JPS59168113A - Melt-spinning of multifilaments for carbon fiber - Google Patents

Melt-spinning of multifilaments for carbon fiber

Info

Publication number
JPS59168113A
JPS59168113A JP4076583A JP4076583A JPS59168113A JP S59168113 A JPS59168113 A JP S59168113A JP 4076583 A JP4076583 A JP 4076583A JP 4076583 A JP4076583 A JP 4076583A JP S59168113 A JPS59168113 A JP S59168113A
Authority
JP
Japan
Prior art keywords
pitch
spinning
melt
hole
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4076583A
Other languages
Japanese (ja)
Inventor
Tadayuki Matsumoto
忠之 松本
Michihiro Shiokawa
塩川 満弘
Chuichi Endo
遠藤 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4076583A priority Critical patent/JPS59168113A/en
Publication of JPS59168113A publication Critical patent/JPS59168113A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:When melt-spinning of pitch is effected with a spinneret with a plurality of holes, a specific pressure is applied to the back side of the holes to enable stable and high-speed producion of multifilaments of pitch carbon fibers with high uniformity of less thickness fluctuation. CONSTITUTION:When pitch is melt-spun by means of a spinneret with 500 or more orifices, a pressure higher than 2.0kg/cm<2>.G is applied to the back side of the spinneret holes. EFFECT:The process according to the present invention permits successful spinning even at a high speed over 1,000m/min without bubbles caused by pyrolysis, and yarn breakage.

Description

【発明の詳細な説明】 本発明は単糸繊度の変動率が小さいピッチ系繊維、特に
ピッチ系炭素繊維マルチフィラメントを製造するための
溶融紡糸方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a melt-spinning method for producing pitch-based fibers, particularly pitch-based carbon fiber multifilaments, with a small variation rate of single filament fineness.

従来からピッチを溶融紡糸して炭素繊維を得る方法につ
いては、静止型口金を使用して溶融ピッチを押出す方法
や回転遠心紡糸による方法などが知られている。しかし
ながら、かかる技術はいずれも紡糸原液としてのピッチ
や炭化、黒鉛化における問題点に注目したものばかりで
あり、溶融紡糸された糸特性と後の炭化繊維、黒鉛化繊
維との関係についてまで検討されていない。
Conventionally, known methods for obtaining carbon fibers by melt-spinning pitch include a method of extruding molten pitch using a stationary spinneret, a method using rotary centrifugal spinning, and the like. However, all of these techniques focus on the pitch, carbonization, and graphitization of the spinning dope, and have not even examined the relationship between the properties of melt-spun yarn and the subsequent carbonized and graphitized fibers. Not yet.

寸なわら、ビッヂ(3未 〈1)溶融粘度の温度依存性が極めて大ぎく、わずかの
温度変化でも活劇が大きく変わるものである。
However, the temperature dependence of the melt viscosity of Vidge (3-1) is extremely large, and even a slight change in temperature can greatly change the performance.

(2)ビッヂは混合物であるので粘度ムラが生じ易く、
特に光学的貸方性成分の発達したビツヂでは、光学的等
方性な部分との間に粘度の差があり、粘度ムラを生ずる
傾向が強い。
(2) Since vidge is a mixture, it tends to have uneven viscosity.
In particular, in bits with a developed optically creditable component, there is a difference in viscosity between them and the optically isotropic part, and there is a strong tendency for viscosity unevenness to occur.

(3)ビッグを溶融紡糸する温度でば、通常粘度が10
〜300ボイズと極めて低く、通常の溶融紡糸方法では
単糸繊度の変動が大きく、均一な糸を1qることが困難
である。
(3) At the temperature at which Big is melt-spun, the viscosity is usually 10
The yarn size is extremely low at ~300 voids, and with ordinary melt spinning methods, the single yarn fineness varies greatly, making it difficult to produce 1 q of uniform yarn.

などの問題点を有づ”ることか知られている。It is known that there are some problems such as:

従来かかるピッチから炭素繊維を製造する場合は通常単
孔口金を用いて20 III/min ljj度の極め
て低速で溶融紡糸されていたものであるが、かかる方法
は上記ビッヂの諸問題からいたし方4丁いものと考えら
れていた。しかしかかる従来技術において単糸繊度の変
動を小さくし均一化Jる意図はみられず、したがってい
ずれも単糸繊度の変動率は大であった。かかる繊維はフ
ィラメン1〜中の低繊度の繊維部分が紡糸以降の工程で
糸切れや毛羽になり易く、また糸切れを防ぐIこめに繊
度を人きくJると、不融化が不光分になったり、断面積
が大きいことに起因しC強度が低くなる等の欠点があっ
たが、かかる糸特↑1を犠牲にしてピッチ系炭素繊維を
製造していたのが実状である。
Conventionally, when manufacturing carbon fiber from such pitch, melt spinning was usually performed at an extremely low speed of 20 III/min ljj degrees using a single hole spinneret, but this method was developed due to the problems of the above-mentioned bitch 4. It was considered a good thing. However, in such conventional techniques, there is no intention to reduce the variation in single yarn fineness and make it uniform, and therefore, in all cases, the fluctuation rate of single yarn fineness is large. In such fibers, the low-fineness fiber portions of filaments 1 to 1 are likely to break or fluff during the spinning and subsequent processes, and if the fineness is adjusted to prevent yarn breakage, the infusibility will become the infusibility. However, the actual situation is that pitch-based carbon fibers have been manufactured at the expense of such yarn properties ↑1.

かかる繊度斑は浴融紡糸Jるフィラメン1〜の数が多い
程重要となり、実用的なレベルでピッチ系1[のマルチ
フィラメン1〜は製造されていない。
Such unevenness in fineness becomes more important as the number of bath-melt spun filaments increases, and pitch-based multifilaments have not been produced on a practical level.

本発明者らはかかる技術的背景に鑑み、ピッチからm 
度瑳の小さいマルチフィラメン]へを工業的に生産する
技術について鋭意研究した結果、吐出孔背面圧と繊度の
変動率の間に関連性があり、かつマルチフィラメントて
゛ある程その関連性が大きいことを究明し、本発明に到
達したものである。
In view of this technical background, the present inventors
As a result of intensive research on the technology for industrially producing multifilamen with small filaments, we found that there is a relationship between the back pressure of the discharge hole and the fluctuation rate of fineness, and that the relationship becomes stronger as the number of multifilaments increases. The present invention was achieved by investigating the following.

すなわら本発明は、ピッチを多ホールロ金を用い溶融紡
糸するに際し、I!を出孔背面圧が2.0KO/cm2
 ・Gを越える条件下で溶融紡糸することを特徴とする
ピッチ系炭素繊維用マルチフィラメントの溶融紡糸方法
である。
That is, in the present invention, when melt-spinning pitch using multi-hole gold, I! The back pressure of the exit hole is 2.0KO/cm2
- A method for melt spinning multifilament for pitch-based carbon fibers, which is characterized by performing melt spinning under conditions exceeding G.

本発明はかかる構成を採用したことにより、はじめて繊
度変動率の小さいビッヂ系炭素繊眉1を、マルチフィラ
メン1への形で安定1ノで1乗的に製造し得たのである
。特に本発明によれば、200小−ル以上さらには50
0小−ル以十という多ホールロ金を使用しくも、イfお
安定して均一なピッチ系繊組を得ることか可能て゛ある
という特徴を発揮する。
By employing such a configuration, the present invention has been able to produce for the first time the bitty-based carbon fiber 1 with a small variation in fineness in the form of a multifilament 1 in a stable and linear manner. In particular, according to the present invention, it is possible to
Even if a multi-hole metal from 0 to 10 is used, it is possible to stably obtain a uniform pitch type fiber.

本発明でいう【11出孔背面11とは、溶融ピップの一
つの流れが、各口金孔に分配される分岐部と、通常は大
気圧である[1金叶出孔出[1部どの圧力差で定義され
る。ピッチGよ通常の高分子と異なり非常に多種類の化
合物から<Tる混合物であり、通常の高分子に比べて粘
度の均一性が低い−に、溶融紡糸時の粘度は300ボイ
ズ以下とQXめて低く、わずかな圧力の変動があっても
、各吐出孔間に流れの不均一化を生じ易い。しIこがっ
てピッチの溶融紡糸においては上記した吐出孔背面圧を
高くして、各田川孔間の流れの安定化a−夕よび均一化
を行なうことが極めて重要である。
In the present invention, [11 outlet back surface 11] refers to a branch part where one flow of melt pip is distributed to each nozzle hole, and a branch part where one flow of melt pip is distributed to each nozzle hole. Defined by difference. Unlike ordinary polymers, Pitch G is a mixture of a very wide variety of compounds, and its viscosity is less uniform than ordinary polymers. Even if the pressure is extremely low and there is a slight variation in pressure, non-uniformity of flow is likely to occur between the discharge holes. Therefore, in pitch melt spinning, it is extremely important to increase the above-mentioned discharge hole back pressure to stabilize and equalize the flow between each Tagawa hole.

3− すなわち本発明はピッチを溶融紡糸する際、吐出孔背面
圧が2.0Kg/cm2・Gを越える条件、好ましくは
2.2Kg/cm2− G以上、特に3゜0tl/cm
2 ・G以上である条件を採用することが必須要件であ
る。
3- That is, in the present invention, when melt-spinning pitch, the discharge hole back pressure exceeds 2.0 Kg/cm2-G, preferably 2.2 Kg/cm2-G or more, particularly 3°0 tl/cm.
2. It is essential to adopt the condition of G or higher.

かかる吐出孔背面圧以下でピッチを溶融紡糸すると、紡
糸された繊維の繊維的繊度は変動率の大きいものとなり
、特にマルチフィラメントではその繊維間変動率はさら
に増大し、均質な炭素繊維を形成することができない。
When pitch is melt-spun at a pressure lower than the back pressure of the discharge hole, the fibrous fineness of the spun fibers has a large fluctuation rate, and especially in the case of multifilament, the inter-fiber fluctuation rate further increases, forming a homogeneous carbon fiber. I can't.

本発明において、吐出孔背面圧を高くする手段として、
口金孔径を小さくする方法や口金孔長を長くする方法、
口金孔に至るまでの分配管での圧損を大ぎくする方法な
どを好ましく適用することができる。 − ピッチ系炭素繊維においては通常30μ以下の繊維径を
有するものが炭化後の糸特性の上から好ましいが、その
ために単孔当りの吐出■を小さくすれば、繊度変動率は
さらに大きくなるが、本発明の適用により、繊維内およ
び繊維間の繊度変動−4= のいずれをも著しく低減し得る。
In the present invention, as a means for increasing the discharge hole back pressure,
How to reduce the diameter of the mouthpiece hole, how to lengthen the length of the mouthpiece hole,
A method of increasing the pressure loss in the distribution pipe up to the mouth hole can be preferably applied. - Pitch-based carbon fibers having a fiber diameter of 30μ or less are usually preferable from the viewpoint of yarn properties after carbonization, but if the discharge per single hole is made smaller, the fineness variation rate will become even larger; By applying the present invention, both the intra-fiber and inter-fiber fineness variations -4= can be significantly reduced.

しかしながら極細の口金孔径、たとえば0.1mm以下
である場合はピッチの不融性異物による口金詰り欠点が
発生し易<濾過を強化りる等の対策を必要とする。特に
マルチフィラメントの場合にはかかる欠点が発生しゃ覆
いので、孔径が0.1mmを越える口金を選択するのが
好ましい。
However, when the diameter of the cap hole is extremely small, for example, 0.1 mm or less, the defect of the cap clogging due to infusible foreign matter in the pitch is likely to occur, requiring countermeasures such as strengthening filtration. Particularly in the case of multifilaments, such defects are likely to occur, so it is preferable to select a cap with a hole diameter of more than 0.1 mm.

本発明の[1金は多ホールであれば、何ホールのものC
も適用できるが、通常100ホール以上、好ましくは2
00小−ル以上、更に好ましくは500ボール以−Lの
ものが適用される。かかる多ボールロ金において、本発
明の上記吐出孔背面圧は各ホールに均一41ピツチの流
れを形成する」二で極めて重要な要件である1゜ 本発明により、極めC低粘度たとえば20〜300ボイ
ズというピッチをもすぐれた均一性の下にマルチフィラ
メン1〜として、工業的に生産しjするのである。
[1 gold of the present invention, if there are many holes, C
can also be applied, but usually 100 holes or more, preferably 2
00 small balls or more, more preferably 500 balls or more. In such a multi-ball metal, the back pressure of the discharge hole of the present invention forms a uniform 41-pitch flow in each hole, which is an extremely important requirement. The multifilaments 1 to 1 are industrially produced with excellent pitch uniformity.

なお、本発明にa3いて、原料であるピッチならびに紡
糸条件を選択することにより、ランダム構造を右する繊
維やラジアル構造を有する繊維を必要に応じて形成する
ことができる。
In addition, according to the present invention, fibers having a random structure or fibers having a radial structure can be formed as necessary by selecting the pitch as a raw material and the spinning conditions.

たとえば光学的異方性ピッチを溶融紡糸する場合に、口
金吐出孔部分において、(1)式で示される口金孔内の
ズリ速度γを550sec−1以下とし、かつ下記(2
)式で示される配向形成パラメータfを90以上として
溶融紡糸する方法を(jf用するとランダム構造を右づ
るマルチフィラメントが得られる。
For example, when melt-spinning an optically anisotropic pitch, the shear velocity γ in the die hole shown by equation (1) is set to 550 sec-1 or less in the die discharge hole portion, and the following (2
) A multifilament with a random structure can be obtained by using a method of melt spinning with an orientation forming parameter f of 90 or more (jf).

γ−32(:)/π[)3・・・・・・・・・・・・(
1)f−γf[・・・・・・・・・・・・・・・・・・
・・・・・・(2)[Q:ピッチ流Mi (Cm3/s
ec )D:口金孔径(c…) 1 :口金孔内平均滞留時間(sea)]なお上記式の
口金孔内平均滞留時間(は下記(3)式より求める。
γ-32(:)/π[)3・・・・・・・・・・・・(
1) f−γf[・・・・・・・・・・・・・・・・・・
・・・・・・(2) [Q: Pitch flow Mi (Cm3/s
ec) D: Cap hole diameter (c...) 1: Average residence time in the cap hole (sea)] The average residence time in the cap hole (sea) in the above formula is determined from the following equation (3).

を−πD2M/4Q・・・・・・・・・(3)「α:1
」合孔の長さくCm) ] かかる方法におい−C、ズリ速度γが2505ec−1
以下にり好ましくは150sec−を以下で、配向形成
パラメータfが50以下である条イ1を選択ターること
により、ざらに高度にランダム配向された構造のマルチ
フィラメントが安定して得られる。
−πD2M/4Q・・・・・・・・・(3) “α:1
"Length of the matching hole Cm)] In this method, the shear rate γ is 2505ec-1
By selectively selecting a strip 1 having an orientation formation parameter f of 50 or less for preferably 150 seconds or less, a multifilament having a highly randomly oriented structure can be stably obtained.

また上記ズリ速度γを550sec −1以−トとし配
向形成パラメータ[を100以上の条件を採用するとラ
ジアル配向の11iHを形成することができる。
Further, if the above-mentioned shear rate γ is set to 550 sec -1 or higher and the orientation formation parameter [ is set to 100 or higher, 11iH with radial orientation can be formed.

ラジアル配向させる場合、更にズリ速度γは650se
c−を以上、配向形成パラメータfは140以上の条1
′1を選択′リ−ることにより、ざらにラジアル配向度
の高い繊維が形成される。
In the case of radial orientation, the shear speed γ is further 650 se
c- or more, and the orientation formation parameter f is 140 or more.
By selectively selecting '1', fibers with a roughly high degree of radial orientation are formed.

かかるラジアル椙成糸は弾性率、熱伝導性、電気伝導性
などの面に優れた性能を発揮し、一方ランダム構造糸は
強欧、弾性率の面で゛(偏れた性能を有している。
Such radial silk yarn exhibits excellent performance in terms of elastic modulus, thermal conductivity, electrical conductivity, etc., while random structure yarn exhibits excellent performance in terms of elasticity and elastic modulus. There is.

かかるラジアルならびにランダム構造の繊維について顕
微鏡写真図で説明すると、第1ならびに2図のa−Cは
、それぞれ紡糸直後、不融化後、黒鉛化後における8繊
維のそれぞれの状態7を示す7− もので、第1図はラジアル構造を右する繊維の例で1典
型的なマルタ十字模様がli!察される。なお図のCは
かかる繊維を黒鉛化したものであり、繊維の一部が開裂
欠損した状態がよくわかる。第2゛  図a〜Cはラン
ダム構造を有する炭素41雑の例であるが、いずれにし
てもかかる構造が紡糸時から黒鉛化に至るまでの全ての
段階において繊維を支配していることが判明づ−る。か
かる現象はいずれも偏光顕微鏡下でカラーで観察される
。たとえば第1図aの紡糸直後の繊維を偏光顕微鏡で観
察−リ−る際に、鋭邑検板を検板の速度が小さい方の光
の撮動方向を第1.3象限として仲人すると、第1.3
象限が青色、第2.4象限が黄色となって観察される。
To explain fibers with such radial and random structures using micrographs, a-C in FIGS. 1 and 2 show the respective states 7 of the eight fibers immediately after spinning, after infusibility, and after graphitization, respectively. Figure 1 shows an example of a fiber with a radial structure, and a typical Maltese cross pattern is li! be noticed. Note that C in the figure shows such a fiber graphitized, and it can be clearly seen that some of the fibers are cleaved and damaged. 2. Figures a to C are examples of carbon-41 miscellaneous materials that have a random structure, but in any case, it has been found that this structure dominates the fiber at all stages from spinning to graphitization. Zuru. All such phenomena are observed in color under a polarizing microscope. For example, when observing the fiber immediately after spinning as shown in Figure 1a with a polarizing microscope, if we use the Eimura test plate with the direction in which light is captured where the speed of the test plate is smaller as quadrant 1.3, then Section 1.3
The quadrant is observed as blue and the 2.4th quadrant as yellow.

ま7j第1図aの場合、試料を回転させても観察される
邑の位置関係が変化しないことから内部の光学的置方性
成分が放射状に配向していることも判明するものである
In the case of FIG. 1a, it is also clear that the internal optical orientation components are radially oriented because the observed positional relationship of the ridges does not change even when the sample is rotated.

なお、本発明において非円形の口金吐出孔を採用する場
合は、−F記口金孔径りは同一断面積の円形に換算した
時の直径を適用する。また本発明に8− お(]るズリ速度γは口金吐出孔部分の流路の断面積の
最も小ざい部分の流路径で、また平均滞留時間1は吐出
孔部分の流路中の平均滞留時間で計量する。すなわち該
流路はピッチを吐出する外部へ開孔した最小断面積以降
の流路部分を意味し、通常の口金にお()る導入部分は
含まない。
In addition, in the case where a non-circular mouthpiece discharge hole is employed in the present invention, the diameter of the mouthpiece hole diameter indicated by -F is applied when it is converted to a circular shape having the same cross-sectional area. In addition, according to the present invention, the shear velocity γ is the flow path diameter of the smallest cross-sectional area of the flow path in the nozzle discharge hole portion, and the average residence time 1 is the average residence time in the flow path in the discharge hole portion. It is measured in time.In other words, the flow path means the flow path portion beyond the minimum cross-sectional area that opens to the outside through which pitch is discharged, and does not include the introduction portion that is inserted into a normal mouthpiece.

かかる方法によると、ランダム構造あるいはラジアル構
造の炭素繊維マルチフィラメントを工業的なレベルで経
済的に製造し得る。
According to this method, carbon fiber multifilaments having a random structure or a radial structure can be produced economically on an industrial level.

なお土配光学的胃方性ピッチとはピッチ中に光学異方性
成分が60%以上、好ましくは75%以上、ざらに好ま
しくは90%以l]含有されているものをいう。
The term "optically gastrotropic pitch" refers to a pitch containing an optically anisotropic component of 60% or more, preferably 75% or more, more preferably 90% or more.

ビッヂは計量ポンプや不活性気体による加圧押出しもで
きるが、計量ポンプによる押出しが好ましく適用される
。特に多数の吐出孔を右づる[]金を使用して均一なマ
ルヂフィラメン1へを形成する場合や)濾過工程を通し
て田川する場合に極めてイj効である。
Vidge can also be extruded under pressure using a metering pump or an inert gas, but extrusion using a metering pump is preferably applied. This is particularly effective when forming a uniform multifilament 1 using a large number of discharge holes or when passing through a filtration process.

本発明の方法によって得られる紡糸侵の単繊維径は30
μ以下が適当であり、好ましくは5〜・30μざらには
7〜20μの範囲にあるのが、糸切れや強度の点から好
ましいが、かかる径以外でも効果がある。
The single fiber diameter of the spun fiber obtained by the method of the present invention is 30
A diameter of less than μ is appropriate, and preferably a diameter of 5 to 30 μm, more preferably a range of 7 to 20 μm, from the viewpoint of thread breakage and strength, but diameters other than this range are also effective.

本発明の方法によれば従来達成され得なかった高いスピ
ードで、単糸繊度の変動の小さい、均一なマルヂフィラ
メン1へを紡糸することができる。
According to the method of the present invention, it is possible to spin a uniform multifilament 1 with small fluctuations in single filament fineness at a high speed that could not be achieved conventionally.

たとえば160m/n+in以上、さらには200my
osin以上、300 m/min 以J−トイウ高I
I/j糸が可能であり、条件によっては1000m/m
in以上という超スピードで紡糸することも可能である
。しかもかかる高速紡糸においても均一な径を有する連
続マルヂフィラメン1〜を容易に製造することができる
For example, 160m/n+in or more, or even 200my
Osin or higher, 300 m/min or higher
I/j yarn is possible, depending on conditions 1000m/m
It is also possible to perform spinning at ultra-high speeds such as in or more. Furthermore, even in such high-speed spinning, continuous multifilaments 1 to 1 having a uniform diameter can be easily produced.

本発明はさらに熱分解ガスによる発泡、糸切れ欠点を消
失する効果を有する。ピッチを高温に加熱すると熱分解
ガスを発生するが、このガスはピッチ繊維中に空隙を形
成して強度を下げたり、紡糸時に発泡して糸切れを起1
欠点を有する。本発明者らはかかる欠点が、吐出孔背面
圧が2.0Kg/cm2 ・Gを越えるど消失づる傾向
を有することを見出しだ。特に光学的置方1/1ピッヂ
などの更に高温で溶融紡糸する必要がある場合には極め
て有効である。
The present invention also has the effect of eliminating foaming and thread breakage defects caused by pyrolysis gas. When pitch is heated to high temperatures, it generates pyrolysis gas, which can form voids in the pitch fibers and reduce its strength, or foam during spinning and cause yarn breakage.
It has its drawbacks. The inventors of the present invention have found that this drawback tends to disappear as the back pressure of the discharge hole exceeds 2.0 kg/cm2.G. This is particularly effective when it is necessary to perform melt spinning at a higher temperature, such as when optically placed 1/1 pitch.

かく【ノてifFられるマルチフィラメントは、ついで
通常の方法により不融化処理され、炭化、黒鉛化される
。不融化処理としてはたとえばM累の存在下、通常空気
中で250〜420℃で酸化させる方法が適用できる。
The thus-formed multifilament is then treated to be infusible, carbonized, and graphitized by a conventional method. As the infusibility treatment, for example, a method of oxidizing in the presence of M complex in normal air at 250 to 420°C can be applied.

また酸素どしてAシンやNo2などの酸化性の気体を使
用覆ることも、不融化処理の効率の点から好ましい。か
かる不融化処理された繊維はついで炭化、黒鉛化される
が、かかる方法も通常採用される方法を適用で−ること
ができる。かかる炭化処理としてはたどえば真空または
不活性気体雰囲気中で800・〜1700℃に加熱する
方法があり、また黒鉛化処理どしてはたとえば真空また
は不活性気体雰囲気中で1700℃以上に加熱処理する
方法がある。
It is also preferable from the viewpoint of the efficiency of the infusibility treatment to use an oxidizing gas such as A-syn or No2 instead of oxygen. The fibers subjected to such infusibility treatment are then carbonized and graphitized, and any commonly used method can be applied to this method. Such carbonization treatment includes heating to 800-1700°C in vacuum or inert gas atmosphere, and graphitization treatment includes heating to 1700°C or higher in vacuum or inert gas atmosphere. There are ways to handle it.

以下本発明を実施例を挙げてさらに詳細に説明する。The present invention will be described in more detail below with reference to Examples.

11− なお実施例中の測定方法は以下に示す方法による。11- In addition, the measurement method in the examples is based on the method shown below.

[光学的異方性] 試料をエボギシ系樹脂に包埋したあと、常法により研磨
した。研磨面をL eitZ社製0RTHOPLAN顕
微鏡を用いて反則偏光法により観察した。
[Optical Anisotropy] After embedding the sample in Evogishi resin, it was polished by a conventional method. The polished surface was observed by reverse polarization using an 0RTHOPLAN microscope manufactured by LeitZ.

光学的異方性成分の存在旦は、前記した偏光下で観察し
た時の等方性部分と異方性部分の面積化から求めた。
The presence of an optically anisotropic component was determined from the isotropic portion and anisotropic portion when observed under polarized light as described above.

[キノリンネ溶分] J Is−に−2425に規定される遠心分離法と一過
法とを組合せた方法で行なった。
[Quinoline solution] This was carried out by a method combining the centrifugation method and the transient method specified in JIS-2425.

[ガラス転位温度) P erkin −E 1mer?l製08G−2を用
いて窒素雰囲気中で測定した。試料を290℃まで加熱
後、室温まで冷却し、再度昇温して測定することにより
、脱水ピーク等ベースラインを乱す要因を除いて測定し
た。
[Glass transition temperature] Perkin-E 1mer? The measurement was carried out in a nitrogen atmosphere using 08G-2 manufactured by Ishikawa. After heating the sample to 290° C., the sample was cooled to room temperature, heated again, and measured to remove factors that disturb the baseline, such as dehydration peaks.

[元素分析] 柳本製作所製CHNコーダーMT−3型を使用12− して、試料分解炉900−950 ℃、酸化炉850℃
、還元炉550℃、ヘリウム流速180mQ/n+in
の測定条件の下で測定した。
[Elemental analysis] Using CHN coder MT-3 model manufactured by Yanagimoto Seisakusho, sample decomposition furnace 900-950°C and oxidation furnace 850°C
, reduction furnace 550℃, helium flow rate 180mQ/n+in
Measured under the following measurement conditions.

[強伸度測定]   ゛ J l5−R−7601のに規定される方法に準じた。[Strong elongation measurement] According to the method specified in J.I.5-R-7601.

繊維の直径は、強伸度測定部に隣接した部分を走査型電
子顕微鏡を用いて測定した。また開裂した繊維は横断面
の顕微鏡写真hr rら面積を求めた。
The fiber diameter was measured using a scanning electron microscope at a portion adjacent to the strength/elongation measuring section. Further, the area of the cleaved fibers was determined from a microscopic photograph of the cross section.

[単糸I!i度の変動率] 紡糸後のマルチフィラメン1〜から30本の単糸をとり
出し、走査型電子顕微鏡を用いて各単糸の直径を測定し
、常法により変動率(CV%)を計算した。
[Single yarn I! Variation rate of i degrees] Take out 30 single filaments from 1 to 30 single filaments after spinning, measure the diameter of each single filament using a scanning electron microscope, and calculate the variation rate (CV%) using a conventional method. did.

実施例1 市販の石油ピッチを300℃で200メツシユのガラス
ど一ズを用いて加圧−過し、ついで310℃、1011
1111H(lの減圧下で30分間処理を行ない低沸点
成分を除去した。得られたピッチを偏光顕微鏡で1!察
したところ実質的に光学的等方性のものであった。この
ビッヂを用いて各種孔径の5300ホール目金を使用し
、紡糸温度280℃で紡糸速度を変更し−C平均直径1
0〜13μのピッチ繊維を得た。結果を表1に示す。
Example 1 Commercially available petroleum pitch was pressure-filtered at 300°C using a 200 mesh glass tube, and then at 310°C and 1011°C.
1111H (L) for 30 minutes to remove low boiling point components. When the obtained pitch was observed with a polarizing microscope, it was found to be substantially optically isotropic. Using 5300-hole eyelets with various hole diameters, the spinning temperature was 280°C and the spinning speed was changed to obtain a -C average diameter of 1.
Pitch fibers of 0-13μ were obtained. The results are shown in Table 1.

表  1 0  金 No、  孔径 孔長  背面圧 速度  変動率1 
  0.20   +、20  6,30  600 
  312  0.30  0,4(10,41783
0,303,10’2,20      324   
0.30  3.10  0,37  100   8
35  0.50  8,50  2.20 1000
   36表中、 孔径:[:1金孔径(mm) 孔長:ロ金孔長(mm) 速度:紡糸速度(lIl、/l1lin )背面圧:吐
出孔背面圧(Kg/cm2・G)変動率:単糸繊度変動
率(%) NO,1,3,5の本発明例は吐出孔背面圧が2.2f
ll/cm2 ・G双子であり、変動率の小さい糸が得
られた。一方比較例のNO12,4はいずれも吐出孔背
面圧が小さずぎて均一な糸は得られなかった。
Table 1 0 Gold No., hole diameter hole length back pressure speed fluctuation rate 1
0.20 +, 20 6,30 600
312 0.30 0,4 (10,41783
0,303,10'2,20 324
0.30 3.10 0.37 100 8
35 0.50 8,50 2.20 1000
In Table 36, Pore diameter: [:1 Gold hole diameter (mm) Hole length: Gold hole length (mm) Speed: Spinning speed (lIl, /l1lin) Back pressure: Discharge hole back pressure (Kg/cm2・G) Variation rate :Single yarn fineness variation rate (%) In the present invention examples of NO, 1, 3, and 5, the discharge hole back pressure is 2.2f
ll/cm2・G twin yarn with a small fluctuation rate was obtained. On the other hand, in Comparative Examples Nos. 12 and 4, the back pressure of the discharge hole was too small and uniform threads could not be obtained.

実施例2 軟化点が80℃のコールタールビッヂを窒素雰囲気中で
約1時間′h14プて410℃まで昇温し溶融させた後
、3 Q rl〕m r tt!拌しながら410℃で
12時間熱処理した。ついで380℃で窒素加圧し20
0メツシコのカラスど−ズを用いて不溶分を9濾過によ
り除去した後、420℃、5mmHgr減圧処理を行な
い低沸点成分を除去した。
Example 2 Coal tar bidge with a softening point of 80°C was heated in a nitrogen atmosphere for about 1 hour to raise the temperature to 410°C and melt it. Heat treatment was performed at 410° C. for 12 hours while stirring. Then, nitrogen was pressurized at 380°C for 20
Insoluble matter was removed by filtration using a glass door of 0.0 ml, followed by vacuum treatment at 420° C. and 5 mm Hgr to remove low-boiling components.

得られたピッチをエポキシ樹脂に包埋して研磨後、反射
偏光顕微鏡で観察した結果、約90%以上が光学的異方
性成分であった。光学的異方性組織は大ぎな流れ状を示
した。熱処理ピッチの特性は、ギノリン不溶分63W[
%、軟化点340℃、ガラス転位温度195℃であり、
元素分析結果は、炭素93W[%、水素3.7wt%、
窒素’i、owt%−1!、1− であった。
After embedding the obtained pitch in an epoxy resin and polishing it, observation using a reflective polarizing microscope revealed that about 90% or more of the pitch was an optically anisotropic component. The optically anisotropic structure showed a large flow shape. The characteristics of the heat-treated pitch are that the gynoline insoluble content is 63W [
%, a softening point of 340°C, a glass transition temperature of 195°C,
The elemental analysis results were: carbon 93W[%, hydrogen 3.7wt%,
Nitrogen'i, owt%-1! , 1-.

この熱処理ピッチを用いて、孔径、孔長を変更した各種
の口金を使用し、紡糸温度380℃、口金表面温度35
5℃で溶融紡糸し、各種の糸速で引取り、平均直径が1
2μの各種の糸を得た。
Using this heat-treated pitch, various spindles with different hole diameters and hole lengths were used, and the spinning temperature was 380°C and the spinneret surface temperature was 35°C.
Melt-spun at 5℃, taken off at various yarn speeds, with an average diameter of 1
Various threads of 2μ were obtained.

溶融ピッチは口金背面で各吐出孔に対応する流れに分配
した。なお得られた紡出糸の苦爪は1゜3(1/cm3
であり、溶融ピッチの密度は1.1g/′Cll13で
あった。
The molten pitch was distributed at the back of the die into flows corresponding to each discharge hole. The resulting spun yarn has a hardness of 1°3 (1/cm3).
The density of the molten pitch was 1.1 g/'Cll13.

この糸を熱風循環型オーブンに入れ、空気中で不融化処
理した。不融化処理条件は、まず室温から150℃に約
5分間で昇温し、150℃で昇温開始から15分間保持
した。ついで150〜310℃まで昇温速度1℃/mi
nで昇温し、310℃に30分間保持して不融化を完了
した。この不融化糸を室温から1200℃まで5℃7m
1nで昇温して炭化し、さらに2500℃で黒鉛化した
This yarn was placed in a hot air circulation oven and subjected to infusibility treatment in air. The conditions for the infusibility treatment were as follows: First, the temperature was raised from room temperature to 150°C for about 5 minutes, and the temperature was maintained at 150°C for 15 minutes from the start of the temperature rise. Then, the temperature was increased at a rate of 1°C/mi from 150 to 310°C.
The temperature was raised at 310° C. for 30 minutes to complete infusibility. This infusible thread was heated from room temperature to 1200℃ for 5℃ and 7m.
The temperature was raised to 1n to carbonize, and the mixture was further graphitized at 2500°C.

得られた黒鉛化糸について、横断面の光学的異方性構造
や強度特性などを表2にまとめた。
Table 2 summarizes the cross-sectional optical anisotropic structure, strength characteristics, etc. of the graphitized yarn obtained.

本発明例のN006.9では吐出孔背面圧が2゜ 16
− 2K(]/Cm2 ・0以上Cあり、中糸繊度の変動率
の小ざい均一な糸が得られたが、一方比較例のNo、7
、E3.101.11は11出孔背而I[が低く均一な
糸(よ14られなかった。
In the case of N006.9 according to the present invention, the discharge hole back pressure is 2° 16
-2K(]/Cm2 ・0 or more C was obtained, and a uniform yarn with a small fluctuation rate of medium yarn fineness was obtained, but on the other hand, comparative example No. 7
, E3.101.11 has 11 holes and has a low uniform thread (14 was not formed).

実施例3 実施例2で用いた光学内置方性ピッチを、第3図に示す
口金吐出孔2の上流にアルミ製分配板1を有する300
ホールロ金3を使用して、紡糸温度370℃、口金表面
温度345℃で紡糸速度600 m、、/minとした
以外は実施例2と同様にして黒鉛化糸を得た。溶融紡糸
後の糸の密度は1.3g/′Cm3、溶融ピッチの密度
は1.19/cn+3であった。
Example 3 The optical internal orientation pitch used in Example 2 was changed to 300 with an aluminum distribution plate 1 upstream of the mouthpiece discharge hole 2 shown in FIG.
A graphitized yarn was obtained in the same manner as in Example 2, except that Whole Rokin 3 was used, the spinning temperature was 370°C, the spinneret surface temperature was 345°C, and the spinning speed was 600 m/min. The density of the yarn after melt spinning was 1.3 g/'Cm3, and the density of the melt pitch was 1.19/cn+3.

用いた口金は吐出孔径0.50mm、孔長4.5Qll
1mであり、ズリ速度Tが110sec−+ 、平均滞
留時間tが0.66sec、配向形成パラメータfが8
9であった。口金上流側の分配板から吐出孔に至る流路
4の形状は直径1.On+n+、良さ117n+mであ
り、吐出孔背面圧は2.1 Kり 7cm2−Gであっ
た。
The nozzle used had a discharge hole diameter of 0.50 mm and a hole length of 4.5 Qll.
1 m, the shear speed T is 110 sec-+, the average residence time t is 0.66 sec, and the orientation formation parameter f is 8.
It was 9. The shape of the flow path 4 from the distribution plate on the upstream side of the mouthpiece to the discharge hole has a diameter of 1. On+n+, the quality was 117n+m, and the back pressure of the discharge hole was 2.1K or 7cm2-G.

得られたピッチ繊維は繊度変動率が38%であり、また
2 500℃で焼成してiqられた黒鉛化糸は強[&2
2OK(1/mm2、弾性率45 ton / m11
12であり、断面を偏光下でIli!察した結果は異方
性相識がランダムに配列したものであった。
The obtained pitch fiber has a fineness variation rate of 38%, and the graphitized yarn calcined at 2500°C has a strong [&2
2OK (1/mm2, elastic modulus 45 ton/m11
12, and the cross section is Ili! under polarized light. The observed result was that the anisotropic phases were arranged randomly.

比較のために分配機1を使用せず[1金のみで同様に紡
糸を行なったところ、吐出孔背面圧は0゜8Kg/cm
” ・Gと低く、繊度変動率も60%とバラツキの大き
いものであった。
For comparison, when spinning was performed in the same manner using only 1 gold without using the distributor 1, the back pressure of the discharge hole was 0° 8 kg/cm.
・G was low, and the fineness fluctuation rate was 60%, which was highly variable.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図それぞれはラジアル4構造とランダム構造を
有する各繊維の紡糸から黒鉛化に至るまでの構造変化を
追跡した該繊維横断面の偏光顕微鏡写真図である。第3
図は本発明の1例である分配板を設置ブた例を示す。 図中aは溶融紡糸直後のグリーンファイバーと称される
繊維の横断面図、bは不融化後の繊維横断面図、Cは黒
鉛化後の繊維横断面図を示す。 また1は分配板、2は口金吐出孔、3は口金部を示す。 特許出願人   東  し  株  式  会  社2
1− 第1図
Figures 1 and 2 are polarized light micrographs of cross-sections of each fiber having a radial 4 structure and a random structure, tracing the structural changes from spinning to graphitization. Third
The figure shows an example of installing a distribution plate, which is an example of the present invention. In the figure, a shows a cross-sectional view of a fiber called green fiber immediately after melt spinning, b shows a cross-sectional view of the fiber after infusibility, and C shows a cross-sectional view of the fiber after graphitization. Further, 1 is a distribution plate, 2 is a nozzle discharge hole, and 3 is a nozzle portion. Patent applicant Toshi Co., Ltd. 2
1- Figure 1

Claims (1)

【特許請求の範囲】[Claims] ピッチを多ホールロ金を用い溶融紡糸するに際し、吐出
孔背面圧が2 、 OKCl /cm2 ・Gを越える
条件下で溶融紡糸することを特徴とする炭素繊維用マル
チフィラメントの溶融紡糸方法。
A method for melt-spinning multifilaments for carbon fibers, characterized in that when pitch is melt-spun using a multi-hole metal, the melt-spinning is performed under conditions where the back pressure of the discharge hole exceeds 2.0, OKCl/cm2.G.
JP4076583A 1983-03-14 1983-03-14 Melt-spinning of multifilaments for carbon fiber Pending JPS59168113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4076583A JPS59168113A (en) 1983-03-14 1983-03-14 Melt-spinning of multifilaments for carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4076583A JPS59168113A (en) 1983-03-14 1983-03-14 Melt-spinning of multifilaments for carbon fiber

Publications (1)

Publication Number Publication Date
JPS59168113A true JPS59168113A (en) 1984-09-21

Family

ID=12589716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4076583A Pending JPS59168113A (en) 1983-03-14 1983-03-14 Melt-spinning of multifilaments for carbon fiber

Country Status (1)

Country Link
JP (1) JPS59168113A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250226A (en) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd Production method for carbon fiber
WO2022071052A1 (en) * 2020-09-29 2022-04-07 東レ株式会社 Porous carbon fiber, gas separation composite membrane, and gas separation membrane module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62250226A (en) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd Production method for carbon fiber
WO2022071052A1 (en) * 2020-09-29 2022-04-07 東レ株式会社 Porous carbon fiber, gas separation composite membrane, and gas separation membrane module

Similar Documents

Publication Publication Date Title
Edie et al. Melt-spun non-circular carbon fibers
JPS59168127A (en) Production of carbon fiber
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber
US5437927A (en) Pitch carbon fiber spinning process
US5348719A (en) Process for producing carbon fibers having high strand strength
US5169584A (en) Method of making small diameter high strength carbon fibers
JPS60194120A (en) Production of pitch fiber
US5202072A (en) Pitch carbon fiber spinning process
JPH0545685B2 (en)
JPS62170528A (en) Carbon fiber and production thereof
JPH0781211B2 (en) Carbon fiber manufacturing method
JPS59168115A (en) Melt spinning for pitch
JPS63105116A (en) Production of carbon fiber
GB2150924A (en) Carbon fibres
JPS6278220A (en) Production of ribbon-like carbon fiber
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS59168125A (en) Production of carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPS59168124A (en) Production of carbon fiber
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JPS63175122A (en) Production of carbon fiber tow
JPH01282349A (en) Production of pitch-based carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method
JPH026620A (en) Pitch-based carbon fiber and production thereof