JPH07187833A - Carbon fiber reinforced carbon composite material - Google Patents

Carbon fiber reinforced carbon composite material

Info

Publication number
JPH07187833A
JPH07187833A JP5333223A JP33322393A JPH07187833A JP H07187833 A JPH07187833 A JP H07187833A JP 5333223 A JP5333223 A JP 5333223A JP 33322393 A JP33322393 A JP 33322393A JP H07187833 A JPH07187833 A JP H07187833A
Authority
JP
Japan
Prior art keywords
composite material
carbon fiber
thickness direction
pitch
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5333223A
Other languages
Japanese (ja)
Inventor
Iwao Yamamoto
巌 山本
Akira Nakakoshi
明 中越
Nobuyuki Onishi
伸幸 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5333223A priority Critical patent/JPH07187833A/en
Publication of JPH07187833A publication Critical patent/JPH07187833A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain a carbon fiber reinforced composite material having gradation of thermal conductivity and electric conductivity in one direction which is useful for walls of a first furnace of a nuclear fusion device by using a pitch- base carbon fiber having a specified composition, structure and diameter. CONSTITUTION:In this carbon fiber reinforced carbon composite material (C/C composite material), pitch-base carbon fibers are oriented substantially in the thickness direction. The carbon fiber has such a structure that the central part of the fiber has a laminar structure of folded or bent graphite mesh planes and that the center structure is larger than the outer structure. The ratio of the thermal conductivity in the perpendicular direction to the thickness to the thermal conductivity in the thickness direction exceeds 2, and the thermal conductivity in the thickness direction is >=7W/cm. deg.C. It is preferable that the pitch-base carbon fibers have >=15mum diameter. A metal substrate 3 substantially perpendicular to the thickness direction of the C/C composite material is joined with a brazing material 4 to the opposite surface of the composite body 2 to the plasma facing plane 6. Thus, wall of a first furnace disposed facing to plasma in a nuclear fusion device is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱特性に優れ、例え
ば、核融合炉壁材に有効に使用できる炭素繊維強化複合
材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon fiber reinforced composite material which has excellent thermal properties and can be effectively used as a fusion reactor wall material.

【0002】[0002]

【従来の技術】核融合装置の第一壁はプラズマに面して
設置される核融合装置における構造物全般を指し、例え
ばリミタ、ダイバータ、ブランケット等およびその一部
を指すが、この第一壁はプラズマに近接して設置される
ため、プラズマからの熱負荷、粒子負荷を受ける等、厳
しい環境下にある。特に、リミタ、ダイバータ等は高熱
負荷を受けるため、熱負荷条件は厳しい。このような条
件下で第一壁の材料として用いられているものの一つに
グラファイトがある。グラファイトは、プラズマ不純物
の観点から優れた低原子番号材であり、高い耐熱衝撃性
も有している。
2. Description of the Related Art The first wall of a nuclear fusion device refers to all structures in the nuclear fusion device installed facing a plasma, such as a limiter, a diverter, a blanket and a part thereof. Since it is installed close to plasma, it is in a severe environment where it receives heat load and particle load from plasma. Especially, the limiter, the diverter, etc. are subjected to a high heat load, so that the heat load condition is severe. One of the materials used as the material of the first wall under such conditions is graphite. Graphite is an excellent low atomic number material from the viewpoint of plasma impurities, and also has high thermal shock resistance.

【0003】グラファイトを使用した従来の最も代表的
な第一壁は、グラファイト・タイルを金属製の基板に固
定板、連結材を用いて固定したものである。プラズマに
面するグラファイト・タイルにプラズマからの入熱があ
ると、その熱量は接触熱伝達により基板に伝達され、ま
た、熱放射により散逸される。この方式では、グラファ
イト・タイルと基板とは、その機械的結合により接触し
ているのみであるから、その接触部分の熱伝達特性は十
分とは言えず、長時間或は高い熱負荷に対しては冷却が
不十分となる傾向があった。
The most typical conventional first wall using graphite is a graphite tile fixed to a metal substrate using a fixing plate and a connecting material. When the graphite tile facing the plasma has heat input from the plasma, that amount of heat is transferred to the substrate by contact heat transfer and dissipated by thermal radiation. In this method, since the graphite tile and the substrate are only in contact with each other due to their mechanical coupling, the heat transfer characteristics of the contact portion cannot be said to be sufficient, and they can withstand a long time or high heat load. Tended to be poorly cooled.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述し
た2つの従来の第一壁は次に示すような問題点を有して
いる。高い熱負荷(例えば、2km/cm2 ×3秒、或
は、4km/cm2 ×1秒以上)が第一壁に与えられる
と、表面が2800℃程度以上の温度に達し、グラファ
イト・タイルの蒸気圧は10-3気圧程度以上となり、グ
ラファイト・タイルの表面からの昇華損耗厚みは数10
μm/s程度以上と大きくなる。この結果、プラズマ中
への炭素原子の混入が増大し、プラズマに不純物制御
上、大きな悪影響を及ぼす、という問題点がある。ま
た、グラファイト表面の損耗も大きくなり、第一壁の寿
命が短くなるという問題点もある。
However, the above-mentioned two conventional first walls have the following problems. When a high heat load (for example, 2 km / cm 2 × 3 seconds or 4 km / cm 2 × 1 second or more) is applied to the first wall, the surface reaches a temperature of about 2800 ° C. or more, and the graphite tile The vapor pressure is about 10 -3 atmospheres or more, and the sublimation wear thickness from the surface of the graphite tile is several tens.
It becomes as large as about μm / s or more. As a result, there is a problem in that the amount of carbon atoms mixed in the plasma increases, which has a great adverse effect on the plasma in controlling impurities. There is also a problem that the wear of the graphite surface is increased and the life of the first wall is shortened.

【0005】これらの問題点は、既存の核融合装置にお
いては、上記のような高熱負荷が第一壁に与えられると
いうことは殆どないので、従来の第一壁で十分にその機
能を果たすのであるが、安全性をより一層向上させるた
め、また、将来の核融合装置では、現在よりも更に高い
熱負荷が長時間にわたり定常的に第一壁に与えられるこ
とが予想されるため、前記課題を解決した第一壁が望ま
れている。
[0005] In the existing nuclear fusion device, these problems are seldom given the above-mentioned high heat load to the first wall, so that the conventional first wall sufficiently fulfills its function. However, in order to further improve safety, and in future fusion devices, it is expected that a higher heat load than the present will be constantly applied to the first wall for a long time, so The first wall that solved the problem is desired.

【0006】そこで、本出願人は、先に上記の課題が解
決された炭素繊維強化炭素複合材を提供した。例えば特
開平2−30664号公報において、核融合装置のプラ
ズマに面して設置される第一壁に特に適した炭素繊維強
化複合材料として、炭素繊維が実質的に厚み方向に配向
しており、厚み方向に直角の方向の熱伝導率に対する厚
み方向の熱伝導率の比率が2以上であり、かつ厚み方向
の熱伝導率が3W/cm・℃以上である炭素繊維強化炭
素複合材料を提案した。しかしながら、更に熱伝導率が
向上した炭素繊維強化炭素複合材料が要望されるように
なり、従来のものでは必ずしも十分とはいえない状況に
なった。
Therefore, the present applicant has previously provided a carbon fiber reinforced carbon composite material in which the above problems are solved. For example, in Japanese Unexamined Patent Publication No. 2-30664, carbon fibers are substantially oriented in the thickness direction as a carbon fiber reinforced composite material particularly suitable for the first wall installed facing the plasma of a nuclear fusion device, We proposed a carbon fiber reinforced carbon composite material in which the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is 2 or more and the thermal conductivity in the thickness direction is 3 W / cm · ° C or more. . However, there has been a demand for a carbon fiber reinforced carbon composite material having further improved thermal conductivity, and it has become difficult to say that the conventional material is sufficient.

【0007】[0007]

【課題を解決するための手段】そこで本発明者らは、上
記要求を満たすような炭素繊維強化炭素複合材料を提供
すべく、更に鋭意検討した結果、その内部構造が特定の
炭素繊維、好ましくは、繊維直径が15μm以上のもの
を使用すれば、著しく熱伝導率の向上した炭素繊維強化
炭素複合材料が得られることを見い出し、本発明を完成
するに至った。
Therefore, as a result of further diligent studies, the inventors of the present invention provided a carbon fiber reinforced carbon composite material satisfying the above-mentioned requirements, and as a result, the internal structure of the carbon fiber was preferably a specific carbon fiber, preferably It was found that a carbon fiber reinforced carbon composite material having a remarkably improved thermal conductivity can be obtained by using a fiber having a fiber diameter of 15 μm or more, and completed the present invention.

【0008】即ち、本発明の要旨は、繊維の中心部に、
黒鉛網面が積層した構造が屈曲または褶曲してなる組織
構造であって、外周部の組織構造よりも大きな組織構造
を有するピッチ系炭素繊維が実質的に厚み方向に配向し
ており、かつ厚み方向に直角の方向の熱伝導率に対する
厚み方向の熱伝導率の比率が2以上であり、厚み方向の
熱伝導率が7W/cm℃以上である炭素繊維強化炭素複
合材料に存する。
[0008] That is, the gist of the present invention is that the central portion of the fiber is
A structure in which the graphite network surface is laminated is bent or folded, and pitch-based carbon fibers having a structure structure larger than that of the outer periphery are substantially oriented in the thickness direction, and the thickness is The carbon fiber reinforced carbon composite material has a ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the direction of 2 or more and the thermal conductivity in the thickness direction of 7 W / cm ° C. or more.

【0009】以下、本発明を詳細に説明する。まず、本
発明において使用される炭素繊維強化複合材料(C/C
複合材)は、後述のような内部構造の炭素繊維が実質的
に厚み方向に配向しており、厚み方向に直角の方向の熱
伝導率に対する厚み方向の熱伝導率の比率が2以上であ
り、かつ厚み方向の熱伝導率が7.0W/cm・℃以上
である。
The present invention will be described in detail below. First, the carbon fiber reinforced composite material (C / C used in the present invention
In the composite material), carbon fibers having an internal structure as described below are substantially oriented in the thickness direction, and the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is 2 or more. In addition, the thermal conductivity in the thickness direction is 7.0 W / cm · ° C. or higher.

【0010】本発明で使用する炭素繊維は、特に繊維軸
方向に熱伝導率が高い高特性のピッチ系炭素繊維を用い
ることを特徴としている。具体的には本発明で用いる炭
素繊維を得るための紡糸ピッチとしては、配向しやすい
分子種が形成されており、光学的に異方性の炭素繊維を
与えるようなものであれは特に制限はない。
The carbon fiber used in the present invention is characterized by using high-performance pitch-based carbon fiber having a high thermal conductivity particularly in the fiber axis direction. Specifically, the spinning pitch for obtaining the carbon fiber used in the present invention is not particularly limited as long as it is a molecular species that is easily oriented and forms an optically anisotropic carbon fiber. Absent.

【0011】紡糸ピッチを得るための炭素質原料として
は、例えば、石炭系のコールタール,コールタールピッ
チ,石炭液化物,石油系の重質油,タール,ピッチ,ま
たは、ナフタレンやアントラセンの触媒反応による重合
反応生成物等が挙げられる。これらの炭素質原料には、
フリーカーボン、未溶解石炭、灰分、触媒等の不純物が
含まれているが、これらの不純物は、濾過、遠心分離、
あるいは溶剤を使用する静置沈降分離等の周知の方法で
あらかじめ除去しておくことが望ましい。
As the carbonaceous raw material for obtaining the spinning pitch, for example, coal-based coal tar, coal tar pitch, coal liquefaction, petroleum-based heavy oil, tar, pitch, or a catalytic reaction of naphthalene or anthracene And the like. These carbonaceous raw materials include:
Impurities such as free carbon, undissolved coal, ash, and catalysts are contained, but these impurities are filtered, centrifuged,
Alternatively, it is desirable to remove in advance by a well-known method such as stationary sedimentation separation using a solvent.

【0012】また、前記炭素質原料を、例えば、加熱処
理した後、特定溶剤で可溶分を抽出するといった方法、
あるいは、水素供与性溶剤、水素ガスの存在下に水添処
理するといった方法で予備処理を行っておいても良い。
本発明においては、40%以上、好ましくは、70%以
上、さらに好ましくは90%以上の光学的異方性組織を
含む炭素質原料が好適であり、このために前述の炭素質
原料を必要によっては、通常350〜500℃、好まし
くは380〜450℃で、2分から50時間、好ましく
は5分〜5時間、窒素、アルゴン、水蒸気等の不活性ガ
ス雰囲気下、あるいは、吹き込み下に加熱処理すること
がある。
[0012] In addition, for example, a method of subjecting the carbonaceous raw material to heat treatment and then extracting a soluble component with a specific solvent,
Alternatively, the pretreatment may be performed by a method such as hydrogenation treatment in the presence of a hydrogen donating solvent or hydrogen gas.
In the present invention, a carbonaceous raw material having an optically anisotropic structure of 40% or more, preferably 70% or more, more preferably 90% or more is suitable. Is usually 350 to 500 ° C., preferably 380 to 450 ° C., for 2 minutes to 50 hours, preferably 5 minutes to 5 hours under an atmosphere of an inert gas such as nitrogen, argon, steam or the like, or heat treatment under blowing. Sometimes.

【0013】本発明でいうピッチの光学的異方性組織割
合は、常温下、偏光顕微鏡でのピッチ試料中の光学的異
方性を示す部分の面積割合として求めた値である。具体
的には、例えば、ピッチ試料を数mm角に粉砕したもの
を、常法にしたがって2cm直径の樹脂の表面のほぼ全
面に試料片を埋め込み、表面を研磨後、表面全体をくま
なく偏光顕微鏡(100倍率)下で観察し、試料の全表
面積に占める光学的異方性部分の面積の割合を測定する
ことによって求める。
The ratio of the optically anisotropic structure of the pitch in the present invention is a value obtained as the area ratio of the portion showing the optical anisotropy in the pitch sample under a polarization microscope at room temperature. Specifically, for example, a pitch sample crushed into a few mm square is embedded with a sample piece on almost the entire surface of a resin having a diameter of 2 cm according to a conventional method, the surface is polished, and then the entire surface is covered with a polarizing microscope. It is determined by observing under (100 magnification) and measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.

【0014】このようなメソフェーズピッチを、公知の
方法を以って紡糸し、ピッチ繊維を得る。この際、ピッ
チ分子の繊維軸方向への配向を促進するために、糸切れ
や脈動の起きない範囲で、ノズルの吐出孔に於けるピッ
チの粘度を小さくする条件を以って紡糸を行うことが好
ましい。紡糸の際、ノズルから吐出速度と引き取り速度
を調節することで得られるピッチ繊維の繊維径を調節す
ることが出来る。本発明の炭素繊維は繊維径が5μm以
上、好ましくは、15μm以上、特に好ましくは15〜
50μm、更に好ましくは18〜40μmであるものが
好適である。このような特定の繊維径の炭素繊維を得る
には、炭化及び黒鉛化時の繊維径の収縮を2〜3割りと
見込んで紡糸を行いピッチ繊維を得ればよい。
Such mesophase pitch is spun by a known method to obtain pitch fibers. At this time, in order to promote the orientation of the pitch molecules in the fiber axis direction, the spinning should be performed under the condition that the viscosity of the pitch in the discharge hole of the nozzle is reduced within a range where yarn breakage or pulsation does not occur. Is preferred. During spinning, the fiber diameter of the pitch fiber obtained by adjusting the discharge speed and the take-up speed from the nozzle can be adjusted. The carbon fiber of the present invention has a fiber diameter of 5 μm or more, preferably 15 μm or more, particularly preferably 15 μm or more.
It is preferably 50 μm, more preferably 18 to 40 μm. In order to obtain a carbon fiber having such a specific fiber diameter, spinning may be performed by anticipating the shrinkage of the fiber diameter at the time of carbonization and graphitization to be 20 to 30% to obtain a pitch fiber.

【0015】得られたピッチ繊維に不融化処理を施し不
融化繊維を得る。不融化方法は、空気、酸素、オゾン、
二酸化窒素等の酸化性気体中で加熱する方法や、硝酸等
の酸化性液体中に浸漬する方法等、任意の公知の不融化
方法を用いることができるが、それらの不融化条件は、
次の炭化または黒鉛化の過程で、該不融化繊維の中心部
のみが溶融炭化する、即ち、ピッチ繊維の外周部のみを
不融性にする条件に設定する必要がある。例えば、ピッ
チ繊維を空気中で加熱して不融性にする方法では、加熱
条件を通常の不融化よりも低温および/または短時間に
することにより、ピッチ繊維の外周部のみを不融性にす
ることができるし、又、時間、温度は変えずに不融化を
空気より酸化性の弱い雰囲気で行ってもよい。具体的な
その条件については、原料ピッチの種類、紡糸した糸径
等によって異なるため、実際に用いる際にピッチ繊維の
外周部のみを不融化する条件を適宜選定しうる。
The obtained pitch fibers are infusibilized to obtain infusibilized fibers. The infusibilization method is air, oxygen, ozone,
A method of heating in an oxidizing gas such as nitrogen dioxide, a method of immersing in an oxidizing liquid such as nitric acid, or the like, any known infusibilizing method can be used, but those infusibilizing conditions are:
In the subsequent carbonization or graphitization process, it is necessary to set the conditions such that only the central portion of the infusible fiber is melt carbonized, that is, only the outer peripheral portion of the pitch fiber is made infusible. For example, in the method of heating the pitch fibers in air to make them infusible, the heating conditions are set to a lower temperature and / or a shorter time than the usual infusibilization to make only the outer peripheral portions of the pitch fibers infusible. Alternatively, the infusibilization may be performed in an atmosphere having a weaker oxidizing property than air without changing the time and the temperature. The specific conditions differ depending on the type of raw material pitch, the diameter of the spun yarn, and the like, and therefore the conditions for making the outer peripheral portion of the pitch fiber infusible can be appropriately selected when actually used.

【0016】得られた不融化繊維を炭化または黒鉛化に
必要な温度で窒素またはアルゴンガス等の不活性ガス中
で焼成することにより、炭素繊維を得る。不融化繊維は
炭素化していく過程で、その中心部は十分に不融化され
ていないので熱溶融するが、外周部は溶融しないため
に、中心部は液相炭化、外周部は固相炭化の炭化経路を
たどる。一般に炭素材料の物性、特性は、10Åから1
000Å程度の大きさで評価される結晶子の構造および
その結晶子が集合した構造、すなわち0.1μmから1
00μm程度の大きさで評価される組織構造によって支
配される(大谷杉郎、真田雄三著、炭素化工学の基礎
オーム社(1980)130)が、液相炭化と固相炭化
を比較すると、液相炭化では、メソフェーズが溶融状態
で再配列しながら炭素化されるために、黒鉛結晶子、組
織構造ともに大きくなる。従って本研究で得られる炭素
繊維は、繊維中心部が外周部よりも遙かに組織構造が大
きく発達した構造となり、3000℃以上で焼成した場
合には、黒鉛結晶も大きくなり、a軸方向の広がりであ
るLaは1000Å以上にも達する。高弾性率ピッチ系
炭素繊維の組織構造としては、ラジアル型、ランダム
型、オニオン型等が知られており、これは紡糸時のピッ
チの流れに依るとされている(大谷杉郎等著、炭素繊維
近代編集(1983)197)が、本研究で得られる
炭素繊維は、特定の不溶化条件を用いることにより、炭
化時に中心部が溶融炭化するために、図1に示す如く中
心部の組織構造が外周部に比べ大きくなる。繊維中心部
と外周部の黒鉛結晶性の違いは、例えばμ−ラマン分光
法により、繊維断面の中心部および外周部を測定するこ
とによって確認できる。
The obtained infusible fiber is fired in an inert gas such as nitrogen or argon gas at a temperature required for carbonization or graphitization to obtain a carbon fiber. In the process of carbonizing the infusibilized fiber, its central portion is not sufficiently infusibilized and therefore it is heat-melted, but since the outer peripheral portion is not melted, the central portion is liquid-phase carbonized and the outer peripheral portion is solid-phase carbonized. Follow the carbonization route. Generally, the physical properties and characteristics of carbon materials are from 10Å to 1
The structure of crystallites evaluated by a size of about 000Å and the aggregated crystallites, that is, from 0.1 μm to 1
It is dominated by the organizational structure evaluated at a size of about 00 μm (Sugio Ohtani, Yuzo Sanada, Fundamentals of Carbonization Engineering)
Ohmsha (1980) 130) compares liquid-phase carbonization with solid-phase carbonization. In liquid-phase carbonization, the mesophase is carbonized while rearranged in the molten state, so that both the graphite crystallite and the structure become large. . Therefore, the carbon fiber obtained in this study has a structure in which the central part of the fiber has a much larger texture structure than the outer peripheral part, and when fired at 3000 ° C. or higher, the graphite crystal also becomes large and the a-axis direction The spread of La reaches over 1000Å. Radial type, random type, onion type, and the like are known as the structure structure of high-modulus pitch-based carbon fiber, which is said to depend on the flow of pitch during spinning (Otani Sugiro et al., Carbon Fiber (Modern Editing (1983) 197), the carbon fiber obtained in this study has a structure of the central part as shown in FIG. 1 because the central part melts and carbonizes at the time of carbonization by using a specific insolubilizing condition. Larger than the outer circumference. The difference in graphite crystallinity between the central portion and the outer peripheral portion of the fiber can be confirmed by measuring the central portion and the outer peripheral portion of the fiber cross section by, for example, μ-Raman spectroscopy.

【0017】また、この液相炭化により生成した、繊維
中心部の組織構造は、走査型電子顕微鏡で繊維の長さ方
向に対して垂直な断面を繊維径に応じて適宜4000倍
〜10000倍に拡大して観察することにより確かめる
ことが出来る。つまり組織中心部には0.4〜2μm以
上の長さを有する積層した組織構造が屈曲または褶曲し
てつながり存在しており、その組織構造の大きさは繊維
外周部の組織構造の大きさに比べ、積層部の長さまたは
厚みにおいて平均して2倍以上の大きさを有している。
且つ、この組織中心部の大きな組織構造を有する部分
は、組織断面全体の面積の4〜90%を占めている。通
常の炭素繊維は固相炭化の経路をたどるために原子の再
配列が抑制され、その屈曲または褶曲した組織構造は細
かい。ところが、本発明による炭素繊維は、炭化工程で
中心部が液相炭化するために、その断面組織において炭
素繊維中心部の屈曲または褶曲構造が炭素繊維外周部の
屈曲または褶曲構造に比べ非常に大きいという構造上の
特徴を有している。
The structure of the central portion of the fiber produced by the liquid-phase carbonization has a cross section perpendicular to the longitudinal direction of the fiber in a scanning electron microscope, which is appropriately 4000 times to 10,000 times according to the fiber diameter. It can be confirmed by magnifying and observing. That is, a laminated tissue structure having a length of 0.4 to 2 μm or more is present in the center of the tissue by bending or folding, and the size of the tissue structure is the same as the size of the tissue structure in the outer periphery of the fiber. In comparison, the length or thickness of the laminated portion is twice or more on average.
In addition, the portion having a large tissue structure at the center of the tissue occupies 4 to 90% of the total area of the tissue cross section. Since ordinary carbon fibers follow a solid-state carbonization route, the rearrangement of atoms is suppressed, and the bent or folded tissue structure is fine. However, in the carbon fiber according to the present invention, since the central portion undergoes liquid carbonization in the carbonization step, the bending or folding structure of the carbon fiber central portion in the cross-sectional structure is much larger than the bending or folding structure of the carbon fiber outer peripheral portion. It has the structural feature.

【0018】さらにまたこの炭素繊維は500〜640
00フィラメント、好ましくは2000〜8000フィ
ラメントに束ねた状態で必要に応じてツイスト処理して
使用されるが熱硬化性樹脂が繊維の束ねの内部に均一に
浸透することが重要である。この為に炭素繊維束は水蒸
気による解繊処理を行った後、表面を適当程度酸化処理
しておくと、良好な機械的強度を有するC/C複合材料
が得られるので好ましい。
Furthermore, this carbon fiber is 500 to 640.
00 filaments, preferably 2000 to 8000 filaments are bundled and twisted as needed, but it is important that the thermosetting resin uniformly penetrates into the bundle of fibers. For this reason, it is preferable to subject the carbon fiber bundle to a defibration treatment with steam and then to oxidize the surface to an appropriate degree because a C / C composite material having good mechanical strength can be obtained.

【0019】この解繊処理は複数個のローラーや金属バ
ーなどに炭素繊維束をこすりつたけり、又は水中で超音
波と炭素繊維を接触させたりして機械的に行なう方法と
空気,酸素,二酸化炭素,炭酸ガスなどの酸化性のガス
と200℃以上1800℃以下の温度で1分以上5時間
以内反応させて化学的に行なう方法のいずれかがとられ
る。
This defibration treatment is carried out mechanically by rubbing the carbon fiber bundles on a plurality of rollers or metal bars, or by contacting ultrasonic waves with carbon fibers in water, and air, oxygen, and dioxide. Either a method of chemically reacting with an oxidizing gas such as carbon or carbon dioxide at a temperature of 200 ° C. or more and 1800 ° C. or less for 1 minute or more and 5 hours or less is used.

【0020】表面を適当程度酸化処理する方法としては
空気,オゾン,フッ素,塩素ガス等の酸化性のガスと接
触させて行なう方法と、炭素繊維束を陽極にして電解液
中で通電し、電解酸化して行なう方法があり、いずれの
方法で行なうことも制約を受けない。解繊処理と表面の
酸化処理の度合いは炭素繊維の強度が殆ど損れない程度
に行なう。特に熱硬化性樹脂が炭素繊維束の内部にほぼ
均一に浸透する程度まで行なうのが好ましい。
As a method of oxidizing the surface to an appropriate degree, a method of contacting with an oxidizing gas such as air, ozone, fluorine, or chlorine gas, or a method in which a carbon fiber bundle is used as an anode and electricity is applied in an electrolytic solution to perform electrolysis There is a method of performing oxidation, and there is no restriction in performing either method. The defibration treatment and the surface oxidation treatment are performed to such an extent that the strength of the carbon fiber is hardly impaired. In particular, it is preferable that the thermosetting resin is permeated into the carbon fiber bundle almost uniformly.

【0021】本発明におけるC/C複合材は、次のよう
な方法によって得られる。まず、炭素繊維の長繊維を熱
硬化性樹脂に含浸し、これを加熱して半硬化させる。熱
硬化性樹脂としては、例えばフェノール樹脂、フラン樹
脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙げら
れるが、フェノール樹脂特にレゾール型のフェノール樹
脂が好適に使用できる。これらの熱硬化性樹脂は通常、
エタノールのようなアルコール類、ヘキサンのような炭
化水素あるいはアセトンといった溶剤で溶解希釈して用
いる。
The C / C composite material in the present invention is obtained by the following method. First, a long fiber of carbon fiber is impregnated with a thermosetting resin, and this is heated to be semi-cured. Examples of the thermosetting resin include phenol resin, furan resin, epoxy resin, unsaturated polyester resin, and the like, and phenol resin, particularly resol type phenol resin can be preferably used. These thermosetting resins are usually
It is dissolved and diluted with a solvent such as alcohols such as ethanol, hydrocarbons such as hexane or acetone.

【0022】熱硬化性樹脂溶液の濃度としては通常10
〜70wt%、好ましくは20〜60wt%の範囲のも
のを使用する。また、フラン樹脂、エポキシ樹脂等硬化
剤を要するものは硬化剤も溶液中に添加されるがその量
はそれぞれの樹脂に適した量が添加される。かかる熱硬
化性樹脂溶液に炭素繊維の長繊維を含浸する方法として
は、溶液中に炭素繊維を含浸するといった簡単な方法で
良いが、長繊維ロービングであれば溶液の満たされた槽
内を連続的に走行させる方法が処理の効率の点から好ま
しい。また、この際に溶液の満たされた槽に10〜50
kHz程度の超音波を作用させておくと各単繊維間、織
目間の気泡等による処理むらの影響を防ぐことができる
ので好ましい。
The concentration of the thermosetting resin solution is usually 10
˜70 wt%, preferably 20 to 60 wt%. In addition, a curing agent such as a furan resin or an epoxy resin that requires a curing agent is also added to the solution, but the amount is appropriate for each resin. As a method of impregnating the thermosetting resin solution with the long fibers of the carbon fibers, a simple method such as impregnating the carbon fibers into the solution may be used. From the viewpoint of processing efficiency, the method of running in a mechanical manner is preferable. In addition, at this time, 10 to 50 in the tank filled with the solution.
It is preferable to apply an ultrasonic wave of about kHz because it is possible to prevent the influence of processing unevenness due to air bubbles between each single fiber and between weaves.

【0023】熱硬化性樹脂溶液に含浸した炭素繊維は例
えばローラーを通すなどして余分な溶液を除去し、次い
で加熱処理を施される。該加熱処理により、熱硬化性樹
脂は半硬化される。加熱処理の条件は使用する熱硬化性
樹脂の種類によってそれぞれ適性条件は異なるが通常5
0〜300℃、好ましくは80〜200℃の温度で0.
2〜5時間、好ましくは0.2〜2時間加熱処理され
る。この際、炭素繊維に塗布された熱硬化性樹脂溶液か
らの急激な溶剤の脱離を避けるため所定の温度への昇温
を徐々に行なわれることが望ましい。また、加熱処理は
炭素繊維を連続的に加熱炉内を走行させる方法で行なう
のが処理の効率の点から好ましい。
The carbon fiber impregnated with the thermosetting resin solution is subjected to heat treatment, for example, by passing it through a roller to remove excess solution. By the heat treatment, the thermosetting resin is semi-cured. The heat treatment conditions differ depending on the type of thermosetting resin used, but usually 5
At a temperature of 0 to 300 ° C., preferably 80 to 200 ° C.
The heat treatment is performed for 2 to 5 hours, preferably 0.2 to 2 hours. At this time, it is desirable to gradually raise the temperature to a predetermined temperature in order to avoid rapid desorption of the solvent from the thermosetting resin solution applied to the carbon fibers. Further, the heat treatment is preferably carried out by a method in which carbon fibers are continuously run in a heating furnace from the viewpoint of treatment efficiency.

【0024】ついで、得られた繊維/樹脂の複合体を目
的とするC/C複合材の厚み方向より長く切断する。こ
の長さは通常は所望する目的物の厚さより少し長い範囲
から選定され、たとえば15〜300mmから選ばれ
る。切断された複合体は、互いに実質的に平行となるよ
うに一方向に揃えられ、その繊維の長さ方向に直角の方
向に圧力を加え、加熱、成型する。
Next, the obtained fiber / resin composite is cut longer than the thickness direction of the intended C / C composite material. This length is usually selected from a range slightly longer than the desired thickness of the target, for example, 15 to 300 mm. The cut composites are aligned in one direction so as to be substantially parallel to each other, and are heated and molded by applying pressure in a direction perpendicular to the length direction of the fibers.

【0025】たとえば、金型にロート状の道具を使用し
て複合体を供給することにより金型内に実質的に平行に
なるように揃え、樹脂の硬化のために必要な温度の加熱
下に、繊維の長さ方向に直角の方向に圧力を加えて樹脂
を硬化させることにより成型体を得る。その後、成型体
を容器に入れ、成型体をコークスブリーズで取囲むよう
な形とした後、容器を電気炉に入れ、必要に応じてN2
ガス流通下で1000℃程度まで昇温して炭化する。
For example, by using a funnel-shaped tool to supply the composite to the mold, the composite is aligned in the mold so as to be substantially parallel, and heated at a temperature required for curing the resin. A molded body is obtained by applying pressure in a direction perpendicular to the length direction of the fibers to cure the resin. After that, the molded body is put into a container, and the molded body is surrounded by a coke breeze. Then, the container is put into an electric furnace, and if necessary, N 2
Under a gas flow, the temperature is raised to about 1000 ° C. and carbonized.

【0026】必要に応じては、さらに黒鉛化炉に入れ、
不活性雰囲気下で2000℃以上の温度まで熱処理す
る。ついで、得られた炭化物もしくは黒鉛化物を石油
系、石炭系ピッチあるいはフェノール樹脂、フラン樹脂
等の熱硬化性樹脂に含浸した後、また、熱硬化性樹脂を
用いた場合には樹脂を硬化させた後炭化させる。
If necessary, it is further placed in a graphitization furnace,
Heat treatment is performed in an inert atmosphere to a temperature of 2000 ° C. or higher. Then, the obtained carbide or graphitized product was impregnated with a thermosetting resin such as petroleum-based, coal-based pitch or phenol resin, furan resin, or when the thermosetting resin was used, the resin was cured. Post carbonize.

【0027】その際、熱硬化性樹脂は、アルコール、
水、アセトン、アントラセン油等の溶媒に溶解して適当
な粘度に調整したものを使用するのが一般的である。ま
た、この場合、圧力下に含浸する方法が好適に採用され
る。たとえば、成型体の炭化物もしくは黒鉛化物とピッ
チを低圧反応容器(オートクレーブ)内に入れ真空中で
加熱してピッチを溶解し、炭化物もしくは黒鉛化物がピ
ッチの溶融液の中に浸漬した状態となった後、N2 ガス
を導入して低圧で550〜600℃程度に昇温する。
At this time, the thermosetting resin is alcohol,
It is common to use the one dissolved in a solvent such as water, acetone or anthracene oil and adjusted to have an appropriate viscosity. In this case, the method of impregnating under pressure is preferably adopted. For example, the carbide or graphitized product of the molded body and pitch were placed in a low-pressure reaction vessel (autoclave) and heated in a vacuum to dissolve the pitch, and the carbide or graphitized product was immersed in the melt of the pitch. After that, N 2 gas is introduced and the temperature is raised to about 550 to 600 ° C. under low pressure.

【0028】その後、冷却して炭化物もしくは黒鉛化物
の緻密化物を取出し、前述と同様の方法でこれを100
0℃程度まで炭化し、必要に応じて黒鉛化する。以上の
いわゆる緻密化の方法を繰返して行なうことにより比重
1.6以上の高緻密のC/C複合材を得る。この際、繊
維/樹脂複合体の樹脂含量や緻密化が不十分であった
り、炭化、黒鉛化の際の昇温速度が大きすぎると繊維の
長さ方向に直角の方向の強度が小さくなり、場合によっ
ては破壊に至るので適切な条件を選ぶ必要がある。ま
た、黒鉛化温度を高くしたほうが高い熱伝導率が得られ
やすい。
Thereafter, the densified product of carbide or graphitized product is taken out by cooling, and 100% of this is prepared by the same method as described above.
Carbonize to about 0 ° C and graphitize if necessary. By repeating the above-mentioned so-called densification method, a highly dense C / C composite material having a specific gravity of 1.6 or more is obtained. At this time, if the resin content or densification of the fiber / resin composite is insufficient, or if the rate of temperature increase during carbonization or graphitization is too high, the strength of the fiber in the direction perpendicular to the length direction becomes small, In some cases, it may cause destruction, so it is necessary to select appropriate conditions. Further, the higher the graphitization temperature, the higher the thermal conductivity is likely to be obtained.

【0029】得られたC/C複合材は厚み方向に高い熱
伝導率、電気伝導率を有する、異方性の材料となる。得
られたC/C複合材は、目的に応じ、厚み方向と直角方
向の強度を向上させるために、炭素繊維を材料とした長
繊維等を用いて周囲を巻くことができ、あるいはC/C
複合材等の炭素材料を適当な形にして結束することがで
きる。また、複数の複合材の面間を、フェノール樹脂を
主体とする樹脂などを用いて接着し、これを再びC/C
複合材が最終的に処理された温度程度にまで昇温させて
C/C複合材の小片を複数枚互いに接着させて目的とす
る大きさの複合材とすることもできる。
The obtained C / C composite material is an anisotropic material having high heat conductivity and high electric conductivity in the thickness direction. The obtained C / C composite material can be wound around the periphery with long fibers or the like made of carbon fiber, depending on the purpose, in order to improve the strength in the direction perpendicular to the thickness direction, or C / C
A carbon material such as a composite material can be bound into a proper shape. In addition, the surfaces of a plurality of composite materials are bonded together by using a resin such as a phenol resin as a main component, which is again C / C.
It is also possible to raise the temperature of the composite material to about the temperature at which the composite material was finally processed and to bond a plurality of small pieces of the C / C composite material to each other to obtain a composite material of a desired size.

【0030】本発明のC/C複合材は、その厚み方向
(11)とその直角方向(2)の熱伝導率の比率が2以
上、好ましくは7以上、最適には10以上であり、か
つ、厚み方向(11)の熱伝導率が7W/cm・℃以
上、より好ましくは8W/cm・℃以上であり、たとえ
ば、その一方の面に高温度に加熱された物質を置いても
厚み方向の熱伝導率が高いため、他方の面に熱が伝わり
やすく、この他方の面に冷却水を流した部分を接触させ
ることにより、この加熱した物質を有効に冷却すること
ができる。すなわち、熱交換により、物質を冷却する場
合に有効に使用しうる。
In the C / C composite material of the present invention, the ratio of the thermal conductivity in the thickness direction (11) to the perpendicular direction (2) is 2 or more, preferably 7 or more, and optimally 10 or more, and The thermal conductivity in the thickness direction (11) is 7 W / cm · ° C. or higher, more preferably 8 W / cm · ° C. or higher. For example, even if a substance heated to a high temperature is placed on one surface thereof, Has a high thermal conductivity, heat is easily transferred to the other surface, and the heated substance can be effectively cooled by bringing the portion into which cooling water has flowed into contact with the other surface. That is, it can be effectively used when a substance is cooled by heat exchange.

【0031】本発明においては、このようなC/C複合
材を、核融合装置のブラズマに面して設置される第一壁
の主たる構成材料として、該厚み方向と実質的に直角を
なす片面をプラズマに面して配置する。そして、本発明
においては、好ましくは、このC/C複合材の厚み方向
と実質的に直角をなす片面に金属を冶金的接合、又は機
械的結合により接合、結合して用いられるが、特に冶金
的接合が好適である。
In the present invention, such a C / C composite material is used as a main constituent material of the first wall installed facing the plasma of the nuclear fusion device, and one surface substantially perpendicular to the thickness direction. Is placed facing the plasma. In the present invention, preferably, a metal is metallurgically bonded to one side substantially perpendicular to the thickness direction of the C / C composite material, or the metal is bonded or coupled by mechanical bonding. Joining is preferred.

【0032】金属は、たとえばTi,Cu,Fe,N
i,Mo,Cr等あるいはこれらを主体とする合金等か
ら選ぶのが一般的である。合金系としては、たとえばT
iの場合、Al,V等を含むものが好適に使用される。
これらの金属は、通常5mm程度以下、好ましくは0.
1〜0.3mmの薄板として用いられるが、50mm程
度以下のステンレス板等を、基板として直接あるいは上
記薄板を間そう材として介して、用いることもできる。
接合は、真空ろう付、拡散接合、HIP(ホット・アイ
ソスタティック・プレス)等の常法によることができ
る。
Metals are, for example, Ti, Cu, Fe, N
It is general to select from i, Mo, Cr and the like or alloys mainly containing these. As an alloy system, for example, T
In the case of i, those containing Al, V, etc. are preferably used.
These metals are usually about 5 mm or less, preferably 0.
Although it is used as a thin plate having a thickness of 1 to 0.3 mm, a stainless steel plate having a thickness of about 50 mm or less can be used as a substrate directly or through the thin plate as an interleaving material.
The joining can be performed by a conventional method such as vacuum brazing, diffusion joining, HIP (hot isostatic press).

【0033】本発明におけるC/C複合材は、厚み方向
に熱伝導、電気伝導が一方向に高いものであり、熱を有
効に除去したり伝導したりしうる。また、上記のように
金属接合した場合には、特に厚み方向と直角の方向の耐
熱衝撃性も高い。以下、本発明を実施例によりさらに詳
細に説明するが、本発明はこれらの実施例に限定される
ものではない。
The C / C composite material in the present invention has high heat conductivity and electric conductivity in one direction in the thickness direction, and can effectively remove and conduct heat. Further, when the metal bonding is performed as described above, the thermal shock resistance is particularly high in the direction perpendicular to the thickness direction. Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.

【0034】[0034]

【実施例】【Example】

実施例1 光学的異方性100%のコールタールピッチを紡糸し、
直径が23.6μmのピッチ繊維が4000フィラメン
ト集束したものを製造した。次いで約1℃/分の昇温速
度で制御された焼成炉に投入し空気雰囲気中で385℃
まで昇温し不融化処理した。次にN2 ガス雰囲気中で5
10℃で予備炭化処理したあと、14ターン/mのツイ
スト処理した。
Example 1 Coal tar pitch with 100% optical anisotropy was spun,
A 4000 filament bundle of pitch fibers having a diameter of 23.6 μm was produced. Then, put it in a firing furnace controlled at a heating rate of about 1 ° C./min, and put it in an air atmosphere at 385 ° C.
The temperature was raised to infusibilization treatment. Next, in an N 2 gas atmosphere, 5
After pre-carbonization at 10 ° C., twisting was performed at 14 turns / m.

【0035】さらに60%の水蒸気を含有するN2 ガス
中で1200℃で約1分処理したあと、アルゴンガス中
で1250℃で焼成し直径19.2μmの炭素繊維を得
た。この炭素繊維の断面を観察したところ、中心部(約
6μm)は褶曲した組織構造であった。さらに次にこの
炭素繊維束を陽極にして塩化カルシウム水溶液中で電解
酸化処理した。通電量は5クーロン/炭素繊維1gであ
った。この炭素繊維の長繊維束をフェノール樹脂のエタ
ノール溶液に浸漬し、ついでこれを乾燥器に入れ70℃
でエタノールを除去した後、100℃以上に昇温してフ
ェノール樹脂を半硬化させた。得られた繊維/樹脂の複
合体(トウプリプレグ)(炭素繊維:樹脂=62:38
重量比)を長さ50mmに切断した。このものは繊維が
樹脂で固められ、棒状で剛直であった。この切断した複
合体を互いに平行になるように金型内に一方向に揃えて
並べ、目的とするC/C複合材の寸法より大きくなるよ
うな形状に充填した。
After further treating in N 2 gas containing 60% steam at 1200 ° C. for about 1 minute, it was fired in argon gas at 1250 ° C. to obtain carbon fibers having a diameter of 19.2 μm. When the cross section of this carbon fiber was observed, the central portion (about 6 μm) had a folded structure. Further, this carbon fiber bundle was used as an anode for electrolytic oxidation treatment in an aqueous calcium chloride solution. The amount of electricity passed was 5 coulombs / g of carbon fiber. This long fiber bundle of carbon fibers is dipped in an ethanol solution of phenol resin, and then placed in a dryer to 70 ° C.
After removing the ethanol with, the temperature was raised to 100 ° C. or higher to semi-cure the phenol resin. Obtained fiber / resin composite (tow prepreg) (carbon fiber: resin = 62: 38)
(Weight ratio) was cut to a length of 50 mm. In this product, the fibers were solidified with resin and were rod-shaped and rigid. The cut composites were aligned in one direction in a mold so as to be parallel to each other, and filled in a shape larger than the size of the target C / C composite.

【0036】ついで、80℃で低圧を付加し、1時間2
4分で約220℃まで昇温し、その温度で1時間保持
し、成型、硬化した。成型後の寸法は、265.3×2
65.2×49.9であった。ついで、この成型品をコ
ークスブリーズを詰めた容器の中に入れコークスプリー
ズでおおった状態で、約50時間かけて1000℃まで
昇温し樹脂の炭化を行なった。
Then, a low pressure is applied at 80 ° C. for 2 hours for 1 hour.
The temperature was raised to about 220 ° C. in 4 minutes, and the temperature was maintained for 1 hour, followed by molding and curing. The dimension after molding is 265.3 x 2
It was 65.2 x 49.9. Next, this molded product was put in a container filled with coke breeze, covered with coke please, and the temperature was raised to 1000 ° C. over about 50 hours to carbonize the resin.

【0037】ついで、この炭化した複合材と固形のピッ
チをオートクレーブに入れ、減圧状態のまま250℃ま
で昇温し、ついでN2 を入れることにより雰囲気を湯圧
とした後、昇温し8時間で500℃まで到達させた後、
500℃で5時間保持した。昇温の際に圧力は、オート
クレーブに付属したバルブを使って一定に保持した。
Then, the carbonized composite material and the solid pitch are put into an autoclave and heated to 250 ° C. in a depressurized state, and then N 2 is added to make the atmosphere water pressure, and then the temperature is raised for 8 hours. After reaching 500 ℃ at
Hold at 500 ° C. for 5 hours. During heating, the pressure was kept constant using a valve attached to the autoclave.

【0038】オートクレーブを冷却し、複合材を取出
し、成型品の炭化と同様の方法で1000℃まで炭化
し、次いで、2000℃で黒鉛化した。その後、上記の
オートクレーブ処理とその後の炭化処理(1000℃)
を3回繰り返し行なった後3000℃の黒鉛化処理を施
しC/C複合材を得た。得られたC/C複合材の嵩密度
は1.91g/cm3 で、厚み方向(繊維軸と同一方
向)とそれに直角の方向の熱伝導率をレーザーフラッシ
ュ法熱定数測定装置(真空理工製)で測定した。厚み方
向の熱伝導率は8.16W/cm・℃、厚み方向に直角
の方向の熱伝導率は0.42W/cm・℃であり、その
比率は19.6であった。
The autoclave was cooled, the composite material was taken out, carbonized to 1000 ° C. in the same manner as carbonization of the molded product, and then graphitized at 2000 ° C. After that, the above autoclave treatment and the subsequent carbonization treatment (1000 ° C)
Was repeated 3 times and then graphitized at 3000 ° C. to obtain a C / C composite material. The bulk density of the obtained C / C composite was 1.91 g / cm 3 , and the thermal conductivity in the thickness direction (the same direction as the fiber axis) and the direction perpendicular thereto was measured by a laser flash method thermal constant measuring device (manufactured by Vacuum Riko). ). The thermal conductivity in the thickness direction was 8.16 W / cm · ° C, the thermal conductivity in the direction perpendicular to the thickness direction was 0.42 W / cm · ° C, and the ratio was 19.6.

【0039】実施例2 図2は、本発明による核融合装置の第一壁の第1の実施
態様を示すものである。第一壁1は、後述の実施例1で
得られたC/C複合材2を基板3に真空ろう付けしたも
のである。すなわち、厚さ10mmのステンレス基板3
に銅ろうを用いて厚さ1mmのTi板を間そう材として
ろう付け部4を介して接合されている。基板3には、冷
却効果を上げるために、冷却管5が直接取り付けられて
いる。この図のブラズマ対向面6が、核融合装置のプラ
ズマに面して設置され、第一壁として使用される。
Embodiment 2 FIG. 2 shows a first embodiment of the first wall of the nuclear fusion device according to the present invention. The first wall 1 is obtained by vacuum brazing the C / C composite material 2 obtained in Example 1 described later onto the substrate 3. That is, the stainless steel substrate 3 having a thickness of 10 mm
A 1 mm thick Ti plate is used as an interleaving material with copper brazing and is joined through the brazing portion 4. A cooling pipe 5 is directly attached to the substrate 3 in order to enhance the cooling effect. The plasma facing surface 6 of this figure is installed facing the plasma of the fusion device and is used as the first wall.

【0040】図3は、本発明の第2の実施態様を示す。
この態様においては、実施例1で得られたC/C複合材
を用いて、この厚み方向と実質的に直角をなす片面に金
属薄板(7′)(純Ti板)を接合した。すなわち、厚
み約1mmの純Ti坂(融点約1675℃)7上にCu
ろうを置き、さらにその上に上記C/C複合材を置いて
約1kgの重しをかけ、真空炉中で約1時間かけて昇温
して約1050℃で5分間保持し、ろう付け部4を介し
てTi接合したC/C複合材を得た。ついで、このC/
C複合材の金属薄板7をボルト等により機械的に基板3
と接合する(8:固定板,9:連結材)。また、基板3
には、上記第1の態様の場合と同様に、冷却管を取り付
けることもできる(6:プラズマ対向面)。
FIG. 3 shows a second embodiment of the present invention.
In this embodiment, the C / C composite material obtained in Example 1 was used to join a thin metal plate (7 ') (pure Ti plate) to one surface substantially perpendicular to the thickness direction. That is, Cu is deposited on a pure Ti slope 7 (melting point: about 1675 ° C.) with a thickness of about 1 mm.
A brazing material is placed, the C / C composite material is further placed on the brazing material, a weight of about 1 kg is placed thereon, the temperature is raised in a vacuum furnace for about 1 hour, and the temperature is maintained at about 1050 ° C. for 5 minutes. A C / C composite material was obtained, which was Ti-bonded via No. 4. Then, this C /
The metal thin plate 7 of C composite material is mechanically attached to the substrate 3 by bolts or the like.
(8: fixing plate, 9: connecting material). Also, the substrate 3
As in the case of the first aspect described above, a cooling pipe can be attached to (6: plasma facing surface).

【0041】図4は、本発明の第3の実施態様を示す。
この態様においては、実施例1で得られたC/C複合材
2,2′を用いて、冷却管5の周囲に真空ろう付部4を
介して接合する。プラズマ対向面6が核融合装置のプラ
ズマに面して設置し、第一壁として使用される。さら
に、本発明は、その要旨を超えない限り上記実施例に限
定されるものではない。
FIG. 4 shows a third embodiment of the present invention.
In this embodiment, the C / C composite materials 2 and 2'obtained in Example 1 are used to join the periphery of the cooling pipe 5 via the vacuum brazing portion 4. The plasma facing surface 6 is installed facing the plasma of the fusion device and is used as the first wall. Furthermore, the present invention is not limited to the above embodiments unless it exceeds the gist.

【0042】[0042]

【発明の効果】本発明に係るC/C複合材は、その厚み
方向に大きい熱伝導率を有する。前述の実施例に準じて
容易に7W/cm・℃以上、特に、7.5〜10W/c
m・℃程度のものを得ることができるため、特に一方向
の熱もしくは電気の伝導を必要とする場合に使用すると
有効であり、たとえば熱除去、熱伝達をするような熱交
換の材料あるいはスイッチ材料などに使用しうる。特に
核融合炉用に適しており、本発明の第一壁は、高い熱負
荷に長時間さらされても、表面温度、蒸気圧および昇華
損耗は低く抑えられ、第一壁として優れた性質を有す
る。
The C / C composite material according to the present invention has a large thermal conductivity in the thickness direction. Easily 7 W / cm.degree. C. or higher, especially 7.5-10 W / c according to the above-mentioned embodiment.
Since it is possible to obtain a material having a temperature of about m · ° C, it is effective when used particularly when one-way conduction of heat or electricity is required. For example, a heat exchange material or switch for heat removal or heat transfer. It can be used as a material. Particularly suitable for fusion reactors, the first wall of the present invention, even when exposed to a high heat load for a long time, the surface temperature, vapor pressure and sublimation wear are suppressed low, and excellent properties as the first wall. Have.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に用いられる炭素繊維の断面の
形状の一例を示す模式図である。
FIG. 1 is a schematic view showing an example of a cross-sectional shape of a carbon fiber used in the present invention.

【図2】図2は本発明の一実施態様を示す模式図であ
る。
FIG. 2 is a schematic view showing an embodiment of the present invention.

【図3】図3は本発明の一実施態様を示す模式図であ
る。
FIG. 3 is a schematic view showing an embodiment of the present invention.

【図4】図2は本発明の一実施態様を示す模式図であ
る。
FIG. 4 is a schematic diagram showing an embodiment of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 繊維の中心部に、黒鉛網面が積層した構
造が屈曲または褶曲してなる組織構造であって、外周部
の組織構造よりも大きな組織構造を有するピッチ系炭素
繊維が実質的に厚み方向に配向しており、厚み方向に直
角の方向の熱伝導率に対する厚み方向の熱伝導率の比率
が2以上であり、かつ厚み方向の熱伝導率が7W/cm
・℃以上である炭素繊維強化炭素複合材料。
1. A pitch-based carbon fiber, which has a structure in which a graphite network surface is laminated at the center of the fiber, is bent or folded, and has a structure larger than that of the outer periphery. Is oriented in the thickness direction, the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction is 2 or more, and the thermal conductivity in the thickness direction is 7 W / cm.
-Carbon fiber reinforced carbon composite material having a temperature of ℃ or higher.
【請求項2】 ピッチ系炭素繊維の直径が15μm以上
である請求項1記載のC/C複合材料。
2. The C / C composite material according to claim 1, wherein the pitch-based carbon fiber has a diameter of 15 μm or more.
【請求項3】 炭素複合材料の厚み方向と実質的に直角
をなす片面に金属が接合されてなることを特徴とする請
求項1の炭素繊維強化炭素複合材料。
3. The carbon fiber reinforced carbon composite material according to claim 1, wherein a metal is bonded to one surface of the carbon composite material substantially perpendicular to the thickness direction of the carbon composite material.
【請求項4】 炭素繊維強化炭素複合材料の厚み方向と
実質的に直角をなし、プラズマに面しない片面に金属が
接合されてなる請求項1の炭素繊維強化炭素複合材料を
主たる構成材料とした核融合装置のブラズマに面して設
置される第一炉壁。
4. The carbon fiber-reinforced carbon composite material according to claim 1, wherein the carbon fiber-reinforced carbon composite material has a thickness substantially perpendicular to the thickness direction and a metal is bonded to one surface not facing plasma. The first reactor wall installed facing the plasma of the fusion device.
JP5333223A 1993-12-27 1993-12-27 Carbon fiber reinforced carbon composite material Pending JPH07187833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5333223A JPH07187833A (en) 1993-12-27 1993-12-27 Carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5333223A JPH07187833A (en) 1993-12-27 1993-12-27 Carbon fiber reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPH07187833A true JPH07187833A (en) 1995-07-25

Family

ID=18263699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5333223A Pending JPH07187833A (en) 1993-12-27 1993-12-27 Carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH07187833A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090453A (en) * 1996-09-13 1998-04-10 Japan Atom Energy Res Inst First wall and divertor plate faced opppsitely to plasma of nuclear fusion device
JP2000241576A (en) * 1999-02-23 2000-09-08 Japan Atom Energy Res Inst Method for forming armor tile slit of blanket first wall
WO2006114161A1 (en) * 2005-04-28 2006-11-02 Forschungszentrum Karlsruhe Gmbh Improved plate-shaped carbon fibre composite material
JP2018104250A (en) * 2016-12-28 2018-07-05 東海カーボン株式会社 Manufacturing method of unidirectional carbon fiber-reinforced carbon composite
CN116334508A (en) * 2023-05-31 2023-06-27 中南大学 Metal high-entropy ceramic modified C/C composite material and preparation method thereof
CN117133482A (en) * 2023-10-25 2023-11-28 陕西星环聚能科技有限公司 Graphite tile limiter and fusion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090453A (en) * 1996-09-13 1998-04-10 Japan Atom Energy Res Inst First wall and divertor plate faced opppsitely to plasma of nuclear fusion device
JP2000241576A (en) * 1999-02-23 2000-09-08 Japan Atom Energy Res Inst Method for forming armor tile slit of blanket first wall
WO2006114161A1 (en) * 2005-04-28 2006-11-02 Forschungszentrum Karlsruhe Gmbh Improved plate-shaped carbon fibre composite material
US7459207B2 (en) 2005-04-28 2008-12-02 Forschungszentrum Karlsruhe Gmbh Plated-shaped carbon fibre composite material
JP2018104250A (en) * 2016-12-28 2018-07-05 東海カーボン株式会社 Manufacturing method of unidirectional carbon fiber-reinforced carbon composite
CN116334508A (en) * 2023-05-31 2023-06-27 中南大学 Metal high-entropy ceramic modified C/C composite material and preparation method thereof
CN116334508B (en) * 2023-05-31 2023-08-11 中南大学 Metal high-entropy ceramic modified C/C composite material and preparation method thereof
CN117133482A (en) * 2023-10-25 2023-11-28 陕西星环聚能科技有限公司 Graphite tile limiter and fusion device
CN117133482B (en) * 2023-10-25 2024-02-13 陕西星环聚能科技有限公司 Graphite tile limiter and fusion device

Similar Documents

Publication Publication Date Title
US4975261A (en) Process for producing high strength carbon-carbon composite
US6077464A (en) Process of making carbon-carbon composite material made from densified carbon foam
US5390217A (en) Carbon fiber-reinforced carbon composite materials processes for their production, and first walls of nuclear fusion reactors employing them
US4849200A (en) Process for fabricating carbon/carbon composite
JP3151580B2 (en) Manufacturing method of carbon material
JP3031197B2 (en) Pitch-based carbon fiber
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
US5695816A (en) Process for the preparation of carbon fiber reinforced carbon composites
JPS63206351A (en) Manufacture of carbon carbon composite material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JPH07172943A (en) Carbon composite material reinforced by carbon fiber
US5292408A (en) Pitch-based high-modulus carbon fibers and method of producing same
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JP2811681B2 (en) First wall of fusion device
JP4433676B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP4343312B2 (en) Pitch-based carbon fiber
US5840265A (en) Carbon fibers and process for their production
JPH09119024A (en) Carbon fiber and its production
JPH05272017A (en) Carbon fiber and its production
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPH0665859A (en) Production of silicon carbide-coated carbon fiber
JPH0841730A (en) Production of high-thermal conductivity carbon fiber
JP2005089960A (en) Carbon fiber
JPH03146718A (en) Pitch-based carbon fiber having high elongation and high strength