JPS59168127A - Production of carbon fiber - Google Patents

Production of carbon fiber

Info

Publication number
JPS59168127A
JPS59168127A JP4266683A JP4266683A JPS59168127A JP S59168127 A JPS59168127 A JP S59168127A JP 4266683 A JP4266683 A JP 4266683A JP 4266683 A JP4266683 A JP 4266683A JP S59168127 A JPS59168127 A JP S59168127A
Authority
JP
Japan
Prior art keywords
pitch
flow path
flow
spinning
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4266683A
Other languages
Japanese (ja)
Inventor
Tadayuki Matsumoto
忠之 松本
Michihiro Shiokawa
塩川 満弘
Chuichi Endo
遠藤 忠一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP4266683A priority Critical patent/JPS59168127A/en
Priority to PCT/JP1984/000101 priority patent/WO1984003722A1/en
Publication of JPS59168127A publication Critical patent/JPS59168127A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/32Apparatus therefor
    • D01F9/322Apparatus therefor for manufacturing filaments from pitch

Abstract

PURPOSE:To obtain carbon fibers of an onion structure having a high strength and elasticity stably and easily at a high speed, by melt spinning an optically anisotropic pitch, expanding the flow path of the molten pitch before the extrusion, and controlling the flow behavior of the pitch. CONSTITUTION:An optically anisotropic pitch is melt spun, and flow path 1 of the molten pitch is expanded (>=20 maximum cross-sectional area ratio between flow paths 2 and 1) before the extrusion through an extrusion hole 3, and the resultant fibers are then infusibilized and carbonized or graphitized to give the aimed fibers. If the flow path once expanded is recontracted, the flow of the molten pitch can be made uniform or the flow rate distribution between plural flows can be reduced.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はピッチから高性能を有する炭素繊維を製造する
方法に関するものである。さらに詳しくは、PJ&維中
の光学的異方性組織が同心円状構造を示し、表面に開裂
のない高強度、高弾性率を有するピッチ系炭素繊維の製
造方法に関するものである。 従来から炭素繊維原料としてピッチを用いる方法の中で
、itJられる炭県絨雇(こ配向14造を形成し高性能
の織材1を(1するため(こ、光学的六方イ1のピッチ
を使用Jる方法か知られている1、シか−6、光学的異
方性のピップから製造した炭永線層自よ、PAN系の炭
素繊庁11に比べ(良好な黒鉛化1イ1を示Jのて・、
高弾性率の炭素繊維が得1うれる利点がある。 しかしながら[)ΔN系炭素繊繊維こ比べ(強麿か低い
傾向にあることはよ(知られている。 ピッチの光学的異方1]1成分
The present invention relates to a method for producing high performance carbon fiber from pitch. More specifically, the present invention relates to a method for producing a pitch-based carbon fiber having high strength and high modulus of elasticity with an optically anisotropic structure in PJ and fibers exhibiting a concentric ring structure and having no cleavage on the surface. Conventionally, in the method of using pitch as a raw material for carbon fibers, it has been proposed to use pitch in an optical hexagonal direction to form a high-performance woven material (1). The carbon fiber layer produced from the optically anisotropic PIP is known to be used in a method known as 1 or 6, which has better graphitization compared to the PAN-based carbon fiber layer 11. Show J.
There is an advantage in that carbon fibers with a high modulus of elasticity can be obtained. However, it is known that compared to [)ΔN carbon fibers, the strength tends to be lower. Optical anisotropy of pitch 1] 1 component

【まピッチを溶融紡糸す
る際、綴紐軸方向に配列するが、繊絹軸に垂直な絨雑横
[tli面絹織においでは、!Il!型的な例とし−C
1放射状に配列したラジアルタイプ、同心固状に配列し
たA二Aンタイヅ、不規1川に配列l)だランタムタイ
プの3つが知られている。 前記3つのタイプのピッチ系炭素繊維の構造の中でラジ
アル構造を有するものは、炭化または黒鉛化工程で繊組
表面が繊維軸に沿った方向に開裂し、この間製部が欠陥
どなって繊維強度を大幅に下げるという欠点を右してい
た。 一方、ランダム構j告の楊titt l;L上記の開裂
を起すことがなく強度の而CI−i’ +!l ”C・
あるが、(M造の規則性に限界がある。Jイfわら、強
度、弾(’I率を向−1させるという面〕〕目らは、黒
鉛小イスカーと同じく同心円状の炭素層面の配列を有す
るオニオン構造の炭素繊維が最も優れている。かかるオ
ニオン構造の炭素繊維が溶融紡糸によりjqられること
は知られているが、従来技術ではオニオン構造糸は七ノ
フィラメン]〜紡糸において、しかも高温紡糸づるなど
の特殊な条件下で゛しか(けられず、常に安定して製造
し得るという−6のではなかった。 本発明当らはオニオン構造の炭素繊維を得る方法に関し
種々検問した結果、光学円安7)竹ピッチの流動挙動を
制御することにより、オニオン構造糸を安定して1qる
方法を児出し、本発明に到達しlこ 。 リ−なわち本発明は (1)光学的周方Hのピッチを溶融紡糸した後、不融化
処理および炭化あるいはさらに黒鉛化処理して炭素繊維
を製造覆るに際し、r!■出前に溶融ピッチの流路を拡
大することを特徴どする炭素繊維3− の製)告乃法。 (2)いったん拡大し/、=溶ハ11ピップの流路を1
1]庶縮小することを1h微どづる47i¥1晶求の範
囲第1項記載の炭素繊維の)U造方法。 本発明はかかる構成を採用したことにより、はじめて高
強度、高弾fノ目t′をイ」りるΔ−′−Aン構造のビ
ツヂ系炭素繊維をマルヂフィラメン1への形においても
安定して]−葉内に製造しjりたものである。 特に本発明にJ、れば、200ホール以1−さらにはE
500ホール以十という多ボール[−1金を使用しても
、なお安定して均一なオニオン構造4造を右り−るピッ
プ系繊組をj5Iることが可能でdりる。5光学的異方
性を示すピッチは炭化、黒64)化処即で良好な黒鉛描
込を形成し、高強度、高弾111率を達成する。 本発明でいう光学的異方1(1ど(よ、ピッチを偏光下
で観察し1.:場合、たどえばビッヂを]−ボキシ樹脂
に包埋した後、表面を1iJIIKL、T 、 (シ則
偏光顕微鏡を用いて直交偏光]マで観察すると、異方1
1部分が光って見えるものC′ある3、別の見分()方
どじて1− は脱色検板を用いて色の変化を観察して判断する方法も
ある。 かかる異1ノ↑ηピッチを製造づる方法は、既にいく゛
つかの方法が知られている。たとえば特開昭49−19
127号公報、特開昭54−160427号公報、特開
昭57−168989号公報などの方法で製造されるが
、本発明にはかかる公知の異方性ピッチのいずれをも適
用づ−ることができる。 かかる光学的異方性を示す成分は該ピッチ中60%以上
、好ましく tJ 75%以上、さらに好ましくは90
%以」−念イラされているものがオニオン構造化ならび
に黒鉛化性の点で選択される。 本発明では、かかるピッチを溶融紡糸で−る際に、吐出
前に流路を拡大することが必須の要件である。 たとえば第1図に示づように、流路1からの溶融ピッチ
の流れを流路2において実質的に流れに垂直な方向に拡
大し、ついで吐出孔3から吐出させることににすオニオ
ン構造糸が得られる。 上記の構成でオニオン構造糸が得られる理由は明らかで
はないが、要は狭い流路を拡大ずればオニオン構造糸が
得られるのである。 上記した拡大の程磨は、第1図にA−31(Jる流路2
の最大断面積と流路1の最小断面積の比て表わずことが
できるが、オニオン構造を形成するためには、この比が
もちろん1より人きいことが必要であるが、さらに10
jメ十、Q4jに20以上か好ましい。 また流路1をなるべく細(し、その中ての剪断を大きく
することもAニオン4f4造形成に好ましい効果がある
。 流路内の剪断の大きさは下記(1)式で示されるズリ速
度γで定義される。 7−32Q/πD3・・・・・・・・・・・・(1)[
Q:ビツヂ流晶(cm3./ sea )l):流路径
(Cm)] オニオン構造を形成するためには、拡大前の流路内の」
1記ズリ速度γが50sec−+以上、より好ましくは
100sec−1以上、fjに好ましくは200sec
−1以−トチアル。 なお上記(1)式において、非円形の流路を採用り−る
場合は、(−記1−1金孔径りは同一断面積の円形に換
紳した時のC1径を適用し、またスリ速度γは流路の断
面積の最6小さい部分の流路径−’c” it 緯する
。 さらに流路内の剪断の程1αは、上記スリ速度の人きさ
と剪断を受IJる時間によって定義される下記(2〉式
で表さねる配向形成パラメータfによって、さらに強く
影響を受lJる。 f−γJ−1・・・・・・・・・(2)[I :流路内
平均曲留時間(sec)1イ「お上記式の流路内平均滞
留時間1は下記(3)式より求めることがCさる。 1−πD2Q/AQ・・・・・・・・・〈3)[α:流
路の良ざ(cm)] 本発明においては、拡大前の流路内の配向形成パラメー
タf lfi =1.0以上、好ましくは50以上の範
囲にあることがオニオン構造の配向を安定して得るため
に好ましい。 本発明において、流路を拡大した後、オニオン構造の形
成に支障をきたざイfい範囲で、ピッチの流れを分割(
)たり合流させたりすることも可能で・あるが、各田用
孔にり・J応づる流用に分子IE! Llk後、前記流
路の拡大を行くfうのが好ましい。 また本発明で流路の拡大した後、溶融ビッヂを吐出する
までの間の滞留時間を余り人きくするど、A二Aン構造
ノ】<乱れる11ス1向にあり、滞留り間を大きくし過
き゛ないJ、うにJることが好ましい。 また本発明において、いりたん流路拡大を行なつlこあ
ど、イの下流で流路を縮小すると流れを均一化し!こり
、複数の流れの間の流111分イliを小さくすること
も6f能である□。 さらに上記縮小部において(1)、(2)式で定義した
剪断の大きざを変化ざゼることにより、オニオン構造の
規則iQを変化させることができる。 ずなわlう第2図に例示したごとく種々の形状を採用し
得る。 さらに本弁明においてト記した流路の拡大または流路の
拡大どイの後の縮小は両省を混在させたり、複数回くり
返えづこともてきる3゜以上述へたごとく、本発明はピ
ッチの流れを拡大するごとく流動挙動を制御することに
にす、初めてオニオン構造糸を安定してIffることか
できたものである。また従来知られているように、紡糸
温庶を軟化点より100℃以−トも高く覆る高温紡糸を
行なわな(でもオニオン構造糸が1qられるので、高温
紡糸時の問題である気泡の発生やコーキングによる糸強
度の低下などを回避できる利点がある。 また本発明の方法により初めて従来不可11Lであった
オニオン4M造炭素繊絹マルチフイラメン1へをも容易
に装造し19たもので゛ある。 また本発明において111金吐出孔部分の流路を拡大部
ると拡大部が緩衝領域となり、張力変動などの変動を吸
収する効果を有しているので、製糸状態が安定になり、
製糸性を良好にJる効果も発揮され好ましい。 本発明の方法によれば従来達成され1琴なかった高いス
ピードで紡糸することができる。すなわち上記(1)式
から1!I解されるJ:うに、スリ速度は、ピッチの単
孔当りの吐出MQよりも、口金孔径りに対して依存性が
大きいから川iff 2riを人きくシ(紡速をあげた
い場合IJ、 、 [1金孔径を田川111の立プノ根
分だり大きくづれば良い。 従って本発明の、/′j法によれば、たとえば160m
/min以十、ざらに(、L 200m /min以十
どか3QOm/min以上という高速紡糸が7jl能で
・あり、条件によっては1000m /min以上とい
う超スピードで紡糸りることもpf能である。 また本発明に」;れば、かかる高速紡糸においても均一
な径をイjづるオニオン構造の辿絖フィラメンl〜を容
易に製造することができるという利点がある。 ビッヂは不活性気体による加L[押出しもできるが、耐
電ポンプによる押出しが好ま]ノく適用される。特に多
数の01出孔を右する口金を使用し−C均一なマルチフ
ィラメン1〜を形成する場合や濾過工程を経−’CI′
!L、 1−1t 7+−る場合に極めて有効である。 本発明の方法によってIJられる紡糸後の単繊組径は3
0μ以下が適当であり、好ましくは5〜30μさらには
7〜20μの範囲にあるのが、糸切れや強度の点l)冒
ろ(Ii’ J:Lいが、かかる径以外でも効果がある
。 かくして+Fjられるビッヂ組紐は、゛ついで通常のプ
リ法により不融化処理され、炭化、黒鉛化される。 不融化更口4!とじてはたとえば酸素の存在下、通常空
気中で250〜420′Gで酸化させる方法が適用Cき
る。J、た酸素としく“AシンやNO2などの酸化性の
気体を使用Jることも、不融化処理の効率の点から好ま
しい。かかる不融化処理された繊維はついで炭化、黒鉛
化されるが、かかる方法も通常採用される方法を適用す
ることができる。かかる炭化処理としてはたとえば真空
または不活性気体雰囲気中で800〜1700℃に加熱
する方法があり、また黒鉛化処理としてはたとえば真空
または不活性気体雰囲気中で1700℃以上に加熱処理
する方法がある。 以下本発明を実施例を挙げてさらに詳細に説明する。 なお実施例中の測定方法は以下に示す方法による。 11− [光学的異方性] 試料をJニボ−1−シ系樹脂に包埋したあと、常法によ
り?ilI I!した。研磨面をl eitz社!!1
(’) f< 1−1−10 P[−へN顕微鏡を用い
て反則11m1光法により観察した。 光学的異方作成力の存I′F間は、0「■記した偏光十
で観察した時の等1)tIf部分と異方111部分の面
(内圧か1ろ 求 め lこ 。 [キノリンネ溶分] J r S−に−21125にノ、11定される迫心分
前払と)濾過法どを組合けlご7′J法で行なった。 [ガラス転位温度1 P erkin−ト1m[!rネj 製D S C−2
を用い−C窒索雰囲気中で測定した。試料を290 ℃
まで加熱後、室温まで冷711 L、rQ度背調して測
定Jることにより、1悦水ピ一ク等ベースラインを乱す
敗因を除いて測定した。 1元素分析] 柳本製作所製CI−I N :]−ダーMl−3!〜9
を使用して、試料分解炉900〜050 ’C、酸化炉
850℃、還元炉5 b O′(J、ヘリウム流3iJ
4180mQ12− /minの測定糸イ9の下で測定した。 [強伸度測定] J I S −R−7601のに規定される方法に準じ
た。繊維の直径は、強伸度測定部に隣接した部分を走査
型電子顕微鏡を用いて測定した。また開裂した繊維はそ
の横断面の顕微鏡写真力日ら面積を求めた。 実施例1 軟化点が80’Cの=1−ルタールビッチを窒素雰囲気
中で約1時間かけて410℃まで昇)晶し溶融させた後
、30 ppmで攪拌しながら410℃で12時間熱処
理した。ついで3’ 80℃で窒素加圧し200メツシ
ユのガラスピーズを用いて不溶分を)濾過により除去し
た後、4.20℃で5 mm t−1(Jで減圧処理を
行ない低沸点成分を除去した。。 得られたピッチをエポキシ樹脂に包埋して研磨後、反則
偏光顕微鏡で1見察した結果、約90%以上が光学的異
方性成分であった。光学釣具り性組織は大きな流れ状を
示した。熱処理ピッチの特性は、キノリンネ溶分63W
[%、軟化点340 °C。 ガラス転位温度195)’Cであり、元系分析結果は、
炭素93wt%、水素3.7wT%、窒素1.(’)r
1%であった。 第3図811)に示J構成のIII金を使用し、紡糸温
度380℃口金部分記度375℃で溶融紡糸し、紡糸速
Fa 6 (、) Om /’ min r引取った。 1]金部分形状は流路1、流路2、吐出孔の順に第3図
に示ず通すニ直袢がdl 、d;、、d3、良さ%+’
[+ 、O2、O3であり、流路2から田用孔に向って
のデーパ角が0のものを用いた。 得られた紡出糸の密度は約1 、3 g/cn+3.溶
融ピッチのr!A度は約1 、1  o/cm3rあ・
)だ。 この糸を熱風循環型オーブンに入れ、空気中で不融化処
理した。不融化処理条イ1は、まず室温ノ)目ろ150
℃に約5分間で昇温し、150 ℃で響渇開始り目ら1
5分間保持しlこ。ついで150−310゛Oまテ゛臂
温速麿1°C/ m i nて゛譬温し、310℃に3
0分間保持して不融化を完了した。この不融化糸を室温
から1250°Cまで5℃/min’r冒濡して炭化し
た。紡糸時の流路内容部分の流動特性および得られた炭
化糸について、横断面の光学的尼方構造つ強瓜特竹イ玄
とを表1にまとめた。 イfお[1金形状は第33図aに示Jものを△、[01
図すに示り−ものをBとした。にた流路2の直径d2は
流路1から流路2に拡大される点の直径て゛表わし、流
路2の最大直径に相当する。またズリ速度T2は流路2
のv1径がd2の点での伯を示した。 表1より明らかなように、本発明例である実験N001
〜5は、いり”れし強度、ヤング率共に高い値を示し、
またそれらの繊維破断面を走査型電子顕微鏡で観察した
結果、第6図a−eに示すように、いずれも同心円状の
構造を示した。 −力、比較例で゛ある実験N016〜10は、流路の拡
大をせずに紡糸した結果であり、実験NO36ではラジ
アルIM 造、実験N007〜10ではランダム構造を
示し、いずれも同心円状を示さなかった。 また強度、ヤング率の伯もいずれも低い値であつlこ 
。 実施例2 実施例1の実験NO12〜4、とって得た炭化糸を室温
から4℃/m1n7:昇温し2500℃で黒鉛化した。 得られた黒鉛化糸について、横断面の光学的異方性構造
史強度特性などを表2に示した。 表2 実験No、  炭化糸   黒鉛化特性強度 ヤング率
 断面組織 11    2  250   41   同心円状1
2    3  240   38 13    4  260   34 14    9  200   31   ランダム表
中の単位は、強度: Kq /mm2 、ヤングS$−
:103に!] /mm2テアル。 本発明例である実、験No、11〜13はいずれも強度
、ヤング率が共に高く、いずれも断面組織が同心円状を
示したか、比較例の実験N0.14は強度、ヤング率共
に低く、また断面組織もランタム17− 構j告で゛あつl、二。 実施例こ3 第4図に小J(?4成の[1金を使用した以外は実施例
1ど同様にしく炭化糸をn 1.XoI71余部分形状
おJ、び流路内の流動特性を表3に示し)こ、。 得られた繊糾の破断面を走査型電子顕微鏡で゛観察しk
どころ、同心円状態のlf4造が〃(1東された。 また該炭化糸の強1すは160Ko/mロ12、\ノン
グ率はl 4 Hlll / n1n12てあ−)た、
。 表3 流路1   流路2 (i==1)(i=2> ffi]径d !  (mn1)      0.20
    1.00長さffi  (口v)      
0.25    5,00ズリ速瓜γi  (sec 
  ’  )1300       H)平均曲間11
1間1i (sec )  0.0074   3.8
配向形成パラメータf1110     19実施例4 18− 第5図に示す構成の口金を使用した以外は実施例1ど同
様にして炭化糸を得た。口金部の形状および流路内の流
動性1ノ1:を表4に示した。表4にお(プる、ズリ1
lfWγl〜7′3、配向形成パラメータf1〜f3は
おのおの直径がd1〜d3の部分で計算した値である。 (りられた繊11の破断面を走査型電子顕微鏡で観察し
たところ、第7図のJ:うに同心円状の構造が観察され
た。ま1=この炭化糸の強度は170に97mm2.ヤ
ング率は14  ton/mm2であった。 表4 流路1   流路2   流路3 (i−1)   (i =2)   (i =3)d 
i     O,201,001,00αl     
O,250,754,25θ            
    60γi    i 300    30  
   10t i    O,0(1740,293,
3ri     110    16     18表
中、dl ;直径< mm) 、ひi :長さくmm)
、θ:テーパ角、+1:平均Wtl留時開時間Cに 、
fi :ズリ速度(sec  ’  ) 、fi:配向
形成パラメータを示す。 実施例5 実施例1、実験N0.2の炭化糸を室711八から30
℃/m肖1の胃溝速1良で4温し、3000℃で30分
間黒鉛化処理を行イ1つだ。iqられた黒1))止糸の
破断面を走査型電子顕微鏡で観察した結果、第8図に示
すような同心固状構造が観察された。この黒鉛化糸の強
度は280K(] /mm2 、 A7ング率は43 
 ton/mm2 テあツタ、。
[When melt-spinning the pitch, it is arranged in the direction of the binding string axis, but it is perpendicular to the silk axis. Il! As a typical example -C
Three types are known: the radial type, which is arranged in a radial pattern, the A2, which is arranged in a concentric solid pattern, and the random type, which is arranged irregularly. Among the three types of pitch-based carbon fibers mentioned above, those with a radial structure have a fiber surface that cleaves in the direction along the fiber axis during the carbonization or graphitization process, and this unfinished part becomes defective, resulting in fiber formation. It had the disadvantage of significantly lowering the strength. On the other hand, the random composition does not cause the above cleavage and is strong CI-i'+! l”C・
However, there is a limit to the regularity of M construction. Carbon fibers with an onion structure having an arrangement are the most excellent.It is known that such carbon fibers with an onion structure can be produced by melt spinning, but in the prior art, onion structure yarns are produced by melt spinning. It was not possible to produce the carbon fiber stably under special conditions such as on a spinning vine. 7) By controlling the flow behavior of bamboo pitch, we devised a method to stably produce 1q of onion-structured yarn, and arrived at the present invention. After melt-spinning the pitch of H, infusibility treatment and carbonization or further graphitization treatment is carried out to produce carbon fiber, r! (2) Once enlarged /, = molten metal 11 pip flow path
1] U manufacturing method for carbon fiber according to item 1, in which the reduction is performed for 1 hour within the range of 47 i ¥ 1 crystallization. By employing such a configuration, the present invention is the first to produce a high-strength, high-elasticity, high-elasticity f-shaped carbon fiber with a Δ-'-A structure that is stable even when formed into a multifilament 1. ] - produced within the leaf. In particular, the present invention includes J, 200 holes or more, and even E.
Even if a large number of balls (more than 500 holes) are used, it is still possible to create a pip-type fiber braid with a stable and uniform onion structure. 5. Pitch exhibiting optical anisotropy is carbonized and black 64) Forms a good graphite drawing immediately after the annealing process, achieving high strength and high bullet rate of 111. In the present invention, optical anisotropy 1 (1. If the pitch is observed under polarized light, the pitch is observed under polarized light) - After embedding in the boxy resin, the surface is When observed with orthogonal polarization using a regular polarization microscope, anisotropic 1
There is also a method to judge by observing the change in color using a bleached test plate. Several methods are already known for producing such a different pitch of ↑η. For example, JP-A-49-19
127, JP-A-54-160427, JP-A-57-168989, etc., but any of these known anisotropic pitches may be applied to the present invention. I can do it. The component exhibiting such optical anisotropy accounts for 60% or more of the pitch, preferably 75% or more, and more preferably 90% or more.
% or more - selected from the viewpoint of onion structuring and graphitizability. In the present invention, when such pitch is melt-spun, it is essential to enlarge the flow path before discharge. For example, as shown in FIG. 1, an onion-structured yarn is constructed in which the flow of molten pitch from channel 1 is expanded in a direction substantially perpendicular to the flow in channel 2, and then discharged from discharge hole 3. is obtained. The reason why onion-structured yarns can be obtained with the above configuration is not clear, but the point is that onion-structured yarns can be obtained by enlarging the narrow channel. The above enlargement process is shown in Fig. 1 as A-31 (J flow path 2
The ratio of the maximum cross-sectional area of the channel 1 to the minimum cross-sectional area of the flow path 1 can be expressed as 1, but in order to form an onion structure, this ratio must of course be better than 1, but in addition 10
J Mej, 20 or more is preferable for Q4j. Also, making the channel 1 as narrow as possible and increasing the shear in it has a favorable effect on the formation of A-ion 4F4. The magnitude of the shear in the channel is determined by the shear rate expressed by the following equation (1). Defined by γ. 7-32Q/πD3・・・・・・・・・・・・(1) [
Q: Bituji flow crystal (cm3./sea)l): Channel diameter (Cm)] In order to form an onion structure, it is necessary to
1. Shear velocity γ is 50 sec-+ or more, more preferably 100 sec-1 or more, preferably 200 sec for fj.
-1 and above-Totial. In the above equation (1), if a non-circular flow path is adopted, (-1-1 gold hole diameter, apply the C1 diameter when the hole diameter is changed to a circle with the same cross-sectional area, and The velocity γ is the diameter of the channel at the smallest part of the cross-sectional area of the channel - 'c'' it.Furthermore, the degree of shearing in the channel 1α is defined by the speed of the pickpocketing speed and the time to undergo shearing. It is even more strongly influenced by the orientation formation parameter f expressed by the following equation (2). Residence time (sec) 1 The average residence time 1 in the flow path in the above equation can be calculated from the following equation (3). 1-πD2Q/AQ...<3) [ α: Goodness of channel (cm)] In the present invention, the orientation formation parameter f lfi in the channel before expansion is in the range of 1.0 or more, preferably 50 or more to stabilize the orientation of the onion structure. In the present invention, after enlarging the flow path, the pitch flow is divided (
) or merging is also possible, but the molecular IE is suitable for diversion according to each field hole and J! After Llk, it is preferable to expand the flow path. In addition, in the present invention, after the flow path is expanded, the residence time until the molten bidge is discharged becomes too large. It is preferable not to overdo it. In addition, in the present invention, if the flow path is expanded once and then the flow path is contracted downstream, the flow will be made uniform! However, it is also possible to reduce the flow 111 between multiple flows. Further, by varying the magnitude of shear defined by equations (1) and (2) in the reduction portion, the rule iQ of the onion structure can be varied. Various shapes may be adopted, as illustrated in FIG. Furthermore, as stated above, the expansion of the flow path or the reduction after expansion of the flow path as described in (3) above in the present defense may involve mixing both types or may be repeated multiple times. By controlling the flow behavior so as to expand the pitch flow, we were able to stably Iff the onion-structured yarn for the first time. In addition, as is conventionally known, do not perform high-temperature spinning that exceeds the spinning temperature by more than 100°C above the softening point. It has the advantage of being able to avoid a decrease in yarn strength due to caulking.Also, for the first time, the method of the present invention allows for easy installation of onion 4M carbon fiber silk multi-filament 1, which was previously impossible. In addition, in the present invention, when the flow path of the 111 gold discharge hole is enlarged, the enlarged part becomes a buffer area and has the effect of absorbing fluctuations such as tension fluctuations, so that the spinning state becomes stable.
It is also preferable because it has the effect of improving yarn spinning properties. According to the method of the present invention, spinning can be performed at a high speed that has not been achieved in the past. In other words, from equation (1) above, 1! I understand J: Since the pickpocketing speed is more dependent on the diameter of the spinneret hole than on the discharge MQ per single hole of the pitch, it is better to manually set the IF 2ri (IJ, if you want to increase the spinning speed). , [1 gold hole diameter can be set as large as the vertical diameter of Tagawa 111. Therefore, according to the /'j method of the present invention, for example, 160 m
/min or more, it is capable of spinning at a high speed of 3QOm/min or more than 200m/min, and depending on the conditions, it is also capable of spinning at super speeds of more than 1000m/min. Furthermore, the present invention has the advantage that it is possible to easily produce threaded filaments with an onion structure that have a uniform diameter even in such high-speed spinning. [Although extrusion is also possible, extrusion using an electrically resistant pump is preferred.] It is particularly applicable when using a die with a large number of 01 holes to form a uniform multifilament 1 or through a filtration process. -'CI'
! It is extremely effective when L, 1-1t 7+-. The diameter of the single fiber after spinning which is IJed by the method of the present invention is 3
A diameter of 0μ or less is appropriate, and preferably a diameter in the range of 5 to 30μ, and more preferably 7 to 20μ, in terms of thread breakage and strength. The bidge braid thus +Fj is then subjected to an infusible treatment, carbonized, and graphitized by the usual pre-method. A method of oxidizing with G can be applied.In addition to oxygen, it is also preferable to use an oxidizing gas such as A or NO2 from the viewpoint of the efficiency of the infusibility treatment. The fibers are then carbonized and graphitized, and any commonly used method can be applied. Examples of such carbonization include heating to 800 to 1700°C in a vacuum or an inert gas atmosphere. As a graphitization treatment, for example, there is a method of heat treatment at 1700° C. or higher in a vacuum or an inert gas atmosphere.The present invention will be explained in more detail with reference to Examples below.The measurement method in the Examples is as follows. According to the method shown below. 11- [Optical anisotropy] After embedding the sample in a Jnibo-1-based resin, it was subjected to a conventional method.The polished surface was prepared by Leitz Co., Ltd.
(') f< 1-1-10 P[- to N Observed using a microscope with a fouling 11m1 light method. The existence of the optical anisotropy-creating force I'F is 0 when observed with the polarized light shown in ■. [Soluble fraction] JrS-21125-21125-11 It was carried out by the 7'J method in combination with the filtration method. !rnej DSC-2
The measurement was carried out in a -C nitrogen atmosphere. Sample at 290℃
After heating the sample to room temperature, the sample was cooled to room temperature for 711 L, and the sample was back-adjusted for 711 liters of water. Measurements were then carried out to remove any factors that may disturb the baseline, such as 1. 1-element analysis] Yanagimoto Seisakusho CI-IN:]-Dar Ml-3! ~9
Using a sample decomposition furnace of 900~050'C, an oxidation furnace of 850°C, and a reduction furnace of 5b O'(J, helium flow of 3iJ
The measurement was carried out under a measuring thread I9 of 4180 mQ12-/min. [Measurement of strength and elongation] According to the method specified in JIS-R-7601. The fiber diameter was measured using a scanning electron microscope at a portion adjacent to the strength/elongation measuring section. In addition, the area of the cleaved fibers was determined from a microscopic photograph of the cross section. Example 1 =1-lutalbitch with a softening point of 80'C was crystallized and melted in a nitrogen atmosphere (raised to 410°C over about 1 hour), and then heat treated at 410°C for 12 hours while stirring at 30 ppm. . 3'Nitrogen pressure was applied at 80°C, insoluble matter was removed by filtration using 200 mesh glass beads, and low boiling point components were removed by vacuum treatment at 4.20°C and 5 mm t-1 (J). After embedding the obtained pitch in epoxy resin and polishing it, one observation using a reverse polarization microscope revealed that more than 90% of the pitch was optically anisotropic. The properties of the heat-treated pitch were as follows:
[%, softening point 340 °C. The glass transition temperature is 195)'C, and the elemental analysis results are:
93 wt% carbon, 3.7 wt% hydrogen, 1. (')r
It was 1%. Using III gold having the J configuration shown in Figure 3 (811), melt spinning was carried out at a spinning temperature of 380° C. and a spindle temperature of 375° C., and the spinning speed was Fa 6 (,) Om /' min r. 1] The shape of the gold part is dl, d;, d3, goodness % +'.
[+], O2, and O3, and the taper angle from the flow path 2 toward the field hole was 0. The density of the resulting spun yarn was approximately 1.3 g/cn+3. r of melt pitch! A degree is approximately 1.1 o/cm3r.
)is. This yarn was placed in a hot air circulation oven and subjected to infusibility treatment in air. The infusible treatment strip 1 is first heated at room temperature with a mesh size of 150
℃ in about 5 minutes, and at 150 ℃ it starts to dry.
Hold for 5 minutes. Next, heat the arm at 150-310°C at a rate of 1°C/min, and then heat to 310°C for 3 minutes.
The infusibility was completed by holding for 0 minutes. This infusible yarn was wetted at 5°C/min'r from room temperature to 1250°C to carbonize it. Table 1 summarizes the flow characteristics of the channel contents during spinning and the optical structure of the cross section of the obtained carbonized yarn. If the gold shape is shown in Figure 33a, △, [01
The one shown in the figure is designated as B. The diameter d2 of the flow path 2 represents the diameter at the point where the flow path 1 expands into the flow path 2, and corresponds to the maximum diameter of the flow path 2. Also, the shear speed T2 is the flow path 2.
The v1 diameter of is the square at the point d2. As is clear from Table 1, Experiment No. 001, which is an example of the present invention,
~5 shows high values for both the cracking strength and Young's modulus,
Furthermore, as a result of observing the fractured surfaces of these fibers with a scanning electron microscope, all of them showed concentric circular structures as shown in FIGS. 6a to 6e. Experiments No. 16 to 10, which are comparative examples, were the results of spinning without expanding the flow path. Experiment No. 36 had a radial IM structure, and experiments No. 007 to 10 had a random structure, and both had concentric circles. Didn't show it. In addition, the strength and Young's modulus values are both low.
. Example 2 The carbonized yarn obtained in Experiment Nos. 12 to 4 of Example 1 was heated to 4°C/m1n7 from room temperature and graphitized at 2500°C. Table 2 shows the cross-sectional optical anisotropy, structural history, strength characteristics, etc. of the graphitized yarn obtained. Table 2 Experiment No. Carbonized yarn Graphitization characteristic strength Young's modulus Cross-sectional structure 11 2 250 41 Concentric 1
2 3 240 38 13 4 260 34 14 9 200 31 The units in the random table are strength: Kq /mm2, Young S$-
:103! ] /mm2teal. Experiment Nos. 11 to 13, which are examples of the present invention, all have high strength and Young's modulus, and all have concentric cross-sectional structures, or Experiment No. 14, a comparative example, has low strength and Young's modulus. In addition, the cross-sectional structure is made of Rantom 17-structure. Example 3 Figure 4 shows the carbonized yarn in the same manner as in Example 1, except that gold was used. are shown in Table 3). The fractured surface of the obtained fibers was observed with a scanning electron microscope.
On the other hand, the lf4 construction in a concentric state was (1 east. Also, the strength of the carbonized yarn was 160Ko/m2, and the non-cross ratio was 4 Hllll / n1n12).
. Table 3 Flow path 1 Flow path 2 (i==1) (i=2>ffi] Diameter d! (mn1) 0.20
1.00 length ffi (mouth v)
0.25 5,00 zuri quick melon γi (sec
' ) 1300 H) Average song interval 11
1i (sec) 0.0074 3.8
Orientation formation parameter f1110 19 Example 4 18- A carbonized yarn was obtained in the same manner as in Example 1, except that the die having the configuration shown in FIG. 5 was used. Table 4 shows the shape of the mouthpiece and the fluidity in the flow path. Table 4 shows (puru, zuri 1
lfWγl~7'3 and orientation formation parameters f1~f3 are values calculated for the portions whose diameters are d1~d3, respectively. (When the fractured surface of the fiber 11 was observed with a scanning electron microscope, a concentric structure like J in Figure 7 was observed.) The strength of this carbonized fiber is 170 to 97 mm2. Young's modulus was 14 ton/mm2. Table 4 Flow path 1 Flow path 2 Flow path 3 (i-1) (i = 2) (i = 3) d
i O,201,001,00αl
O, 250, 754, 25θ
60γi i 300 30
10t i O,0(1740,293,
3ri 110 16 18 In the table, dl: diameter < mm), hi: length mm)
, θ: Taper angle, +1: Average Wtl retention time C,
fi: Shear speed (sec'), fi: orientation formation parameter. Example 5 The carbonized yarn of Example 1 and Experiment No. 2 was placed in chambers 7118 to 30.
The material was heated at a gastric velocity of 1°C/m2 and graphitized at 3000°C for 30 minutes. Iq black 1)) As a result of observing the fractured surface of the retaining thread with a scanning electron microscope, a concentric solid structure as shown in FIG. 8 was observed. The strength of this graphitized thread is 280K(]/mm2, and the A7 rate is 43.
tons/mm2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流些の拡大を示J流路断面の概略図で
ある。第2図は本発明の拡大、縮小を有J−る各種流路
の断面形状を示づ概略図であり、第3図811)は実m
例1で用いた口金内の流路を示し、第4図、第5図は実
施例3.4に適用した【]金内流路の断面を示す。第6
図ならびに第7図は本発明で1qられる繊組断面で、前
当が実施例1で得られた炭化糸、接当が実施例4で′1
9だ炭化糸の同心円状構造を示?l’ 5000倍の走
査型電子顕微鏡写真図であり、第8図は実施例55で+
Sた黒1()止糸の断面4M造を50001Aの走査型
電子顕微鏡で観察した写貞図である。 図中、 1.2:流路 3:11出孔 dl、d2、d3:流路1.2.3の各直径αl 、Q
 2 、α3:流路1.2.3の各長ざ0:WL路が右
するテーパ角度 特許出願人  東  し  株  式  会  社21
− 箔17 第2図 第4図 第6図 第7図 第S図
FIG. 1 is a schematic diagram of a cross section of a J flow path showing an enlarged view of the flow of the present invention. FIG. 2 is a schematic diagram showing the cross-sectional shapes of various flow channels with enlargement and reduction according to the present invention, and FIG.
The channel in the die used in Example 1 is shown, and FIGS. 4 and 5 show cross sections of the channel in the die used in Example 3.4. 6th
The figure and FIG. 7 are cross sections of the fibers obtained by 1q in the present invention, where the front part is the carbonized yarn obtained in Example 1, and the butt part is '1' in Example 4.
9 Shows the concentric structure of carbonized yarn? 1' is a scanning electron micrograph at a magnification of 5000 times, and FIG. 8 is a +
It is a photographic view of the cross-section of Staguro 1 () 4M structure observed with a 50001A scanning electron microscope. In the figure, 1.2: flow path 3: 11 outlet dl, d2, d3: each diameter αl, Q of flow path 1.2.3
2, α3: Each length of the flow path 1.2.3 0: Taper angle where the WL path is on the right Patent applicant Azuma Shi Co., Ltd. 21
- Foil 17 Figure 2 Figure 4 Figure 6 Figure 7 Figure S

Claims (2)

【特許請求の範囲】[Claims] (1)光学的異方性のピッチを溶融紡糸した後、不融化
処理および炭化あるいはさらに黒鉛化処理して炭素繊維
を製造するに際し、吐出前に溶融ピッチの流路を拡大す
ることを特徴とする炭素繊維の製造方法。
(1) After melt-spinning optically anisotropic pitch, the flow path of the molten pitch is expanded before being discharged when manufacturing carbon fiber by infusibility treatment and carbonization treatment or further graphitization treatment. A method for manufacturing carbon fiber.
(2)いったん拡大した溶融ピッチの流路を再度縮小す
ることを特徴とする特許請求の範囲第1項記載の炭素繊
維の製)貴方法。
(2) The method for producing carbon fibers according to claim 1, characterized in that the flow path of the molten pitch that has been expanded is once again reduced.
JP4266683A 1983-03-15 1983-03-15 Production of carbon fiber Pending JPS59168127A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4266683A JPS59168127A (en) 1983-03-15 1983-03-15 Production of carbon fiber
PCT/JP1984/000101 WO1984003722A1 (en) 1983-03-15 1984-03-14 Process for producing carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4266683A JPS59168127A (en) 1983-03-15 1983-03-15 Production of carbon fiber

Publications (1)

Publication Number Publication Date
JPS59168127A true JPS59168127A (en) 1984-09-21

Family

ID=12642336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4266683A Pending JPS59168127A (en) 1983-03-15 1983-03-15 Production of carbon fiber

Country Status (2)

Country Link
JP (1) JPS59168127A (en)
WO (1) WO1984003722A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60104528A (en) * 1983-11-10 1985-06-08 Kashima Sekiyu Kk Preparation of carbon fiber
JPS60194120A (en) * 1984-03-08 1985-10-02 Mitsubishi Chem Ind Ltd Production of pitch fiber
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber
JPS60259631A (en) * 1984-05-31 1985-12-21 Mitsubishi Chem Ind Ltd Production of pitch carbon fiber
JPS6134223A (en) * 1984-07-24 1986-02-18 Dainippon Ink & Chem Inc Production of pitch based carbon fiber
JPS61138719A (en) * 1984-12-10 1986-06-26 Sumitomo Chem Co Ltd Melt-spinning process
JPS61186520A (en) * 1985-02-07 1986-08-20 Mitsubishi Chem Ind Ltd Production of pitch carbon yarn
JPS6241320A (en) * 1985-08-16 1987-02-23 Kashima Sekiyu Kk Carbon yarn having section with wavy structure
JPS62170527A (en) * 1986-01-22 1987-07-27 Osaka Gas Co Ltd Production of pitch-based carbon fiber
JPS62250226A (en) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd Production method for carbon fiber
JPS6399327A (en) * 1986-10-09 1988-04-30 Idemitsu Kosan Co Ltd Spinning of pitch yarn
US4816202A (en) * 1986-10-09 1989-03-28 Idemitsu Kosan Co., Ltd. Method of melt spinning pitch
US4859381A (en) * 1986-01-22 1989-08-22 Osaka Gas Company Limited Process for preparing pitch-type carbon fibers
US5145616A (en) * 1988-06-10 1992-09-08 Teijin Limited Process for the preparation of pitch-based carbon fiber
US5202072A (en) * 1989-02-16 1993-04-13 E. I. Du Pont De Nemours And Company Pitch carbon fiber spinning process
US5437927A (en) * 1989-02-16 1995-08-01 Conoco Inc. Pitch carbon fiber spinning process

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4576811A (en) * 1983-11-03 1986-03-18 E. I. Du Pont De Nemours And Company Process for adjusting the fiber structure of mesophase pitch fibers
JPH0791698B2 (en) * 1988-06-10 1995-10-04 帝人株式会社 Pitch yarn carbon fiber manufacturing method
US5037589A (en) * 1988-11-18 1991-08-06 Nippon Steel Corporation Method of producing mesophase pitch type carbon fibers and nozzle for spinning same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1019919A (en) * 1972-03-30 1977-11-01 Leonard S. Singer High modulus, high strength carbon fibers produced from mesophase pitch

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0144805B2 (en) * 1983-11-10 1989-09-29 Kashima Sekyu Kk
JPS60104528A (en) * 1983-11-10 1985-06-08 Kashima Sekiyu Kk Preparation of carbon fiber
JPS60194120A (en) * 1984-03-08 1985-10-02 Mitsubishi Chem Ind Ltd Production of pitch fiber
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber
JPS60252723A (en) * 1984-05-30 1985-12-13 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber
JPH0545685B2 (en) * 1984-05-30 1993-07-09 Mitsubishi Chem Ind
JPS60259631A (en) * 1984-05-31 1985-12-21 Mitsubishi Chem Ind Ltd Production of pitch carbon fiber
JPS6134223A (en) * 1984-07-24 1986-02-18 Dainippon Ink & Chem Inc Production of pitch based carbon fiber
JPS61138719A (en) * 1984-12-10 1986-06-26 Sumitomo Chem Co Ltd Melt-spinning process
JPS61186520A (en) * 1985-02-07 1986-08-20 Mitsubishi Chem Ind Ltd Production of pitch carbon yarn
JPH0415289B2 (en) * 1985-08-16 1992-03-17 Petoca Ltd
JPS6241320A (en) * 1985-08-16 1987-02-23 Kashima Sekiyu Kk Carbon yarn having section with wavy structure
WO1990007594A1 (en) * 1986-01-22 1990-07-12 Hiroaki Morita Process for producing pitch-base carbon fiber
US4859381A (en) * 1986-01-22 1989-08-22 Osaka Gas Company Limited Process for preparing pitch-type carbon fibers
JPS62170527A (en) * 1986-01-22 1987-07-27 Osaka Gas Co Ltd Production of pitch-based carbon fiber
JPH0413450B2 (en) * 1986-01-22 1992-03-09 Oosaka Gasu Kk
JPS62250226A (en) * 1986-04-18 1987-10-31 Mitsubishi Chem Ind Ltd Production method for carbon fiber
US4887957A (en) * 1986-10-09 1989-12-19 Idemitsu Kosan Co., Ltd. Nozzle for melt spinning of pitch and method for spinning pitch
JPS6399327A (en) * 1986-10-09 1988-04-30 Idemitsu Kosan Co Ltd Spinning of pitch yarn
US4816202A (en) * 1986-10-09 1989-03-28 Idemitsu Kosan Co., Ltd. Method of melt spinning pitch
US5145616A (en) * 1988-06-10 1992-09-08 Teijin Limited Process for the preparation of pitch-based carbon fiber
US5202072A (en) * 1989-02-16 1993-04-13 E. I. Du Pont De Nemours And Company Pitch carbon fiber spinning process
US5437927A (en) * 1989-02-16 1995-08-01 Conoco Inc. Pitch carbon fiber spinning process
US5578330A (en) * 1989-02-16 1996-11-26 Conoco Inc. Pitch carbon fiber spinning apparatus

Also Published As

Publication number Publication date
WO1984003722A1 (en) 1984-09-27

Similar Documents

Publication Publication Date Title
JPS59168127A (en) Production of carbon fiber
Edie et al. Melt-spun non-circular carbon fibers
JPH02127509A (en) Fibrous material of polytetrafluoroethylene and production thereof
EP0159365B1 (en) Carbon fibers with high strength and high modulus, and process for their production
JPS59168126A (en) Production of pitch based carbon fiber
CA1314365C (en) High modulus pitch-based carbon fiber and method for preparing same
EP0223199A2 (en) Process for producing high-strenght, high-modulus carbon fibers
US5536486A (en) Carbon fibers and non-woven fabrics
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
Mochida et al. Control of transversal texture in circular mesophase pitch-based carbon fibre using non-circular spinning nozzles
US4948574A (en) Method of manufacturing of pitch-base carbon fiber
JPH0781211B2 (en) Carbon fiber manufacturing method
JPS58220821A (en) Acrylic carbon fiber bundle with high strength and elongation and its production
JPS6241320A (en) Carbon yarn having section with wavy structure
JPS60252723A (en) Production of pitch based carbon fiber
JPS59168125A (en) Production of carbon fiber
JPS59168113A (en) Melt-spinning of multifilaments for carbon fiber
JPS59168115A (en) Melt spinning for pitch
KR870000534B1 (en) Carbon fiber and it&#39;s making method
JPS59168124A (en) Production of carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS61108725A (en) Production of pitch carbon yarn having novel structure
JPH05272017A (en) Carbon fiber and its production
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JP4601875B2 (en) Carbon fiber manufacturing method