℃
を超過すると、原料未反応物の揮発が増大し,光学的異
方性相の軟化点も高くなり且っコーキングを発生し易く
なるので不適当であり、逆に約380℃未満では、反応
に長時間を要し好ましくない.熱処理に際しては,局部
過熱を防ぎ,均一に反応させるために、撹拌が行なわれ
るが、更に,熱分解の結果,生成した低分子量の物質を
速やかに除くため、減圧下において,又は必要な場合に
は,不活性ガスを反応器中へ吹き込みながら行なうこと
ができる.この場合,不活性ガスとしては、窒素,水蒸
気、炭酸ガス,軽質炭化水素ガス、又はこれらの混合ガ
ス等、反応温度でピッチとの化学反応性が充分小さいも
のを使用することができる.これらの不活性ガスは、吹
込み前に予熱しておくことが,反応温度を下げることな
く好ましい.分解油及び分解ガスを含んだ該不活性ガス
は,反応器上部より抜き出され、コンデンサー,スクラ
バー、分離槽等を経て,分解油及び分解ガスが除去され
る.その後、該不活性ガスを再Wi環使用することも可
能である。
Thermal decomposition polycondensation refers to a reaction in which the thermal decomposition reaction and polycondensation reaction of heavy hydrocarbons occur in parallel as main reactions, thereby changing the chemical structure of the pitch component molecules. As a result of the reaction, scission of the paraffin chain structure, dehydrogenation, ring closure, and development of a planar structure of polycyclic condensed aromatics due to polycondensation proceed. For this reaction, the carbonaceous feedstock is about 380 to about 46
Heat treatment is carried out in two stages at 0°C, preferably 400-430°C. In the heat treatment, the reaction temperature is approximately 460°C.
If the temperature exceeds 380°C, the volatilization of unreacted raw materials will increase, the softening point of the optically anisotropic phase will also increase, and coking will easily occur, making it unsuitable. This is not desirable as it takes a long time. During heat treatment, stirring is performed to prevent local overheating and ensure uniform reaction, but in addition, to quickly remove low molecular weight substances produced as a result of thermal decomposition, stirring is performed under reduced pressure or as necessary. This can be carried out by blowing inert gas into the reactor. In this case, the inert gas may be one that has sufficiently low chemical reactivity with the pitch at the reaction temperature, such as nitrogen, water vapor, carbon dioxide, light hydrocarbon gas, or a mixture thereof. It is preferable to preheat these inert gases before blowing them in without lowering the reaction temperature. The inert gas containing cracked oil and cracked gas is extracted from the upper part of the reactor and passes through a condenser, scrubber, separation tank, etc., and the cracked oil and cracked gas are removed. Thereafter, it is also possible to use the inert gas again.

この熱処理反応器としては、液相熱分解装置であれば任
意の型式のものが使用されるが,通常円筒状容器からな
るものが用いられ、原料供給口、分解油、分解ガス,不
活性ガス等の排出口,ピッチ抜出口等が設けられ、反応
器内部には撹拌装置等が,また外部には原料加熱用ヒー
ター等が配設されている.なお,反応操作はパッチ,セ
ミパッチ及び連続式等の何れの方法でもよい.この製造
方法においては、1段目の熱処理で光学的異方性相が5
〜20%(好ましくは7〜15%)生戒した時点で熱処
理を止め、光学的異方性相部分を分離除去する.この光
学的異方性相部分の除去処理により、熱処理の初期に生
威し易い高分子物が除去される.この1段目の熱処理を
、光学的異方性相が20%超過となるまで行なうと、ピ
ッチの収量が低下し、逆に5%未満で止めると,高分子
物除去効果が低下する. 1段目の熱処理によって生威した光学的異方性相を!%
=2.0%,含有するピッチから光学的異方性相部分を
除去するための方法、即ち光学的異方性相部分と光学的
等方性相部分とを分離するための方法としては,公知の
種々の固液分離法が適宜採用されるが、特に比重差を利
用する分離法(参,特公昭61−38755号,同62
−24036号各公報〉を採用するのが好ましく,とり
わけ工業生産においては、遠心分離法を採用するのが好
ましい。
This heat treatment reactor can be of any type as long as it is a liquid-phase pyrolysis device, but it is usually made of a cylindrical container, with a raw material supply port, cracked oil, cracked gas, and inert gas. The reactor is equipped with a discharge port, a pitch outlet, etc., a stirring device, etc. is installed inside the reactor, and a heater for heating the raw materials, etc. is installed outside. The reaction operation may be performed using any method such as patch, semi-patch, or continuous method. In this manufacturing method, the optically anisotropic phase is
When ~20% (preferably 7 to 15%) is recovered, the heat treatment is stopped and the optically anisotropic phase portion is separated and removed. By removing this optically anisotropic phase portion, polymers that tend to grow during the initial stage of heat treatment are removed. If this first stage heat treatment is carried out until the optically anisotropic phase exceeds 20%, the yield of pitch decreases, and conversely, if it is stopped at less than 5%, the polymer removal effect decreases. The optically anisotropic phase produced by the first heat treatment! %
= 2.0%, the method for removing the optically anisotropic phase portion from the contained pitch, that is, the method for separating the optically anisotropic phase portion and the optically isotropic phase portion, is as follows: Various known solid-liquid separation methods may be employed as appropriate, but in particular separation methods that utilize differences in specific gravity (see, Japanese Patent Publication No. 61-38755, No. 62
-24036 publications> is preferred, and particularly in industrial production, centrifugation is preferred.

遠心分離法は,熱処理によって生成した光学的異方性相
含有ピッチに、その溶融状態で、遠心分離操作を加える
ことにより、光学的異方性相は光学的等方性相よりも比
重が大きいために迅速に沈降し、合体成長しつつ下層(
遠心力方向の層)へ集積し,光学的異方性相が約80%
以上で連続相を威し、その中にわずかに光学的等方性相
を島状または微小な球状体の形で包含する光学的異方性
ピッチが下層となり、一方上層は光学的等方性相が大部
分で、その中に光学的異方性相が微小な球状体で分散し
ている形態の光学的等方性ピッチとなり、しかもこの上
層と下層との界面が明瞭であって、しかも上層と下層の
溶融状態での比重が大きく異ることを利用して,下層を
上層より分離して取出し、光学的異方性ピッチと光学的
等方性ピッチとを分離する方法である。なお、遠心分離
操作とは、流体に高速回転作用を与え、流体中のより比
重の大きい相を下1(m心力の方向)へ集め、これを分
離する処理操作であり、その実施態様の一つとしていわ
ゆる遠心分離機による操作、特に連続的に重相と軽相を
分離排出する連続型遠心分離機などが有利に使用される
In the centrifugation method, pitch containing an optically anisotropic phase generated by heat treatment is centrifuged in its molten state, whereby the optically anisotropic phase has a higher specific gravity than the optically isotropic phase. Therefore, the lower layer (
The optically anisotropic phase is approximately 80%
The lower layer is an optically anisotropic pitch that forms a continuous phase and contains a slightly optically isotropic phase in the form of islands or minute spheres, while the upper layer is an optically isotropic phase. It is an optically isotropic pitch in which the phase is the majority, and the optically anisotropic phase is dispersed in minute spherical bodies, and the interface between the upper layer and the lower layer is clear. This method takes advantage of the fact that the specific gravity of the upper layer and the lower layer in the molten state is significantly different, and separates the lower layer from the upper layer to separate the optically anisotropic pitch and the optically isotropic pitch. Note that the centrifugal separation operation is a processing operation that applies high-speed rotation to a fluid, collects a phase with a higher specific gravity in the fluid toward the bottom (in the direction of the centrifugal force), and separates this. For example, a so-called centrifugal separator is advantageously used, particularly a continuous centrifuge that continuously separates and discharges a heavy phase and a light phase.

光学的異方性相部分を分離する温度は,遠心力の大きさ
にもよるが,ピッチの軟化点以上好ましくは250℃〜
300℃の範囲である.この範囲内の所定の一定温度で
もよく,また必らずしも一定温度でなくてもよい. この処理では,光学的異方性部分を遠心力方向へ沈積さ
せ合体せしめることが主目的であり、熱分解および重縮
合反応はできるだけ避ける必要がある.従って300℃
以上の温度は好ましくないし、また必要以上の温度は遠
心分離装置の長時間の連続運転を難しくするが、上述の
温度では、その問題もない。また上述の範囲よりも低温
ではピッチ系全体の,特に光学的異方性相の粘度が大き
いため下層光学的異方性相中に共沈した光学的等方性相
が脱けにくくなる。
The temperature at which the optically anisotropic phase portion is separated depends on the magnitude of the centrifugal force, but is preferably above the softening point of the pitch, preferably from 250°C to 250°C.
The temperature range is 300℃. It may be a predetermined constant temperature within this range, or it does not necessarily have to be a constant temperature. The main purpose of this process is to deposit and coalesce the optically anisotropic parts in the direction of centrifugal force, and it is necessary to avoid thermal decomposition and polycondensation reactions as much as possible. Therefore 300℃
Temperatures higher than this are not preferred, and temperatures higher than necessary make it difficult to operate the centrifugal separator continuously for a long period of time, but at the above-mentioned temperature, there is no such problem. Furthermore, at temperatures lower than the above-mentioned range, the viscosity of the entire pitch system, especially of the optically anisotropic phase, is high, making it difficult for the optically isotropic phase co-precipitated in the lower optically anisotropic phase to come off.

また、該遠心分離操作の遠心力加速度は、如何なる値で
あってもよいが、光学的異方性相部分(重相)と光学的
等方性相部分(軽相)とを、滞留時間を短かくして、効
率的に短時間で分離するために、好ましくは1,000
〜10,OOOGの範囲を採用することができる。
Further, the centrifugal force acceleration of the centrifugal separation operation may have any value, but the residence time between the optically anisotropic phase portion (heavy phase) and the optically isotropic phase portion (light phase) may be set at any value. Preferably 1,000 in order to keep it short and separate efficiently in a short time.
A range of ˜10,OOOG can be adopted.

光学的異方性相部分が分離除去された後、光学的等方性
相からなるピッチは、続いて2段目の熱処理に付される
。2段目の熱処理は,ピッチ中に光学的異方性相が20
〜70%、好ましくは30〜65%含有される状態にな
った時点で中止される。
After the optically anisotropic phase portion is separated and removed, the pitch consisting of the optically isotropic phase is subsequently subjected to a second heat treatment. In the second heat treatment, an optically anisotropic phase of 20% is formed in the pitch.
It is discontinued when the content reaches ~70%, preferably 30-65%.

というのは,2段目の熱処理を受けたピッチは、次に光
学的異方性相部分を分離回収する処理を受けるが,この
光学的異方性ピッチ回収処理において,低軟化点の均質
な光学的異方性ピッチを高収率で得るためには、熱分解
重縮合反応後のピッチ収率が高く且つ光学的異方性相含
有量が約20〜約70%,軟化点が260℃以下である
ものが好ましいためである.熱分解重縮合反応後のピッ
チ中の光学的異方性相が20%未満のものでは、次の分
離回収での光学的異方性ピッチの収率が極めて小さく、
逆に光学的異方性相を70%より大きいものにすると,
分離回収の際の分離性が悪くなって高濃度の光学的異方
性ピッチが得られなくなる.2段目の熱処理によって得
られる光学的異方性相含有ピッチとしては、光学的異方
性相の大部分又は実質的に全てが直径500μ園以下,
好ましくは300μ一以下の球状の状態であるものが適
切である.この製造方法においては、2段目の熱処理に
よって生成した光学的異方性相含有ピッチは,次に光学
的異方性ピッチ分離回収処理を受け、ここで光学的異方
性ピッチと光学的等方性ピッチとに分離される.この場
合の分離方法としては,前記1段目の熱処理後の分離と
同様に,公知の種々の固液分離法が適宜採用され、特に
比重差を利用する分離法を採用するのが好ましく,とり
わけ工業生産においては,遠心分離法を採用するのが好
ましい。
This is because the pitch that has undergone the second heat treatment is then subjected to a process to separate and recover the optically anisotropic phase portion, and in this optically anisotropic pitch recovery process, a homogeneous pitch with a low softening point is In order to obtain a high yield of optically anisotropic pitch, it is necessary to have a high pitch yield after the pyrolysis polycondensation reaction, an optically anisotropic phase content of about 20 to about 70%, and a softening point of 260°C. This is because the following is preferable. If the optically anisotropic phase in the pitch after the pyrolysis polycondensation reaction is less than 20%, the yield of the optically anisotropic pitch in the subsequent separation and recovery is extremely small.
Conversely, if the optically anisotropic phase is made larger than 70%,
Separability during separation and recovery deteriorates, making it impossible to obtain high-concentration optically anisotropic pitch. The optically anisotropic phase-containing pitch obtained by the second heat treatment is one in which most or substantially all of the optically anisotropic phase has a diameter of 500 μm or less,
Preferably, those in a spherical state with a diameter of 300 μm or less are suitable. In this manufacturing method, the optically anisotropic phase-containing pitch produced by the second heat treatment is then subjected to an optically anisotropic pitch separation and recovery process, where the optically anisotropic pitch and the optically equivalent pitch are separated and recovered. It is separated into directional pitch. As for the separation method in this case, similar to the separation after the first heat treatment, various known solid-liquid separation methods are appropriately employed, and it is particularly preferable to employ a separation method that utilizes the difference in specific gravity. In industrial production, it is preferable to employ centrifugation.

ただ、この光学的異方性ピッチ回収処理においては,遠
心分離法を採用した場合、その温度は3lO〜360℃
の範囲が好ましく、また遠心力加速度は5,000〜2
0,OOOGの範囲が好ましい.この光学的異方性ピッ
チ回収処理により、光学的異方性相含有量が95%以上
の光学的異方性ピッチが、短時間に、経済的に得られる
. なお、この製造方法においては、光学的異方性ピッチ回
収処理の直後に,適当な仕上げ熱処理を加えることも可
能である。即ち、前記回収処理で特に短い滞留時間を用
いて、軟化点は充分低いが,光学的異方性相含有量が約
80%−90%と,やや不充分な光学的異方性ピッチを
製造し、次にこれを300℃〜430℃の温度で熱重質
化反応処理を加えて、光学的異方性ピッチの特性が狭い
品質管理限界内に入るように調節する方法を採用するこ
ともできる。光学的異方性相を80〜90%含有する光
学的異方性ピッチは光学的等方性相を10〜20%含有
しているが、この光学的等方性相は更に熱重質化反応処
理を少し加えることによって減少し、また軟化点も次第
に上昇することが判っているので,適度に調節された温
度と処理時間で、分離後のピッチを熱重質化することに
よって、光学的異方性相の含有量を95%以上に調節す
ることができる。
However, in this optical anisotropic pitch recovery process, when centrifugation is used, the temperature is 3lO to 360°C.
The centrifugal force acceleration is preferably in the range of 5,000 to 2
A range of 0,OOOG is preferred. By this optically anisotropic pitch recovery process, optically anisotropic pitch with an optically anisotropic phase content of 95% or more can be obtained economically in a short time. In addition, in this manufacturing method, it is also possible to add an appropriate finishing heat treatment immediately after the optical anisotropic pitch recovery treatment. That is, by using a particularly short residence time in the recovery process, an optically anisotropic pitch with a sufficiently low softening point but with a slightly insufficient optically anisotropic phase content of about 80%-90% can be produced. Then, a method may be adopted in which this is subjected to a thermal weighting reaction treatment at a temperature of 300°C to 430°C to adjust the characteristics of the optically anisotropic pitch to fall within narrow quality control limits. can. The optically anisotropic pitch containing 80-90% of the optically anisotropic phase contains 10-20% of the optically isotropic phase, but this optically isotropic phase is further thermograined. It is known that the softening point can be reduced by adding a small amount of reaction treatment, and the softening point can also be gradually raised. The content of anisotropic phase can be adjusted to 95% or more.

この製造方法によって得られたピッチは連続的に系外へ
取出され、液状のままあるいは固化され製品となる.こ
の方法により,軟化点が充分に低く且つ適切な会合性を
有する光学的異方性ピッチが得られる。
The pitch obtained by this manufacturing method is continuously taken out of the system and is either kept in a liquid state or solidified to become a product. By this method, an optically anisotropic pitch having a sufficiently low softening point and appropriate associativity can be obtained.

(2)繊維の製造 (i)紡糸 前記の会合特性を有する光学的異方性ピッチは、公知の
方法によって紡糸することができる.このような方法は
,例えば、直径0.1■〜0.5■の紡糸口を1−1.
000ケ有する紡糸口金を下方に有する金属製紡糸容器
にピッチを張り込み、不活性ガス雰囲気で280〜37
0℃の間の一定の温度にピッチを保持し、溶融状態に保
って不活性ガスの圧カを数百■ml1gに上昇せしめて
口金から溶融ピッチを押し出し、温度及び雰囲気を制御
しつつ流下したピッチ繊維を,高速で回転するボビンに
巻き取るものである. また、紡糸口金から紡糸したピッチ繊維を集束させて気
流で引取りつつ,下方の集積ケースの中にケンス状に集
積する方法を採用することもできる。この場合、紡糸容
器へのピッチの供給を、予め溶融したピッチやギアポン
プ等により加圧供給することによって連続的に紡糸する
ことが可能である.更に、上記方法において、口金の近
傍で、一定の温度に制御され高速で下降するガスを用い
て、ピッチ繊維を延伸しつつ引取り、下方のベルトコン
ベア上に長繊維を作る方法も用いることができる. 更に,周壁に紡糸口金を有する円筒状ワ荀糸容器を.高
速で回転させ、これに溶融ピッチを連続b&1に供給し
,円筒紡糸器の周壁より遠心力によってピッチを押し出
し、回転の作用によって延伸されるピッチ繊維を集積す
るよ.うな紡糸方法を採用することもできる. (n)集束剤(油剤) 本発明においては,溶融紡糸したピッチ繊維は、エアサ
ッカ一を通して集束しつつオイリングローラーに導き、
集束剤(油剤)をつけて更に集束する。
(2) Production of fiber (i) Spinning The optically anisotropic pitch having the above-mentioned association properties can be spun by a known method. In such a method, for example, a spinneret having a diameter of 0.1 to 0.5 mm is used in a 1-1.
Pitch was placed in a metal spinning container with a spinneret of 0.000 spinnerets below, and the pitch was heated to 280 to 37 mL in an inert gas atmosphere.
The pitch was held at a constant temperature between 0°C and kept in a molten state, and the pressure of the inert gas was increased to several hundred μml/g to push the molten pitch out of the nozzle and let it flow down while controlling the temperature and atmosphere. The pitch fiber is wound onto a bobbin that rotates at high speed. Alternatively, it is also possible to adopt a method in which pitch fibers spun from a spinneret are collected in a can-like manner in a lower collecting case while being collected by an air current. In this case, continuous spinning is possible by supplying pitch to the spinning container using pre-melted pitch or pressurized supply using a gear pump or the like. Furthermore, in the above method, it is also possible to use a method in which pitch fibers are drawn and drawn using gas that is controlled at a constant temperature and descends at high speed in the vicinity of the die to produce long fibers on a belt conveyor below. can. Furthermore, a cylindrical yarn container with a spinneret on the peripheral wall was used. It rotates at high speed, supplies molten pitch to the continuous B&1, extrudes the pitch from the peripheral wall of the cylindrical spinner by centrifugal force, and accumulates pitch fibers that are drawn by the action of rotation. It is also possible to use the eel spinning method. (n) Bundling agent (oil agent) In the present invention, the melt-spun pitch fibers are bundled through an air sucker and guided to an oiling roller.
Add a focusing agent (oil) to further focus.

この場合の集束剤としては,例えばエチルアルコール、
イソプロビルアルコール,n−プロビルアルコール、ブ
チルアルコール等のアルコール類又は粘度3〜300c
st(30℃)のジメチルシリコン油、メチルフェニル
シリコン油等をシリコン油又はパラフィン油等の溶剤で
希釈したもの、又は乳化剤を入れて水に分散させたもの
;同様にグラファイト又はポリエチレングリコールやヒ
ンダードエステル類を分散させたもの;その他通常の繊
維,例えばポリエステル繊維に使用される各種油剤の内
ピッ:j5維をおかさないものを51用することができ
る,集束剤シピッチ繊維に付与す2一方法としては、U
字型のガイドく通して付与する方払 オイリングローラ
ー法、スプレー法等の従来公知の付与方法を坪用するこ
とができる。
In this case, examples of the sizing agent include ethyl alcohol,
Alcohols such as isopropyl alcohol, n-propyl alcohol, butyl alcohol or viscosity 3 to 300c
St (30℃) dimethyl silicone oil, methylphenyl silicone oil, etc. diluted with a solvent such as silicone oil or paraffin oil, or dispersed in water with an emulsifier added; Similarly, graphite, polyethylene glycol, hindered Dispersed esters; Among the various oils used for other ordinary fibers, such as polyester fibers, those that do not disturb the fibers can be used. As, U
Method of application by passing through a letter-shaped guide Conventionally known application methods such as oiling roller method and spray method can be used.

また、集束剤の付与は、紡糸工程から不融化工程の間の
何れにおいても行なえるが、脆弱なピッチ繊維を安定に
取扱うためには、紡糸口金一巻取機間で行なうのが好ま
しい。
Furthermore, although the sizing agent can be applied at any time between the spinning process and the infusibility process, in order to stably handle the brittle pitch fibers, it is preferable to apply the sizing agent between the spinneret and one winder.

集束剤の繊維への付着量は,通常0.01〜lO重′m
%であり、好ましくは0.05−5重量%である.(問
)ピッチ繊維の不融化 前記集束剤が付与され、集束されたピッチ繊維は、公知
の方法によって不融化される.不融化工程の温度は15
0℃〜400℃,好ましくは200℃−350℃の範囲
でステップ状又は徐々に昇温して、通常は10分〜5時
間処理する.処理時間は不融化の反応が充分に均一に進
むように1日〜3日という長時間行なうことも差支えな
い. 不融化は、空気、酸素、空気と酸素又は窒素の混合ガス
等を使用して行なうことができる.本発明においては、
200℃以下の温度でハロゲン、N0よ、オゾン等の酸
化剤を含んだ雰囲気中で短時間処理するか、又は,酸素
ガス雰囲気中でピッチの軟化点より30〜50℃低い温
度,即ち150〜240℃の温度で充分な不融化が得ら
れる迄5分〜1時間保持し、その後必要により約300
℃迄昇温しで不融化を終了させる方法が好ましく、特に
後者の方法は容易且つ確実であり好ましい. (iv)熱処理工程 次に,この不融性となった炭素質ピッチ繊維を、化学的
に不活性なアルゴンガス又は窒素ガス等の雰囲気中で,
500〜1 , 000℃迄昇温しで予備炭化した後,
 1,000〜2,000℃の範囲の温度迄昇温しで炭
化することによって炭素繊維が得られ、2,000〜3
,000℃の範囲内の温度迄昇温しで,黒鉛化処理迄進
めて,黒鉛繊維が得られる. 本発明においては,この炭化及び黒鉛化の方法の詐細に
ついて、特に限定するものではなく、一般公知の方法を
用いることができる. また,不融化、炭化,黒鉛化処理の間、炉壁,炉底との
こすれ傷の発生を防止し,糸の収縮変形等を避け、ある
いは,外観の良い物性の高い炭素繊維、黒鉛繊維を得る
などの目的のために,集束剤をつけた繊維束を処理する
際、繊維束に荷重又は張力をかけておくことが好ましい
. 〔発明の効果〕 本発明の炭素繊維及び黒鉛繊維の製造方法は,前記した
特定の会合特性を有する光学的異方性ピッチを原料とし
て使用するので、可紡糸範囲が広く,紡糸安定性が高く
,紡糸工程での繊維構造制御も容易になり、その結果、
本発明の方法によると,高強度、高弾性の炭素繊維及び
黒鉛繊維を、安定的に効率良く製造することができる。
The amount of sizing agent attached to the fibers is usually 0.01 to 10 m
%, preferably 0.05-5% by weight. (Question) Infusibility of pitch fibers The pitch fibers that have been applied with the above-mentioned sizing agent and bundled are made infusible by a known method. The temperature of the infusibility step is 15
The temperature is raised stepwise or gradually in the range of 0°C to 400°C, preferably 200°C to 350°C, and the treatment is usually carried out for 10 minutes to 5 hours. The treatment time may be as long as 1 to 3 days so that the infusibility reaction proceeds sufficiently and uniformly. Infusibility can be achieved using air, oxygen, a mixed gas of air and oxygen or nitrogen, etc. In the present invention,
Treat for a short time in an atmosphere containing oxidizing agents such as halogens, N0, ozone, etc. at a temperature of 200°C or less, or in an oxygen gas atmosphere at a temperature 30 to 50°C lower than the softening point of pitch, i.e. 150 to Hold at a temperature of 240°C for 5 minutes to 1 hour until sufficient infusibility is obtained, and then heat at a temperature of about 300°C as necessary.
A method in which infusibility is completed by raising the temperature to ℃ is preferred, and the latter method is particularly preferred because it is easy and reliable. (iv) Heat treatment process Next, this infusible carbonaceous pitch fiber is heated in a chemically inert atmosphere such as argon gas or nitrogen gas.
After preliminary carbonization by raising the temperature to 500 to 1,000℃,
Carbon fibers are obtained by carbonization by raising the temperature to a temperature in the range of 1,000 to 2,000°C;
By raising the temperature to a temperature within the range of ,000°C and proceeding to graphitization treatment, graphite fibers are obtained. In the present invention, there are no particular limitations on the method of carbonization and graphitization, and generally known methods can be used. Also, during the infusibility, carbonization, and graphitization treatments, it prevents scratches from rubbing against the furnace walls and furnace bottom, avoids shrinkage and deformation of the yarn, or produces carbon fibers and graphite fibers with good appearance and high physical properties. For such purposes, when processing fiber bundles coated with a sizing agent, it is preferable to apply a load or tension to the fiber bundles. [Effects of the Invention] The method for producing carbon fibers and graphite fibers of the present invention uses optically anisotropic pitch having the above-mentioned specific association characteristics as a raw material, so it has a wide spinnable range and high spinning stability. , It becomes easier to control the fiber structure in the spinning process, and as a result,
According to the method of the present invention, carbon fibers and graphite fibers with high strength and high elasticity can be produced stably and efficiently.

〔実施例〕〔Example〕

以下、実施例により本発明を更に詳細に説明するが,も
ちろん本発明の範囲はこれに限定されるものではない. 実施例l 石油の接触分解工程で副生する重質残渣油を減圧蒸留し
て、常圧に換算して500〜550℃の釜残タールを分
取し、これを出発原料とした.このタール状物は,炭素
90.7重量算、水素8.1重量算.硫黄1.1重量ぶ
からなり,その組成は表−1に示す通りで,アスファル
テン分を含まないものであった.表−1 このタール状物質20kgを内容積35mの反応槽に張
込み,窒素気流下で充分撹拌しながら415℃、4時間
.IR目の熱分解重縮合を行ない、偏光[vII鏡で観
察すると光学的等方性母相に200.以下の光学的異方
性球体が約郎含有するピッチを,FM料タールに対して
25%の収率で得た. 次に、このピッチを連続式遠心分離機に張込み,窒素雰
囲気下,250℃、1G,OOOGの条件で1段目の遠
心分離を行ない,光学的異方性ピッチ“A″と光学的異
方性相を2%以上含まない実質的に光学的等方性のピッ
チ“B”に分#;た. 次に,ピッチuPrを415℃で3時間、2段目の熱分
解重縮合を行ない,残留ピッチとして200741以下
の光学的異方性球体を約50%含有するピッチ# C 
Itを67%の収率で得た。
The present invention will be explained in more detail below with reference to Examples, but the scope of the present invention is of course not limited thereto. Example 1 Heavy residual oil produced as a by-product in the catalytic cracking process of petroleum was distilled under reduced pressure, and residual tar at a temperature of 500 to 550° C. in terms of normal pressure was fractionated and used as a starting material. This tar-like substance contains 90.7 carbon by weight and 8.1 hydrogen by weight. It consisted of 1.1 parts by weight of sulfur, and its composition was as shown in Table 1, and it did not contain asphaltenes. Table 1: 20 kg of this tar-like substance was charged into a reaction tank with an internal volume of 35 m, and heated at 415°C for 4 hours with thorough stirring under a nitrogen stream. Thermal decomposition polycondensation of the IR eye is carried out, and when observed with a polarized light [vII mirror, an optically isotropic matrix of 200. The pitch containing the following optically anisotropic spheres was obtained at a yield of 25% based on the FM tar. Next, this pitch was loaded into a continuous centrifuge and centrifuged in the first stage under the conditions of 250°C, 1G, and OOOG in a nitrogen atmosphere. The pitch was divided into a substantially optically isotropic pitch "B" containing no more than 2% of an orthotropic phase. Next, the pitch uPr was subjected to a second stage of pyrolysis polycondensation at 415°C for 3 hours to obtain pitch #C containing about 50% of optically anisotropic spheres of 200741 or less as residual pitch.
It was obtained in 67% yield.

このピッチtlc”をバッチ式遠心分離機で窒素気流下
,350℃, 10,OOOGの条件で2段目の遠心分
離を行ない、光学的異方性相lO郎のピッチ14D”と
光学的異方性相が3%以下の実質的に光学的等方性のピ
ッチ“Ellを、約50:50の比率で得た.ピッチ“
D”は固体” H−NMRで測定される縦緩和時間が2
,410w+sec、高温”C−NMRで測定される磁
場配向変化率が0.450であった。また,その軟化点
は265℃であった。
This pitch tlc" was subjected to a second centrifugation in a batch-type centrifuge under nitrogen flow at 350°C and 10,000 yen. A substantially optically isotropic pitch "Ell" with a sexual phase of 3% or less was obtained in a ratio of about 50:50.
D" is solid" Longitudinal relaxation time measured by H-NMR is 2
, 410 w+sec, high temperature" The magnetic field orientation change rate measured by C-NMR was 0.450. Also, the softening point was 265°C.

次に、ピッチ“D”を0.3■のノズルを有する紡糸機
に充填し,320℃の紡糸温度において1,000m/
minの高速の引き取り速度で引き取ったところ、連続
1時間以上にわたって糸切れをすることなく、平均繊維
径約13.のピッチ繊維を得ることが出来た・ このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100’C /
ra i nの昇温速度で2,500℃まで昇温し黒鉛
繊維を得た.得られた黒鉛繊維の平均糸径は10.0.
.平均強度4 . 60I’a、平均弾性率850GP
aであった.実施例2 実施例1で得られたピッチ“B”を420℃で2時間,
2段目の熱分解重縮合を行ない,残留ピッチとして20
0一以下の光学的異方性球体を約50%含有するピッチ
゛′F″を63%の収率で得た.このピッチII F 
I+をバッチ式遠心分離機で窒素気流下、350℃、1
0,OOOGの条件で2段目の遠心分離を行ない,光学
的異方性相10o%のピッチda G j)と光学的異
方性相が3%以下の実質的に光学的等方性のピッチ“H
”を、約50:5Gの比率で得た。
Next, the pitch "D" was filled into a spinning machine with a 0.3-inch nozzle, and the spinning machine was used at a spinning temperature of 320°C for 1,000 m/min.
When the fibers were taken at a high speed of 13.0 min, the average fiber diameter remained at about 13.0 mm without breaking for more than 1 hour. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated at 100°C/in an inert gas atmosphere.
The temperature was raised to 2,500°C at a heating rate of ra in to obtain graphite fibers. The average thread diameter of the graphite fibers obtained was 10.0.
.. Average intensity 4. 60I'a, average elastic modulus 850GP
It was a. Example 2 The pitch “B” obtained in Example 1 was heated at 420°C for 2 hours.
The second stage of pyrolysis polycondensation is carried out, and the remaining pitch is 20
A pitch 'F' containing about 50% of optically anisotropic spheres of 01 or less was obtained with a yield of 63%.This pitch II F
I+ in a batch centrifuge at 350°C under a nitrogen stream for 1
A second stage of centrifugation is carried out under the conditions of 0.00000000000000000000000000000000000,000% of the optically anisotropic phase is obtained. Pitch “H”
” were obtained in a ratio of approximately 50:5G.

ピッチ“G”は固体’ H−NMRで測定される縦緩和
時間が2,200ssec、高温13C−NMRで測定
される磁場配向変化率が0.475であった。また,そ
の軟化点は267℃であった. 次に、ピッチ“G”を0.3aulのノズルを有する紡
糸機に充填し,320℃の紡糸温度において1 , 0
00i/winの高速の引き取り速度で引き取ったとこ
ろ,連続1時間以上にわたって糸切れすることなく,平
均繊維径約13−のピッチ繊維を得ることが出来た。
Pitch "G" had a longitudinal relaxation time of 2,200 ssec measured by solid-state H-NMR, and a rate of change in magnetic field orientation measured by high-temperature 13C-NMR of 0.475. In addition, its softening point was 267°C. Next, pitch "G" was charged into a spinning machine with a nozzle of 0.3 aul, and at a spinning temperature of 320 °C, 1,0
When the fibers were drawn at a high drawing speed of 00 i/win, pitch fibers with an average fiber diameter of about 13 mm could be obtained without breaking for more than 1 hour continuously.

このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し、次いで不活性ガス雰囲気中で100’C/s
inの昇温速度で2,500℃まで昇温し黒鉛繊維を得
た。得られた黒鉛繊維の平均糸径は9.71s、平均強
度4 , 3GPa、平均弾性率810GPaであった
.実施例3 実施例1で得られた光学的異方性ピッチ“D″を0.1
5++v+径の細径ノズルを有する紡糸機に充填し31
5℃の紡糸温度で紡糸したところ、1,Goos/分の
引き取り速度で,連続1時間以上にわたって糸切れする
ことなく、平均繊維径が約12μ一のピッチ繊維を得た
This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then at 100'C/s in an inert gas atmosphere.
The temperature was raised to 2,500° C. at a temperature increase rate of 100 min to obtain graphite fibers. The graphite fibers obtained had an average thread diameter of 9.71s, an average strength of 4.3 GPa, and an average elastic modulus of 810 GPa. Example 3 The optical anisotropy pitch "D" obtained in Example 1 was set to 0.1
Fill a spinning machine with a small diameter nozzle with a diameter of 31
When the fibers were spun at a spinning temperature of 5° C., pitch fibers having an average fiber diameter of about 12 μm were obtained without breakage for more than 1 hour at a take-up speed of 1.00 m/min.

このピッチ繊維を酸素100%のガス中で230℃、1
時間保持して不融化処理を行い,次いで不活性ガス中で
100℃/分の昇温速度で1 , 500℃及び2,5
00℃まで昇温しで炭化及び黒鉛化した. この1 , 500℃で炭化したJa維の平均繊維径は
9.4ハ,引張り強度は3.6GPa.引張り弾性率は
270GPaであり、また2,500℃で黒鉛化した繊
維の平均繊維径は9.0,n,引張り強度は4 . 2
GPa ,引張り弾性率は840GPaであった. 比較例1 実施例1と同様の重質残渣油を、減圧蒸留して得られる
415℃以上の留分を出発原料として用いた.この残渣
油は、炭素89.9重量算、水素8.9重量瓢、硫黄1
.0重量算からなり,その組或は表−2に示す通りで、
アスファルテン分を3.8重量瓢含有していた. 表−2 この残渣油について,l段目の熱分解縮合及び遠心分離
を実施例lと同一条件で行ない、光学的異方性相1GG
%のピッチ11 I l#と光学的異方性相が邦以下の
実質的に光学的等方性のピッチR J 11を、約25
:75の比率で得た. ピッチ11 I I1は固体”}l−NMRで測定され
る縦緩和時間が2,250tmsec.高温”C−NM
}lで測定されるm場配向変化率が0.645であった
This pitch fiber was heated at 230°C in 100% oxygen gas for 1
Infusibility treatment is carried out by holding for a time of 1,500°C and 2,5°C at a heating rate of 100°C/min in an inert gas.
It was carbonized and graphitized by raising the temperature to 00℃. The average fiber diameter of the Ja fibers carbonized at 1,500°C is 9.4cm, and the tensile strength is 3.6GPa. The tensile modulus is 270 GPa, the average fiber diameter of the fibers graphitized at 2,500°C is 9.0,n, and the tensile strength is 4. 2
GPa, and the tensile modulus was 840 GPa. Comparative Example 1 The same heavy residual oil as in Example 1 was distilled under reduced pressure and a fraction of 415°C or higher was used as a starting material. This residual oil contains 89.9 carbon by weight, 8.9 hydrogen by weight, and 1 sulfur by weight.
.. 0 weight calculation, and the set or as shown in Table-2,
It contained 3.8 parts by weight of asphaltene. Table 2 This residual oil was subjected to the first stage thermal decomposition condensation and centrifugation under the same conditions as in Example 1, resulting in an optically anisotropic phase 1GG.
% of the pitch 11 I l# and the optically anisotropic phase is less than or equal to the substantially optically isotropic pitch R J 11 of about 25
:75 ratio. Pitch 11 I I1 is a solid "}L-NMR-measured longitudinal relaxation time of 2,250 tmsec. High temperature" C-NM
The m-field orientation change rate measured at }l was 0.645.

次に、ピッチ“I”を0.3mmのノズルを有する紡糸
機に充填し、320℃の紡糸温度において500m/s
inの引き取り速度で引き取ったところ,連続1時間以
上わたって糸切れすることなく、平均繊維径約12.5
p−のピッチ繊維を得る事が出来た.しかし、1,OO
Om/winの高速の引き取り速度では、安定に紡糸す
ることができなかった. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し、次いで不活性ガス雰囲気中で100’C/+
inの昇温速度で2,500℃まで昇温し黒鉛繊維を得
た。得られた黒鉛繊維の平均糸径は9.3ハ、平均強度
3.7GPa、平均弾性率?70GPaであった。
Next, the pitch "I" was filled into a spinning machine with a 0.3 mm nozzle, and the spinning speed was 500 m/s at a spinning temperature of 320°C.
When the yarn was taken at a take-up speed of 1.5 in., the average fiber diameter was approximately 12.5 without breaking for more than 1 hour.
We were able to obtain p- pitch fibers. However, 1,OO
Stable spinning was not possible at the high take-up speed of Om/win. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated to 100°C/+ in an inert gas atmosphere.
The temperature was raised to 2,500° C. at a temperature increase rate of 100 min to obtain graphite fibers. The graphite fibers obtained had an average thread diameter of 9.3cm, an average strength of 3.7GPa, and an average modulus of elasticity. It was 70GPa.

比較例2 比較例lで得られたピッチ“J”を.415℃で4時間
,2段目の熱分解重縮合を行ない、残留ピッチとして2
00μm以下の光学的異方性球体を約50%含有するピ
ッチ゛L″を、7郎の収率で得た。
Comparative Example 2 The pitch "J" obtained in Comparative Example 1 was... The second stage of pyrolysis polycondensation was carried out at 415°C for 4 hours, and 2
A pitch "L" containing about 50% of optically anisotropic spheres of 00 μm or less was obtained with a yield of 7.0 μm.

このピッチ14 L I1をバッチ式遠心分離機で窒素
気流下,350℃、10,OOOGの条件で2段目の遠
心分離を行ない,光学的異方性相100%のビッチ″H
′″と光学的異方性相が3%以下の実質的に光学的等方
性のピッチ41 N #lを、約50:50の比率で得
た.ピッチ“何”は固体”H−NMRで測定される縦緩
和時間が1,960+++sec.高温”C−NI’l
Rで測定される磁場配向変化率が0.620であった. 次に,ピッチ“阿”を0.3mmのノズルを有する紡糸
機に充填し、320℃の紡糸温度において500m/I
linの引き取り速度で引き取ったところ,連続1時間
以上にわたって糸切れすることなく,平均繊維径約12
.5μ一のピッチ繊維を得る事が出来た。しかし,1,
000m/+*inの高速の引き取り速度では,安定に
紡糸することができなかった. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し,次いで不活性ガス雰囲気中で100’C/w
inの昇温速度で2 , 500℃まで昇温し黒鉛繊維
を得た.得られた黒鉛繊維の平均糸径は9,0μ,平均
強度3,4GPa、平均弾性率750GPaであった.
比較例3 実施例1で得られたピッチ1ICI1は光学的異方性相
を50%含み,固体”II−NMRで測定される縦緩和
時間が2,900msec、高温”C−NMRで測定さ
れる磁場配向変化率が0.150であった. ピッチ″゛C″を用いて実施例1と同様にして紡糸を行
なったが、紡糸性が悪く、ピッチ繊維を得ることができ
なかった. 比較例4 実施例lの重質残渣油のうち、常圧に換算して450℃
以下の留分を出発タールとして用いた.実施例lと同じ
反応装置を用い、400℃、4時間で熱分解重縮合を行
ない、残留ピッチとして200μm以下の光学的異方性
球体を約4%含有するピッチ11 0 11を,2%の
収率で得た. このピッチ“0”をバッチ式遠心分離機で窒素気流下、
310℃, 10,OOOGの条件で遠心分離を行ない
,光学的異方性相96%のビッチ゛′P”と光学的異方
性相が3ヌ以下の実質的に光学的等方性のピッチ14 
Q IIを得た. ピッチIP”は固体’ l−1−NMRで測定される縦
緩和時間が3, 100msec、高7113C−NM
Rで測定される磁場配向変化率が0.430であった。
This pitch 14 L I1 was centrifuged in a second stage under a nitrogen stream at 350°C and 10,000 yen in a batch type centrifuge to obtain a pitch 14 L I1 with a 100% optically anisotropic phase.
A substantially optically isotropic pitch 41 N #l with an optically anisotropic phase of less than 3% was obtained in a ratio of approximately 50:50.The pitch "what" is a solid "H-NMR The longitudinal relaxation time measured at 1,960+++sec. High temperature "C-NI'l"
The magnetic field orientation change rate measured at R was 0.620. Next, the pitch "A" was filled into a spinning machine with a 0.3 mm nozzle, and 500 m/I was filled at a spinning temperature of 320°C.
When the fibers were drawn at a drawing speed of lin, the average fiber diameter was approximately 12 mm without breaking for more than 1 hour.
.. It was possible to obtain pitch fibers with a pitch of 5μ. However, 1,
Stable spinning could not be achieved at a high take-up speed of 000 m/+*in. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then heated at 100°C/w in an inert gas atmosphere.
Graphite fibers were obtained by increasing the temperature to 2,500°C at a heating rate of in. The obtained graphite fibers had an average thread diameter of 9.0 μ, an average strength of 3.4 GPa, and an average elastic modulus of 750 GPa.
Comparative Example 3 Pitch 1 ICI1 obtained in Example 1 contains 50% optically anisotropic phase, has a longitudinal relaxation time of 2,900 msec measured by solid state II-NMR, and is measured by high temperature C-NMR. The magnetic field orientation change rate was 0.150. Spinning was carried out in the same manner as in Example 1 using pitch "C", but the spinnability was poor and pitch fibers could not be obtained. Comparative Example 4 Of the heavy residual oil of Example 1, 450°C converted to normal pressure
The following fractions were used as starting tars. Using the same reactor as in Example 1, pyrolysis polycondensation was carried out at 400°C for 4 hours, and pitch 11011 containing about 4% of optically anisotropic spheres of 200 μm or less as residual pitch was mixed with 2% of the remaining pitch. Obtained in yield. This pitch “0” is processed using a batch centrifuge under a nitrogen stream.
Centrifugation was carried out under the conditions of 310°C and 10,000°C, resulting in a pitch of 96% optically anisotropic phase 'P' and a substantially optically isotropic pitch 14 with an optically anisotropic phase of 3 or less.
I got Q II. Pitch IP" has a longitudinal relaxation time of 3,100 msec measured by solid-state l-1-NMR, and a height of 7113C-NM.
The magnetic field orientation change rate measured at R was 0.430.

次に,ピッチIIP”を0.3開のノズルを有する紡糸
機に充填し,300℃の紡糸温度において500m/s
inの引き取り速度で,平均繊維径約12.5.のビッ
チ繊維を得る事が出来た。しかし、1,OOOIl/w
inの高速の引き取り速度では,安定に紡糸することが
できなかった. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し、次いで不活性ガス雰囲気中で100℃/Il
linの昇温速度で2,500℃まで昇温し黒鉛繊維を
得た。得られた黒鉛繊維の平均糸径は9.077m、平
均強度3 . 3GPa.平均弾性率720GPaであ
った.比較例5 実施例1のビッチgtB”を440℃で2時間,2段目
の熱分解重縮合を行ない,残留ピッチとして200.以
下の光学的異方性球体を約80%含有するピッチ′“R
l+を、55%の収率で得た. このビッチII R I1をバッチ式遠心分離機で窒素
気流下、350℃, 10,OOOGの条件で2段目の
遠心分離を行ない、光学的異方性相1 00%のピッチ
“S”と光学的異方性相が3%以下の実質的に光学的等
方性のピッチ“Tllを,約50:50の比率で得た。
Next, the pitch IIP'' was filled into a spinning machine with a nozzle of 0.3 opening, and the spinning machine was spun at 500 m/s at a spinning temperature of 300°C.
The average fiber diameter was approximately 12.5 in. I was able to get some bitch fiber. However, 1, OOOIl/w
It was not possible to stably spin the yarn at the high take-up speed of in. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then 100°C/Il in an inert gas atmosphere.
The temperature was raised to 2,500° C. at a heating rate of lin to obtain graphite fibers. The average thread diameter of the graphite fibers obtained was 9.077 m, and the average strength was 3. 3GPa. The average elastic modulus was 720 GPa. Comparative Example 5 A pitch containing about 80% of optically anisotropic spheres with a residual pitch of 200.0% or less was obtained by subjecting the bitch gtB of Example 1 to a second stage of pyrolysis polycondensation at 440° C. for 2 hours. R
l+ was obtained in 55% yield. This Bitch II R I1 was subjected to a second centrifugation in a batch type centrifuge under a nitrogen stream at 350°C and 10,000 yen, resulting in a pitch "S" with 100% optical anisotropic phase A substantially optically isotropic pitch "Tll" with an optically anisotropic phase of less than 3% was obtained in a ratio of about 50:50.

ピッチ″“SITは固体’ H−NMRで測定される縦
緩和時間が1,800msec、高温”C−NMRで測
定される磁場配向変化率が0.491であった。
The pitch "SIT" had a longitudinal relaxation time of 1,800 msec measured by solid-state H-NMR, and a rate of change in magnetic field orientation measured by high-temperature C-NMR of 0.491.

次に、ビッチ11 S l#を0.3開のノズルを有す
る紡糸機に充填し、320℃の紡糸温度において500
m/sinの引き取り速度で、平均繊維径約13μ種の
ピッチ繊維を得る事が出来た.しかし、1,000m/
鳳inの引き取り速度では,安定に紡糸することができ
なかった. このピッチ繊維を酸素雰囲気中で230℃で1時間酸化
不融化し、次いで不活性ガス雰囲気中で100℃/■i
nの昇温速度で2,500℃まで昇温し黒鉛繊維を得た
.得られた黒鉛繊維の平均糸径は9.5.,平均強度3
 . 8GPa、平均弾性率770GPaであった.比
較例6 比較例2で得られた光学的異方性ピッチ′酊″を0.1
5mm径の細径ノズルを有する紡糸機に充填し紡糸した
ところ、いかなる温度でも糸切れが多く安定に紡糸する
ことができなかった。
Next, Bitch 11 S l# was charged into a spinning machine with a nozzle of 0.3 opening, and 500
At a take-up speed of m/sin, pitch fibers with an average fiber diameter of approximately 13μ could be obtained. However, 1,000m/
Stable spinning was not possible at the take-up speed of the Otori ink. This pitch fiber was oxidized and infusible at 230°C for 1 hour in an oxygen atmosphere, and then 100°C/■i in an inert gas atmosphere.
The temperature was raised to 2,500°C at a heating rate of n to obtain graphite fibers. The average thread diameter of the graphite fibers obtained was 9.5. , average intensity 3
.. The average elastic modulus was 770 GPa. Comparative Example 6 The optical anisotropy pitch obtained in Comparative Example 2 was set to 0.1.
When the fibers were filled into a spinning machine having a small nozzle with a diameter of 5 mm and spun, stable spinning was not possible due to frequent yarn breakage at any temperature.

Claims (1)

【特許請求の範囲】[Claims] (1)光学的異方性相を95%以上含有し、しかも固体
広幅^2H−NMRにより測定される縦緩和時間が2,
000〜3,000msecであって、且つピレン添加
高温^1^3C−NMRにより測定される磁場配向変化
率が0.20〜0.50である光学的異方性ピッチを原
料として用い、これを溶融紡糸し、不融化し、炭化し、
更に場合により黒鉛化することを特徴とする炭素繊維及
び黒鉛繊維の製造方法。
(1) Contains 95% or more of an optically anisotropic phase, and has a longitudinal relaxation time of 2 as measured by solid-state broad width ^2H-NMR.
000 to 3,000 msec, and the magnetic field orientation change rate measured by pyrene-added high temperature^1^3C-NMR is 0.20 to 0.50 as a raw material. Melt-spun, infusible, carbonized,
A method for producing carbon fibers and graphite fibers, which further comprises graphitizing the fibers in some cases.
JP30850289A 1989-11-28 1989-11-28 Production of carbon fiber and graphite fiber Pending JPH03167319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30850289A JPH03167319A (en) 1989-11-28 1989-11-28 Production of carbon fiber and graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30850289A JPH03167319A (en) 1989-11-28 1989-11-28 Production of carbon fiber and graphite fiber

Publications (1)

Publication Number Publication Date
JPH03167319A true JPH03167319A (en) 1991-07-19

Family

ID=17981789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30850289A Pending JPH03167319A (en) 1989-11-28 1989-11-28 Production of carbon fiber and graphite fiber

Country Status (1)

Country Link
JP (1) JPH03167319A (en)

Similar Documents

Publication Publication Date Title
JPS62270685A (en) Production of mesophase pitch
US4601813A (en) Process for producing optically anisotropic carbonaceous pitch
US4597853A (en) Pitch as a raw material for making carbon fibers and process for producing the same
JPH0133568B2 (en)
JPH03167319A (en) Production of carbon fiber and graphite fiber
US4810437A (en) Process for manufacturing carbon fiber and graphite fiber
JPS6224036B2 (en)
JPH01247487A (en) Production of mesophase pitch
JPH03167291A (en) Optically anisotropic pitch and its manufacture
JP2917486B2 (en) Mesoface pitch for carbon materials
JPH03167320A (en) Production of carbon fiber and graphite fiber
JPH0411024A (en) Production of carbon fiber and graphite fiber
JP2931593B2 (en) Mesoface pitch for carbon materials
JPH0418127A (en) Production of carbon fiber
JPH0418126A (en) Production of carbon fiber and graphite fiber
JPH03168296A (en) Optically anisotropic pitch and production thereof
JPH01249887A (en) Production of mesophase pitch
JP2689978B2 (en) Carbon fiber production method
JPH03227396A (en) Production of optically anisotropic pitch
JP3016089B2 (en) Ultra-low softening point, low viscosity mesophase pitch, method for producing the same, and method for producing high-strength, high-modulus carbon fiber
JPS5988923A (en) Manufacture of carbon fiber
JPH01268788A (en) Production of mesophase pitch for carbon fiber
JPS60133087A (en) Production of pitch as a starting material of carbon fiber
JPH01254797A (en) Production of mesophase pitch
JPH0148315B2 (en)