JPS59168115A - Melt spinning for pitch - Google Patents

Melt spinning for pitch

Info

Publication number
JPS59168115A
JPS59168115A JP4266583A JP4266583A JPS59168115A JP S59168115 A JPS59168115 A JP S59168115A JP 4266583 A JP4266583 A JP 4266583A JP 4266583 A JP4266583 A JP 4266583A JP S59168115 A JPS59168115 A JP S59168115A
Authority
JP
Japan
Prior art keywords
pitch
spinning
speed
hole
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4266583A
Other languages
Japanese (ja)
Inventor
Tadayuki Matsumoto
忠之 松本
Michihiro Shiokawa
塩川 満弘
Chuichi Endo
遠藤 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4266583A priority Critical patent/JPS59168115A/en
Publication of JPS59168115A publication Critical patent/JPS59168115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:In the melt-spinning of pitch, a buffer zone is provided so that the linear speed of the melted pitch becomes slowed down to enable stable formation of multifilaments of pitch carbon fibers without breakage, even when spinning conditions fluctuate. CONSTITUTION:When pitch is melted, extruded and taken up, the melt-spinning is effected so that the average linear speed of the pitch at the spinneret surface becomes slower than the maximum average speed in the holes and less than 1/ 1,500 of the taking-up speed. Namely, for example, a buffer or damping zone 3 is provided beneath the hole 2 so that the cross section of the zone 3 is larger than that of the hole 2 and the linear speed on the spinneret surface becomes less than 1/1,500 of the taking-up speed.

Description

【発明の詳細な説明】 本発明はビッヂ系炭素繊維マルチフィラメン]〜を安定
して製造するための溶融紡糸方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a melt spinning method for stably producing a vidge-based carbon fiber multifilament.

 従来からビッヂを溶融紡糸して炭素繊維を得る方法に
ついては、静止型口金を使用して溶融ピッチを押出す方
法や回転遠心紡糸による方法などが知られている。しか
しながら、かかる技術はいずれも紡糸原液としてのピッ
チや炭化、黒鉛化における問題点に注目したものばかり
であり、ピッチの特性と溶融紡糸との関係についてまで
検討されていない。
Conventionally, methods for obtaining carbon fibers by melt spinning pitch have been known, such as a method of extruding molten pitch using a stationary spinneret and a method using rotary centrifugal spinning. However, all of these techniques focus on pitch as a spinning dope, carbonization, and graphitization, and do not even consider the relationship between pitch characteristics and melt spinning.

すなわち、ピッチは (1)溶融粘度の温度依存性が極めて大きく、わずかの
温度変化でも粘度が大きく変わるものである。
That is, pitch has (1) extremely high temperature dependence of melt viscosity, and even a slight change in temperature causes a large change in viscosity.

(2)ピッチは混合物であるので粘度ムラが生じ易く、
特に光学的異方性成分の発達したピッチでは、光学的等
方性な部分との間に粘度の差があり、粘度ムラを生ずる
傾向が強い。
(2) Since pitch is a mixture, it tends to have uneven viscosity.
In particular, in a pitch where an optically anisotropic component is developed, there is a difference in viscosity between the pitch and an optically isotropic part, and there is a strong tendency to cause viscosity unevenness.

(3)ピッチを溶融紡糸する温度では、通常粘度が10
〜300ボイズと極めて低く、通常の溶融紡糸方法では
安定して紡糸することが回能である。
(3) At the temperature at which pitch is melt-spun, the viscosity is usually 10
The spinning rate is extremely low at ~300 voids, and stable spinning is possible with normal melt spinning methods.

などの問題点を右することが知られている。It is known to correct problems such as

従来かかるピッチから炭素11雑を製造する場合は口金
面からビッヂを吐出する際、吐出孔内での吐出線速度で
ヒップを吐出させて引取ることにより、溶融ピッチにド
ラフトをか(プて糸条を形成していた。
Conventionally, when producing carbon-11 miscellaneous materials from such pitch, when discharging the bit from the mouth surface, a draft is created in the molten pitch by discharging the hip at the discharge linear velocity within the discharge hole and taking it off. It formed a strip.

しかし前記したようにピッチは口金から吐出された直後
の溶融粘度が低く、粘度、温度、速度などの変動が起こ
りやずく、トラフ1−にJ:る応力変化により糸切れを
生じやすい。しかも口金面から吐出後の細化が急激に起
こるため、通常の吐出方法では糸切れを発生を防+l:
 することはむずかしい問題であ−)た。
However, as described above, the pitch has a low melt viscosity immediately after being discharged from the nozzle, and is susceptible to fluctuations in viscosity, temperature, speed, etc., and yarn breakage is likely to occur due to stress changes in the trough. Moreover, since thinning occurs rapidly after dispensing from the nozzle surface, thread breakage can be prevented using the normal dispensing method.
It was a difficult problem to do so.

ピッチは通常の高分子と異なり非常に多種類の化合物か
らなる混合物であり、粘度の均一性が低い上、溶融紡糸
時の粘度番よ300ボイズ以十と極めて低く、わずかイ
1圧力の変動があっても、各吐出孔間に流れの不均一化
を生じ易い。したがってピッチの溶融紡糸においては、
各吐出孔間の流れの安定化および均一化を行なうことが
極めて重要であるが、実際はかかる流れの均一化をはか
ることは困難祝されていた。
Unlike ordinary polymers, pitch is a mixture consisting of a very large variety of compounds, and its viscosity is not uniform, and the viscosity during melt spinning is extremely low, exceeding 300 voids, and only a small change in pressure occurs. Even if there is, non-uniformity of flow is likely to occur between each discharge hole. Therefore, in pitch melt spinning,
Although it is extremely important to stabilize and equalize the flow between the discharge holes, in reality it has been difficult to achieve such a uniform flow.

本発明者らはかかる技術的背禁に鑑み、ピッチの溶融紡
糸を安定して工業的に達成する技術について鋭意研究し
た結宋、口金面で緩衝領域を形成することが極めて有効
である事実を究明し、本発明に到達したものである。
In view of such technical limitations, the present inventors conducted extensive research on the technology to stably and industrially achieve pitch melt spinning, and discovered the fact that it is extremely effective to form a buffer region on the spindle surface. This is what we have investigated and arrived at the present invention.

すなわち本発明は、ピッチを溶融し、口金から吐出させ
た後引取るに際し、口金面にJ5りる溶融ピッチの平均
線速度を、口金孔内の最大平均流速より小さく、かつ引
取り速度の1/1500以下の(1f1どり−ることを
特徴とするピッチの溶融紡糸方法である。 本発明(よ
かかる禍成を採用したことにより、はじめて物理的条件
の変動に対して糸切れもなく極めて安定(C溶融紡糸で
き、ピッチ系炭素繊維をマルチノイラメン1〜の形で安
定して工業的にL!if造し得たの(・ある。
That is, in the present invention, when the pitch is melted and discharged from the nozzle and then taken off, the average linear velocity of the molten pitch on the nozzle surface is set to be smaller than the maximum average flow velocity in the nozzle hole and 1 of the take-up speed. This is a melt spinning method with a pitch of /1500 or less. (C melt spinning was possible, and pitch-based carbon fiber could be stably produced industrially in the form of multi-noiramen 1.

本発明でいう口金面での溶融ピッチの平均線速葭は溶融
ピッチの流出と口金面での溶融ピッチの流れの断面積か
ら求めることができるが、この線速度が口金面で小さく
なる領域を積極的に形成するところに本発明の重要なポ
イン1〜がある。すなわちこの領域が種々の変動に対し
て緩衝作用を発揮J−るのである。具体的には口金面に
、吐出断面積より大きな断面積を右する溶融ピッチの溜
りを形成する方法があげられる。この溜りの大きさは、
口金面での線速度が引取り速度の1/1500以下、好
ましくは1 / 2000以下、ざらにこのましくは1
15000以下になる断面積を有する必要がある。
In the present invention, the average linear velocity of the molten pitch at the mouth surface can be determined from the outflow of the molten pitch and the cross-sectional area of the flow of the molten pitch at the mouth surface. Important points 1 to 1 of the present invention are that the formation is proactive. In other words, this region exerts a buffering effect against various fluctuations. Specifically, there is a method in which a pool of molten pitch having a cross-sectional area larger than the discharge cross-sectional area is formed on the mouth surface. The size of this pool is
The linear velocity at the mouth surface is 1/1500 or less of the drawing speed, preferably 1/2000 or less, more preferably 1
It is necessary to have a cross-sectional area of 15,000 or less.

3一 本発明を図面により以下説明覆る。31 The invention will be explained below with reference to the drawings.

第1図は本発明の緩衝領域を有づる吐出方法を示?I概
略図である。口金1に設【プたljl出孔2から吐出さ
れた溶融ピッチを、口金面に付着させ、溜り3を形成し
、この溜り3から糸条4を引取るのである。該溜りの最
大断面積は田川孔断面積が小さいほど大きくするのが好
ましい。また吐出口に溜りを形成するので、口金面の材
質をピッチに対する濡れ特性のすぐれたものを選択的に
適用することも好2Iニジい。また口金吐出口を変形孔
として溜りを形成しやすくすることも好ましい。
FIG. 1 shows a discharge method with a buffer region according to the present invention. I is a schematic diagram. The molten pitch discharged from the outlet hole 2 provided in the mouthpiece 1 is attached to the face of the mouthpiece to form a reservoir 3, and the yarn 4 is taken from this reservoir 3. The maximum cross-sectional area of the reservoir is preferably made larger as the Tagawa hole cross-sectional area becomes smaller. Furthermore, since a pool is formed at the discharge port, it is also advisable to selectively use a material for the mouth surface that has excellent wetting characteristics against the pitch. It is also preferable to make the mouthpiece outlet a deformed hole to facilitate the formation of a pool.

本発明はビッヂを溶融紡糸づる際の種々の変動に対して
緩衝作用を有する領域、具体的には溶融ピッチの溜りを
口金面に設けることにより、ピッチから極めて安定して
ピッチ系繊維を製造することができたものである□。
The present invention produces pitch-based fibers from pitch in an extremely stable manner by providing a region on the spinneret surface that has a buffering effect against various fluctuations during melt-spinning pitch, specifically, a pool of molten pitch. □

本発明にJ:す、極めて低粘度たとえば20〜300ポ
イズというピッチをもすぐれた均一性の下にマルチフィ
ラメントとして、工業的に生産し得るのである。
According to the present invention, it is possible to industrially produce a multifilament having an extremely low viscosity, for example, a pitch of 20 to 300 poise, and excellent uniformity.

1− なお、本発明において、原料であるピッチならびに紡糸
条件を選択することにより、ランダム構造を右する繊維
やラジアル構造を有する繊維を必要に応じて形成するこ
とができる。
1- In the present invention, fibers having a random structure or fibers having a radial structure can be formed as necessary by selecting the pitch as a raw material and the spinning conditions.

たとえば光学的異方性ピッチを溶融紡糸する場合に、口
金吐出孔部分において、(1)式で示される口金孔内の
ズリ速度γを550sec−1以下とし、かつ下記(2
)式で示される配向形成パラメータfを90以Tとして
溶All紡糸する方法を併用するとランダム構造を有す
るマルチフィラメントが得られる。
For example, when melt-spinning an optically anisotropic pitch, the shear velocity γ in the die hole shown by equation (1) is set to 550 sec-1 or less in the die discharge hole portion, and the following (2
) A multifilament having a random structure can be obtained by combining the method of melt All spinning with an orientation forming parameter f of 90 T or more.

γ−32Q/πD3・・・・・・・・・・・・(1)f
−γft・・・・・・・・・・・・・・・・・・・・・
・・・(2)[Q:ビッヂ流1d (cm3/sea 
)D二ロ金孔径(am) t :口金孔内平均滞留時間(sec ) ]なお上記
式の口金孔内平均滞留時間[は下記(3)式より求める
γ-32Q/πD3・・・・・・・・・(1) f
-γft・・・・・・・・・・・・・・・・・・
...(2) [Q: Bitge style 1d (cm3/sea
) D Niro metal hole diameter (am) t: Average residence time in the mouth hole (sec) ] The average residence time in the mouth hole in the above formula is determined from the following formula (3).

[−πD2ff/4Q・・・・・・・・・(3)[0:
口金孔の良さくCm)] かかる方法において、ズリj虫I良7′が2505ec
−1以十より好ましく IJ: 150 sec −’
 以上−(゛、配向形成パラメータfが550以下であ
る条件を選択覆ることにより、ざらに畠庶にラジアル配
向された構造のマルチ−ノイラメン1へが安定してjq
られる。
[-πD2ff/4Q (3) [0:
In this method, the quality of the mouthpiece hole is 2505ec.
-1 or more preferably 10 IJ: 150 sec -'
Above-(゛, By selecting and overriding the condition that the orientation formation parameter f is 550 or less, the multi-neuramen 1 with a radially oriented structure is stably jq
It will be done.

また」−記ズリ速瓜γを550Sac −1以下とし配
向形成パラメータfを100以」−の条件を採用するど
ラジアル配向の48 mtを形成することかできる。
In addition, by adopting the following conditions: ``the shedding speed γ is 550 Sac -1 or less and the orientation formation parameter f is 100 or more'', it is possible to form 48 mt with radial orientation.

ラジアル配向させる場合、更にズリ速度γは650se
c−+以上、配向形成パラメータfは140以上の条イ
′1を選択1−ることにより、ざらにラジアル配向反の
高い繊維が形成される。
In the case of radial orientation, the shear speed γ is further 650 se
By selecting a stripe '1' having an orientation formation parameter f of 140 or more, a fiber having a roughly high radial orientation is formed.

かかるラジアル構造糸は弾性率、熱伝導性、電気伝導性
などの面に優れた性能を発揮し、一方うンダム構)5糸
は強度、弾1!I″J?の面で1・弱れた性能を有して
いる。
This radial structure yarn exhibits excellent performance in terms of elastic modulus, thermal conductivity, electrical conductivity, etc., while the undam structure yarn has excellent strength and elasticity of 1! It has a 1. weaker performance in terms of I″J?.

なお、本発明にa−3いて非円形の[1金n1出孔を採
用する場合は、]]ニ記ロ合孔りは同一断面積の円形に
換算した時の直径を適用する。また本発明にお(プるズ
リ速度γは口金吐出孔部分の流路の断面積の最も小さい
部分の流路径で、また平均滞留時間1は田川孔部分の流
路中の平均滞留時間で1算する。すイ1わら該流路はピ
ッチを吐出する外部へ開孔した最小断面積以降の流路部
分を意味し、通常の口金にお(プる導入部分は含まない
In addition, in the present invention, when adopting a non-circular [1 gold n1 hole] in a-3 of the present invention, the diameter when converted to a circular hole with the same cross-sectional area is applied to the matching hole in (2) and (b). In addition, according to the present invention, (pulling speed γ is the flow path diameter of the smallest cross-sectional area of the flow path in the nozzle discharge hole portion, and average residence time 1 is the average residence time in the flow path in the Tagawa hole portion. The flow path means the flow path portion beyond the minimum cross-sectional area that is opened to the outside through which pitch is discharged, and does not include the introduction portion that is inserted into a normal mouthpiece.

かかる方法によると、ランダム構造あるいはラジアル構
造の炭素繊維マルチフィラメントを工業的イアレベルで
経済的に製造し1qる。
According to this method, 1q of carbon fiber multifilaments having a random structure or a radial structure can be economically produced at an industrial ear level.

なお上記光学的異方性ピッチとはピッチ中に光学異方1
!I成分が60%以上、好ましくは75%以上、さらに
好ましく(より0%以上含有されているものをいう。
Note that the above-mentioned optical anisotropy pitch refers to optical anisotropy of 1 in the pitch.
! Component I is contained in an amount of 60% or more, preferably 75% or more, more preferably 0% or more.

ピッチはhl量ポンプや不活性気体による加圧押出しも
できるが、61mポンプによる押出しが好ましく適用さ
れる。特に多数の吐出孔を有づる口金を使用して均一イ
(マルチフィラメントを形成する場合や)濾過]二稈を
通して吐出づ−る場合に極めて有効である。
Although the pitch can be extruded under pressure using a hl pump or an inert gas, extrusion using a 61m pump is preferably applied. It is particularly effective when discharging uniformly (filtration) through two culms using a nozzle with a large number of discharge holes (for forming multifilaments).

  l 一 本発明の方法によって得られる紡糸後の単繊維径は30
μ以Tが適当であり、好ましくは5〜30μさらには7
−20μの範囲にあるのが、糸切れや強度の点からa?
ましいか、かかる径以外て・も効果がある。
l The single fiber diameter after spinning obtained by the method of the present invention is 30
μ or more T is appropriate, preferably 5 to 30μ, and more preferably 7
-20μ range is a? from the viewpoint of thread breakage and strength.
However, diameters other than this are also effective.

かくして11jられるピッチ系IJ Iftは、ついで
通常の方法により不融化処理され、炭化、黒鉛化される
。不融化処理としてはたとえば酸素の存在下、通常空気
中で250〜420℃で酸化させる方法が適用できる。
The pitch-based IJ Ift thus obtained is then treated to be infusible, carbonized, and graphitized by a conventional method. As the infusibility treatment, for example, a method of oxidizing in the presence of oxygen at 250 to 420°C in normal air can be applied.

また酸素としてAシンやNO2などの酸化性の気体を使
用することも、不融化処理の効率の点から好ましい。か
かる不融化処理された繊維はついで炭化、黒鉛化される
が、かかる方法も通常採用される方法を適用することが
できる。
Further, it is also preferable to use an oxidizing gas such as A-syn or NO2 as oxygen from the viewpoint of the efficiency of the infusibility treatment. The fibers subjected to such infusibility treatment are then carbonized and graphitized, and a commonly used method can be applied to such a method.

かかる炭化処理としてはたとえば真空または不活性気体
雰囲気中で800〜1700℃に加熱する方法があり、
また黒鉛化処理どしてはたとえば真空または不活↑4電
気雰囲気中で1700’C以上に加熱処理する方法があ
る。
Such carbonization treatment includes, for example, a method of heating to 800 to 1700°C in a vacuum or an inert gas atmosphere.
For graphitization treatment, for example, there is a method of heat treatment at 1700'C or higher in a vacuum or an inert ↑4 electric atmosphere.

以下本発明を実施例を挙げてさらに訂細に説明8− する。Hereinafter, the present invention will be explained in more detail with reference to Examples 8- do.

なお実施例中の測定り法は以下に示す方法ににる。The measurement method used in the examples is as shown below.

[光学的異方性] 試料を■ポキシ系樹脂に包j」シたあと、常法により研
磨した。研磨面をL eitz社製ORT HOP[−
ΔN顕微鏡を用いて反則偏光法により観察した。
[Optical Anisotropy] After wrapping the sample in poxy resin, it was polished by a conventional method. Polished surface with Leitz ORT HOP [-
Observation was made using a ΔN microscope using a reverse polarization method.

光学的異方性成分の存在量は、前記した偏光下で観察し
た時の等方性部分と異方性部分の面積比から求めた。
The abundance of the optically anisotropic component was determined from the area ratio of the isotropic part and the anisotropic part when observed under the polarized light described above.

[キノリンネ溶分] J Is−に−2425に規定される遠心分前法と)濾
過法とを組合せた方法で行なった。
[Quinoline solution] This was carried out by a combination of the pre-centrifugation method and the filtration method specified in JIS-2425.

[カラス転位温度) perkin −E 1merネ1製DSC−2を用い
て窒糸雰囲気中で測定した。試料を290℃まで加熱後
、室温まで冷却し、再庶昇温して測定することにより、
脱水ピーク等ベースラインを乱す要因を除いて測定した
[Crow transition temperature] Measured in a nitrogen yarn atmosphere using Perkin-E 1mer NE1 DSC-2. By heating the sample to 290°C, cooling it to room temperature, raising the temperature again, and measuring.
Measurements were performed excluding factors that disturb the baseline, such as dehydration peaks.

[元索分析] 柳本製作所製CI−I NコーダーM−1−−3型を使
用L/ T、試rI分IWF900〜950”G、 M
Iヒ炉850℃、還元炉550°C、ヘリウム流速18
0mff、/ m i nの測定条イ9の下で測定した
[Original search analysis] Using Yanagimoto Seisakusho CI-IN coder M-1--3 type L/T, trial rI IWF900-950''G, M
I furnace 850°C, reduction furnace 550°C, helium flow rate 18
The measurement was carried out under the measurement strip A9 of 0 mff, /min.

[口金面の溜り径] 口金吐出孔出口の溶融ビツヂの形状を長焦点W1微鏡に
より観察し、直径を求めた。
[Reservoir diameter on the mouthpiece surface] The shape of the molten bit at the outlet of the mouthpiece discharge hole was observed with a long focus W1 microscope, and the diameter was determined.

実施例1 市販の石油ビッヂを300 ℃で200メツシコのガラ
スピーズを用いて加圧シ濾過し、ついで310℃、I 
Q p+m1−I CIの減圧下で30分間処理を行な
い低沸点成分を除去した。得られたピッチを偏光顕微鏡
でIt!察したところ実質的に光学的等方性のものであ
った。このピッチを用いて各種孔径の口金を使用し、紡
糸濃度280℃で紡糸速度600m/n+inで紡糸し
、平均直径10μのピッチ繊維を得た。紡糸は0.01
〜2.OK+J /cm2・Gの窒素で押出した。結果
を表1に示す。
Example 1 Commercially available petroleum filtrate was pressure filtered at 300°C using 200 mesh glass beads, and then filtered at 310°C and I
Treatment was performed under reduced pressure of Q p+m1-I CI for 30 minutes to remove low boiling point components. The obtained pitch was examined using a polarizing microscope. As a result, it was found to be substantially optically isotropic. This pitch was spun using spinnerets with various hole diameters at a spinning concentration of 280° C. and a spinning speed of 600 m/n+in to obtain pitch fibers with an average diameter of 10 μm. Spinning is 0.01
~2. It was extruded with nitrogen at OK+J/cm2.G. The results are shown in Table 1.

表  1 0  金 No、 孔径 溜り径  速度比  製糸状況1   
0.20  溜り無 1/ 400    不良2  
0.20   o、3o   1/ 9003  0.
30  0,40  1/ +eoo    。
Table 1 0 Gold No. Pore diameter Reservoir diameter Speed ratio Silk spinning situation 1
0.20 No accumulation 1/400 Defective 2
0.20o, 3o 1/9003 0.
30 0,40 1/ +eoo.

4  0.30  0,50  1/2500    
Q5  0、/10  0,60  1/36006 
 0.50  0.80  1/ 64007  0.
70  1,00  1/100008  1.00 
 1,2(11/ 14400表中、 孔径:口金孔径(mm) 溜り径二吐出ロ溜り径(mm) 速度比:口金面での平均線速度/引取り3i度製糸状況 不良:糸切れが多い O:糸切れはほとんど無 0:糸切れは全く無 11 一 実施例2 軟化点が80℃の]−ルタールビツブを窒素雰囲気中で
約1時間か(Jて410℃まで昇渇し溶融させた後、3
0 rpmで攪拌しながら410℃で12時間熱処理し
た。ついで380 ℃で窒素加圧し200メツシユのが
ラスピース゛を用いて不溶分をr過により除去した後、
420°C15mm1−(oで減圧処理を行ない低沸点
成分を除去した。
4 0.30 0,50 1/2500
Q5 0,/10 0,60 1/36006
0.50 0.80 1/ 64007 0.
70 1,00 1/100008 1.00
1,2 (11/14400 table) Hole diameter: Piper hole diameter (mm) Reservoir diameter and discharge diameter (mm) Speed ratio: Average linear speed at the mouth surface / Take-off 3i degree Poor spinning condition: Many yarn breaks O: Almost no yarn breakage 0: No yarn breakage at all 11 Example 2 After heating and melting rutal bits with a softening point of 80°C in a nitrogen atmosphere for about 1 hour (J) to 410°C, 3
Heat treatment was performed at 410° C. for 12 hours while stirring at 0 rpm. Next, nitrogen pressure was applied at 380°C, and insoluble matter was removed by r-filtration using a 200-mesh Raspice.
A vacuum treatment was performed at 420° C. and 15 mm 1-(o) to remove low-boiling components.

得られたピッチをエポキシ樹脂に包埋して研磨後、反則
偏光顕微鏡で観察した結果、約90%以上が光学的異方
性成分であった。光学的異方性組織は大きな流れ状を示
した。熱処理ビツヂの特性は、キノリンネ溶分53wt
%、軟化点340℃、ガラス転位温度195℃であり、
元来分析結果は、炭素93wt%、水素3.7wt%、
窒素i、Qwt%であった。
After embedding the obtained pitch in an epoxy resin and polishing it, observation using a reverse polarization microscope revealed that about 90% or more of the pitch was an optically anisotropic component. The optically anisotropic structure showed a large flow shape. The characteristics of heat-treated bits are 53wt of quinoline solution.
%, a softening point of 340°C, a glass transition temperature of 195°C,
The original analysis results were 93 wt% carbon, 3.7 wt% hydrogen,
Nitrogen i, Qwt%.

この熱処理ピッチを用いて、各種孔径の口金を使用し、
紡糸濃度380℃、紡糸速度600m/minで紡糸を
行ない、平均直径が10μのピッチ系繊維を得た。
Using this heat-treated pitch, we use ferrules with various hole diameters,
Spinning was carried out at a spinning concentration of 380° C. and a spinning speed of 600 m/min to obtain pitch-based fibers with an average diameter of 10 μm.

 12− 紡糸は0.01〜2.0K(1/am2・Gの窒素で押
出した。結果を表2に示づ。
12- Spinning was extruded with nitrogen at 0.01-2.0K (1/am2.G). The results are shown in Table 2.

実験N093〜8は本発明例であり、口金面での平均線
速度と引取り速度の比が1/1500J:り小ざく糸切
れもイrく製糸性は良好であった。これに対し比較例で
ある実験NO,1,2は該平均線速度と引取り速度の比
が1/1500より人きく糸切れも多く安定した紡糸が
できなかった。
Experiments Nos. 093 to 8 are examples of the present invention, in which the ratio of the average linear velocity at the spinneret surface to the take-up speed was 1/1500 J: there was no small thread breakage, and the thread reeling properties were good. On the other hand, in experiments Nos. 1 and 2, which are comparative examples, the ratio of the average linear velocity to the take-up speed was less than 1/1500, and stable spinning was not possible due to many yarn breakages.

表  2 0  金 No、  孔径 溜り径  速度比  製糸状況9 0
.20  溜り無 1/ 400    不良i Q 
 O,200,401/1600   011  0.
30  溜り無 1/ 900    不良12 0.
30  0.70  1/4900    Ql 3 
0.40  0,80  1/640014   (1
,500,901/810015 0.70  1.0
0  1/ 1000016 1.00  1.20 
 1/14400実施例3 実施例1および2で′用いたピッチを使用し、第2.3
図に示すY型おJ、び5乗型り面の[71金を用いて、
実施例1.2と同様に紡糸した。■金はいずれもスリ9
1〜幅a=0.1111m、スリン1〜艮す−0,5m
mのものを使用し、窒素圧0.01〜1゜0に9/Cl
112 ・Gで押出した。口金面の溜り径はいずれも約
1mmであり、溶融ピッチの平均線速度と引取り速度の
比は1/2500であり、糸切れも無く製糸性(J良好
であった。まlこ光学的W方性ピッチを使用したものは
断面を偏光顕微鏡で観察した結果、ランダム構造であっ
た。
Table 2 0 Gold No., Pore diameter Reservoir diameter Speed ratio Silk spinning status 9 0
.. 20 No accumulation 1/400 Defective i Q
O, 200, 401/1600 011 0.
30 No accumulation 1/900 Defective 12 0.
30 0.70 1/4900 Ql 3
0.40 0,80 1/640014 (1
,500,901/810015 0.70 1.0
0 1/ 1000016 1.00 1.20
1/14400 Example 3 Using the pitch used in Examples 1 and 2, 2.3
Using 71-karat gold,
Spinning was carried out in the same manner as in Example 1.2. ■The money is pickpocket 9
1 ~ Width a = 0.1111 m, Surin 1 ~ Width - 0.5 m
9/Cl at a nitrogen pressure of 0.01 to 1°0.
Extruded at 112 ・G. The diameter of the reservoir on the mouthpiece surface was approximately 1 mm in each case, and the ratio of the average linear velocity of the molten pitch to the take-up speed was 1/2500, and there was no yarn breakage and the spinning performance was good. When the cross section of the material using W-oriented pitch was observed with a polarizing microscope, it was found to have a random structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施態様である[−1金面にピッチの
溜りを積極的に形成した製糸例を示す。第2図、第3図
は本発明に好ましく適用される口金用出口の形状例であ
る。 図中 1:口金 2;吐出孔 3;溜り(緩衝領域) /′I:糸条 a:スリ91〜幅 l)ニスクツ1−1処さ
FIG. 1 shows an example of yarn spinning in which pitch pools are actively formed on the [-1] metal surface, which is an embodiment of the present invention. FIGS. 2 and 3 show examples of the shape of the mouthpiece outlet preferably applied to the present invention. 1 in the figure: mouthpiece 2; discharge hole 3; pool (buffer area)

Claims (1)

【特許請求の範囲】[Claims] ピッチを溶融し、口金から吐出さ口た後引取るに際し、
口金面にお(プる溶融ピッチの平均線速度を、口金孔内
の最大平均流速より小ざく、かつ引取り速度の1/15
00以下の値とすることを特徴とするビツヂの溶融紡糸
方法。
When taking the pitch after melting it and discharging it from the nozzle,
The average linear velocity of the molten pitch on the nozzle surface is smaller than the maximum average flow velocity in the nozzle hole, and 1/15 of the take-up speed.
Bituji's melt spinning method, characterized in that the value is 00 or less.
JP4266583A 1983-03-15 1983-03-15 Melt spinning for pitch Pending JPS59168115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4266583A JPS59168115A (en) 1983-03-15 1983-03-15 Melt spinning for pitch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4266583A JPS59168115A (en) 1983-03-15 1983-03-15 Melt spinning for pitch

Publications (1)

Publication Number Publication Date
JPS59168115A true JPS59168115A (en) 1984-09-21

Family

ID=12642310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4266583A Pending JPS59168115A (en) 1983-03-15 1983-03-15 Melt spinning for pitch

Country Status (1)

Country Link
JP (1) JPS59168115A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108725A (en) * 1984-10-30 1986-05-27 Teijin Ltd Production of pitch carbon yarn having novel structure
JPS61113827A (en) * 1984-11-06 1986-05-31 Teijin Ltd Production of high-performance pitch-based carbon fiber
JPS61296124A (en) * 1985-06-22 1986-12-26 Unitika Ltd Pitch based modified cross-section fibrous active carbon
JPS62117821A (en) * 1985-09-12 1987-05-29 クレムスン・ユニヴア−シテイ Carbon fiber and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61108725A (en) * 1984-10-30 1986-05-27 Teijin Ltd Production of pitch carbon yarn having novel structure
JPH0380888B2 (en) * 1984-10-30 1991-12-26 Teijin Ltd
JPS61113827A (en) * 1984-11-06 1986-05-31 Teijin Ltd Production of high-performance pitch-based carbon fiber
JPH0147563B2 (en) * 1984-11-06 1989-10-16 Teijin Ltd
JPS61296124A (en) * 1985-06-22 1986-12-26 Unitika Ltd Pitch based modified cross-section fibrous active carbon
JPS62117821A (en) * 1985-09-12 1987-05-29 クレムスン・ユニヴア−シテイ Carbon fiber and its production

Similar Documents

Publication Publication Date Title
JPS59168127A (en) Production of carbon fiber
JPS59168126A (en) Production of pitch based carbon fiber
JPH026624A (en) Carbon fiber well-balanced in ultrahigh modulus and high tensile force
JPWO2020090597A1 (en) Carbon fiber precursor fiber and method for producing carbon fiber
JPS59168115A (en) Melt spinning for pitch
EP0169023B1 (en) Method of manufacture of pitch-based carbon fiber
JPS60173121A (en) Production of carbon yarn and graphite yarn
JPH0737689B2 (en) Method for producing carbon fiber and graphite fiber
JPS6147826A (en) Manufacture of pitch-based carbon fiber
JPS62170528A (en) Carbon fiber and production thereof
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber
JPH0781211B2 (en) Carbon fiber manufacturing method
JPH07116643B2 (en) Carbon fiber manufacturing method
JPH01282320A (en) Winding of pitch-based material
JPH01282310A (en) Pitch yarn
JP2711918B2 (en) Pitch-based carbon fiber
JPS588116A (en) Production of modified cross section yarn
JPS60181313A (en) Manufacture of pitch fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPS6134223A (en) Production of pitch based carbon fiber
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPH0382820A (en) Activated carbon fiber, its production and pitch fiber for activated carbon fiber
JPH026620A (en) Pitch-based carbon fiber and production thereof
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS59168124A (en) Production of carbon fiber