JP4433676B2 - Method for producing carbon fiber reinforced carbon composite material - Google Patents

Method for producing carbon fiber reinforced carbon composite material Download PDF

Info

Publication number
JP4433676B2
JP4433676B2 JP2003009312A JP2003009312A JP4433676B2 JP 4433676 B2 JP4433676 B2 JP 4433676B2 JP 2003009312 A JP2003009312 A JP 2003009312A JP 2003009312 A JP2003009312 A JP 2003009312A JP 4433676 B2 JP4433676 B2 JP 4433676B2
Authority
JP
Japan
Prior art keywords
carbon fiber
composite material
less
carbon
gpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003009312A
Other languages
Japanese (ja)
Other versions
JP2004217485A (en
JP2004217485A5 (en
Inventor
義文 中山
雅浩 山内
正信 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2003009312A priority Critical patent/JP4433676B2/en
Publication of JP2004217485A publication Critical patent/JP2004217485A/en
Publication of JP2004217485A5 publication Critical patent/JP2004217485A5/ja
Application granted granted Critical
Publication of JP4433676B2 publication Critical patent/JP4433676B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭素繊維強化炭素複合材料の製造方法に関するものである。さらに詳しくは、この発明は、炭素繊維強化炭素複合材料の引張強度を低下させることなく、高い層間剪断強度得られる炭素繊維強化炭素複合材料の製造方法に関するものである。
【0002】
【従来の技術】
従来、炭素繊維強化炭素複合材料(以下C/C複合材料と記載)は、一般に、ポリアクリロニトリル系、ピッチ系又はレーヨン系等を出発原料とした長繊維もしくは短繊維の炭素繊維にフェノール樹脂、フラン樹脂などの熱硬化性樹脂、ピッチなどの熱可塑性樹脂等のバインダーを含浸または混合して、加熱成型したものを不活性ガス等の非酸化性雰囲気において炭素化・黒鉛化する方法、あるいは化学気相蒸着法により炭素繊維間に熱分解炭素を充填する方法で製造されており、金属等では到達できない耐熱性、比強度及び軽量性を有することから構造材、摩擦材、導電材として注目されている。
【0003】
C/C複合材料の製造工程において、成形体の機械的特性を左右する工程は炭化処理工程である。通常、この炭化処理工程は500〜2000℃の範囲で行われる。この工程においては、バインダーがその炭素化に伴って炭素繊維よりも大きく体積収縮するため、マトリックス炭素と炭素繊維との間に熱応力が発生する。この熱応力はマトリックス炭素と炭素繊維の結合力が大きいほど大きくなり、この大きな熱応力によってマトリックス炭素と炭素繊維との界面で亀裂が生じ、更にその亀裂が急激に成長して界面が剥離してしまうという現象が起こり易くなる。その結果、C/C複合材料の層間剪断強度を改善すると引張強度低下が起こる。
【0004】
これらの問題を解決する手法として、従来、炭素繊維に表面処理を施さない方法および表面処理を施した後に不活性ガス中で1500℃以上に加熱処理する方法が開示されている(例えば特許文献1、2参照)。これらは、炭素繊維表面に存在するマトリックス炭素との接着に有効な官能基を排除することで、マトリックス炭素と炭素繊維の界面の結合力を弱くし、炭化処理工程での熱応力を界面の部分的な剥離によって緩和させることで、界面での致命的な大きなクラックを防止し結果的に引張強度を向上するものである。しかし、これらの方法においては、引張強度の向上は図られた一方で層間剪断強度の低下は著しく剪断特性を要する構造材においては適用できなかった。
【0005】
また、オゾン雰囲気下で紫外線を照射することで炭素繊維表面を親水性に改質する方法(例えば特許文献3参照)、炭素繊維表面をフッ素化する方法(例えば特許文献4参照)、炭素繊維を過酸化水素処理する各種表面処理方法(例えば特許文献5参照)が開示されている。これらは、炭素繊維の表面に官能基を導入して炭素マトリックスとの接着性を向上するものであり、成形体であるC/C複合材料の炭素マトリックスと炭素繊維の接着性の向上を図っている。しかし、これらの表面処理方法では剪断強度の向上は図られたものの、構造材としての引張強度は十分とはいえなかった。
【0006】
即ち、C/C複合材料の引張強度と層間剪断強度にはトレードオフの関係があり、上記従来の方法においては、引張強度と層間剪断強度の両方を同時に向上する炭素繊維は得られていないのが現状であった。
【0007】
【特許文献1】
特開平6−157139号公報(第3頁)
【0008】
【特許文献2】
特開昭59−107913号公報(第2頁)
【0009】
【特許文献3】
特開平3−8866号公報(第3頁)
【0010】
【特許文献4】
特開平4−175266号公報(第2頁)
【0011】
【特許文献5】
特開平1−145375号公報(第2頁)
【0012】
【発明が解決しようとする課題】
本発明は、かかる従来技術の背景に鑑み、C/C複合材料の引張強度を低下させることなく、高い層間剪断強度得られるC/C複合材料の製造方法により、耐疲労性などが優れたC/C構造材、摩擦材、導電材などを提供するものである。
【0013】
【課題を解決するための手段】
本発明は、かかる課題を解決するために、次のような手段を採用するものである。すなわち、表面の算術平均粗さ(Ra)が、1nm以上20nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m2 /g以上1.2m2 /g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.13以上0.27以下である炭素繊維に、バインダーを含浸させ加熱硬化した後、500〜2000℃にて炭素化処理、2000〜3000℃にて黒鉛化処理を行う炭素繊維強化炭素複合材料の製造方法である。
【0014】
また、かかる課題を解決するために、次のような手段を採用するものである。すなわち、上記強化炭素複合材料の製造方法において、電気伝導度が15mS/cm以上100mS/cm以下の電解液中で、炭素繊維を陽極として、炭素繊維の単位重量あたりの電流値が0.5A以上100A以下、かつ処理時間が0.5秒以上20秒以下に通電して電解酸化処理する炭素繊維強化炭素複合材料用炭素繊維の製造方法である。
【0016】
【発明の実施の形態】
本発明者らは、鋭意検討を重ねた結果、表面の算術平均粗さ(Ra)が、1nm以上20nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m2 /g以上1.2m2 /g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.13以上0.27以下にした炭素繊維に、バインダーを含浸させ加熱硬化した後、500〜2000℃にて炭素化処理、2000〜3000℃にて黒鉛化処理を行うことにより、かかる課題を、一挙に解決することを究明したものである。
【0017】
本発明に用いる炭素繊維は、表面の算術平均粗さ(Ra)が1nm以上20nm以下であることが必要である。この範囲のものは、C/C構造材で高い引張強度が発現し易く、C/C複合材料に好適である。20nmを越える算術平均粗さの表面を有する炭素繊維は表面の凹凸が著しいため、C/C複合材料に使用するとアンカー効果と呼ばれる物理接着が高くなり引張強度を低下させる場合がある。また、1nmより小さい算術平均粗さの表面を有する炭素繊維は表面が平滑であるため高い層間剪断強度を有するC/C複合材料を得られない場合がある。より好ましくは1nm以上15nm以下、さらに好ましくは1nm以上10nm以下である。
【0018】
ここで、表面の算術平均粗さ(Ra)とは、炭素繊維表面の凹凸の指標であり、原子間力顕微鏡(AFM)により測定する600nm×600nmの3次元表面形状の像について、繊維の丸みを3次曲面で近似したものを平均線とし、得られた3次元表面形状の像を対象として、算出した算術平均粗さ(Ra)である。
【0019】
本発明に用いる炭素繊維は、炭素繊維のクリプトンガス吸着から求めたBET法比表面積が0.5m2 /g以上1.2m2 /g以下、さらに好ましくは0.5m2 /g以上0.8m2 /g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.13以上0.27以下、さらに好ましくは、0.17以上0.25以下の範囲になるように制御する。このように制御した場合、高い引張強度と高い層間剪断強度が同時に得られる。この理由は明確ではないが、炭化処理工程でのマトリックス炭素と炭素繊維との間に発生する熱応力による界面の亀裂を、炭素繊維表層の微少なボイドと官能基量のバランスを取ることで防いでいるためと推定している。比表面積が1.2m2 /gより大きいと、炭素繊維表面の欠陥が多く炭素繊維自体の強度低下を生じ、0.5m2 /g未満だと、炭素マトリックスと炭素繊維の間の接触が十分でなく接着性の良好なC/C複合材料を得ることができない。また、炭素繊維の表面酸素濃度比O/Cが0.13未満だと炭素繊維と炭素マトリックスの親和性が不十分で接着性の良好なC/C複合材料を得ることができず、酸素濃度比O/Cが0.27より大きいと、炭素繊維と炭素マトリックスの結合力が大きくなりすぎて、炭素繊維と炭素マトリックスの一体化が起こり、C/C複合材料が脆性的となり、引張強度等の機械的特性が著しく低下する。
【0020】
ここで、本発明でいう炭素繊維の表面酸素濃度比O/Cは次の手法にて、X線光電子分光法により得ることができる。
【0021】
測定する炭素繊維にサイジング剤等の後処理剤が付着している場合は、塩化メチレン、メチルエチルケトン、アセトン、エタノールなどの溶媒で洗浄し、蒸留水で洗い流し、必要に応じて超音波洗浄するなどしてサイジング剤などを除去後、適当な長さにカットしてステンレス製の試料支持台上に拡げて並べた後、下記条件にて測定できるものである。
【0022】
また、バインダーなどと混合されている炭素繊維について測定する場合は、塩化メチレン、メチルエチルケトン、アセトン、エタノールなどの溶媒で樹脂を除去して炭素繊維を取り出し同様の方法で測定できるものである。
【0023】
・X線源:AlKα1,2あるいはMgKα1,2
尚、測定時の帯電に伴うピークの補正は、C1Sの主ピークの結合エネルギー値B.E.を284.6eVに合わせることで実施できる。
【0024】
次いで、C1sピーク面積[C1s]は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1sピーク面積[O1s]は528〜540eVの範囲で直線のベースラインを引くことにより求める。
【0025】
表面酸素/炭素比(O/C)は、上記O1sピーク面積[O1s]、C1sピーク面積[C1s]の比、及び装置固有の感度補正値より、次式により求めることができる。
【0026】
O/C=([O1s]/[C1s])/(感度補正値)
さらに、本発明に用いる炭素繊維は、前記炭素繊維が束状になった束状の炭素繊維でもよく、好ましくは1000〜100000本、より好ましくは3000〜70000本、更に好ましくは10000〜50000本、特に好ましくは12000〜24000本の単繊維が束になった束状の炭素繊維であることが取扱性の観点などから好ましい。またかかる束状の炭素繊維は、そのストランド強度が4GPa以上7GPa以下、好ましくは4.5GPa以上6.5GPaの範囲にあることが、C/Cコンポジット自体の強度が高くでき、特に構造材に好適である。かかるストランド強度は束状の炭素繊維に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、JIS R7601に基づいて行う引張試験により求めることができる。
【0027】
(樹脂組成)

Figure 0004433676
また、かかる束状の炭素繊維は、そのストランド弾性率が200GPa以上400GPa以下であることが、高強度、高接着なC/C複合材料を得るという点で好適である。ここでいうストランド弾性率は、上記ストランド強度測定方法と同様の方法で引張試験を行い、荷重−伸び曲線の傾きから求めることができる。
【0028】
次に、本発明のC/C複合材料用炭素繊維の製造方法について説明する。
【0029】
本発明に用いる炭素繊維は、レーヨン、ポリアクリロニトリル、ピッチなどの繊維を炭素化した繊維、或いはそれらをさらに高温で熱処理した黒鉛化繊維が主として用いられる。高強度なC/C複合材料を得るには、高強度な炭素繊維が得られやすいアクリロニトリル繊維を用いるのが好ましい。
【0030】
前述したクリプトンガス吸着から求めたBET法比表面積、X線光電子分光法によって求められる表面酸素濃度比O/Cを有するC/C複合材料用炭素繊維は、電解酸化処理によって得ることができる。電解酸化処理は、処理ムラを制御し、かつ短時間で炭素繊維表層深く酸化処理ができるため、比表面積および表面酸素濃度を制御し易い。かかる電解酸化処理に使用される電解液は、酸性、アルカリ性のいずれでもよい。
【0031】
具体的には、電解液の電気伝導度が15mS/cm以上100mS/cm以下に調整された電解液槽中で、炭素繊維の単位重量あたりの電流値が0.5A以上100A以下、好ましくは2A以上80A以下、かつ処理時間が0.5秒以上20秒以下、好ましくは1秒以上10秒以下に制御することにより、前述したクリプトンガス吸着から求めたBET法比表面積、X線光電子分光法によって求められる表面酸素濃度比O/Cを制御できる。電解液の電気伝導度が15mS/cm未満であると、電流が流れにくく電流値の制御が困難であり、100mS/cmを超えると、高濃度であるため、後の水洗工程での電解質の除去が不十分になる場合がある。また、炭素繊維の単位重量あたりの電流値が0.5A未満であると、電流値が小さいため処理斑が生じ、100Aを超えると、炭素繊維表面の過剰な酸化処理により繊維自体の強度が低下する場合がある。さらに処理時間が20秒より長いと、炭素繊維表面の酸化処理がゆっくり進行するため、表面凹凸ができにくく、0.5秒より短いと処理斑が生じ、C/Cコンポジットの剪断強度が低くなる場合がある。上記、電解酸化処理の際には、炭素繊維を陽極、白金板を陰極とし、かかる処理を行うことができる。
【0032】
電解酸化処理の後、水洗及び乾燥を行った後、炭素繊維表面の酸素濃度比O/Cが前述した値を越える場合は、さらに、不活性雰囲気中において温度を250℃以上1000℃以下、好ましくは250℃以上750℃以下、処理時間は30分以上5時間以下の範囲で加熱処理をおこなうことで酸素濃度比O/Cを既定の範囲内に制御することもできる。
【0033】
さらに必要に応じて、炭素繊維にサイジング剤を付与することもできる。サイジング剤としては、例えばエポキシ樹脂、フェノール樹脂、アルキド樹脂、ウレタン樹脂等の熱硬化性樹脂や、ポリエチレン、ポリ塩化ビニル、ポリアミド等の熱可塑性樹脂や、コールタールピッチ、石油ピッチ等のピッチを用いることができる。
【0034】
上記、本発明のC/C複合材料用炭素繊維を適用することにより、力学特性とりわけ引張強度と層間せん断強度に優れたC/C複合材料を作製することができる。かかるC/C複合材料は強化繊維方向が実質的に一方向であるC/C複合材料とすることもできるし、強化繊維方向が90°、0°方向に交差したような二方向C/C複合材料、その他目的に応じて繊維方向を任意に設定することができる。特に前記C/C複合材料用炭素繊維を用いることにより、引張強度500〜700MPaかつ層間剪断強度10〜20MPaである一方向C/C複合材料を得ることができる。
【0035】
ここでかかる一方向C/C複合材料の引張強度は繊維軸方向に長さ50±1mm、繊維軸方向に幅10±1mm、厚さ2.0±0.2mmに平板を切断して得られた試験片を、ゲージ部10mm、試験速度0.5mm/分として測定し、繊維体積含有率(Vf)40%に換算した場合の強度である。また、一方向C/C複合材料の層間剪断強度は上記と同様の試験片を、JIS K7078に規定する試験方法に従って測定するものである。
【0036】
かかる本発明のC/C複合材料の製造方法は前記炭素繊維に各種バインダーを含浸せしめ、加熱硬化することで得ることができる。C/C複合材料の製造に用いるバインダーの種類については特に制限はなく、フェノール樹脂、エポキシ樹脂、アルキド樹脂、ウレタン樹脂、フラン樹脂等の熱硬化性樹脂、ポリエチレン、ポリ塩化ビニル等の熱可塑性樹脂、あるいはコールタールピッチ、石油ピッチ等のピッチなどの任意のものを使用することができ、これらバインダーを炭素繊維に混合あるいは含浸させた後乾燥して炭素繊維とバインダーからなる組成物を得る。その際、バインダーはアルコール、アセトン、アントラセン油等の溶媒に溶解して適当な粘度に調整したものを使用することができる。また、加熱硬化する温度や時間はバインダーの種類によって適宜設定することができるが、例えば、フェノール樹脂を用いた場合、120〜150℃、5〜10MPaにて加圧加熱成形した後、空気中で170〜250℃まで加熱処理して後硬化を行った後、さらに窒素中500〜2000℃にて炭素化処理、2000〜3000℃にて黒鉛化処理を行う。また、C/C複合材料中の繊維体積含有率としては30〜70%が好ましく、40〜60%が好ましい。かかる範囲の炭素繊維繊維含有量とすることにより、引張強度に優れかつ、剪断強度に優れたC/C複合材料とすることができる。
【0037】
【実施例】
以下、実施例により本発明を具体的に説明するが制限されるものではない。
【0038】
尚、本実施例で用いた特性の測定方法は以下の通りである。
<算術平均粗さ(Ra)の測定>
表面の算術平均粗さ(Ra)は次のようにして測定した。測定試料としては、炭素繊維を長さ数mm程度にカットしたものを使用した。銀ペーストを用いて基板(シリコンウエハ)上に固定し、原子間力顕微鏡(AFM)によって各単繊維の中央部において、3次元表面形状の像を得た。原子間力顕微鏡としてはDigital Instuments社製 NanoScope IIIaにおいてDimension 3000ステージシステムを使用した。観測条件は下記条件とした。
【0039】
・走査モード:タッピングモード
・探針:シリコンカンチレバー
・走査範囲:0.6μm×0.6μm
・走査速度:0.3Hz
・ピクセル数:512×512
・測定環境:室温、大気中
各試料について、単繊維1本から1箇所ずつ観察して得られた像について、繊維断面の丸みを3次曲面で近似し、得られた像全体を対象として、算術平均粗さ(Ra)を算出した。単繊維5本について、算術平均粗さ(Ra)を求め平均した。
<炭素繊維のBET法比表面積の測定>
炭素繊維のBET法比表面積は次のようにして測定した。試料としては炭素繊維を長さ数十cm程度にカットしたものを使用した。試料を精秤後、試験管に封入し、クリプトンガスの吸着によりBET法比表面積を測定した。ガス吸着に際しては、日本ベル(株)製 高精度全自動ガス吸着装置「BELSORP 36」を使用し、測定条件は下記の通りとした。
【0040】
・吸着ガス:Kr
・死容積:He
・吸着温度:液体窒素温度(77K)
・測定前処理:200℃
・測定モード:等温での吸着
・測定範囲:相対圧(P/P0)=0.01〜0.4
P:測定圧
P0:吸着ガスの飽和蒸気圧
・平衡時間:各平衡相対圧につき180sec
比表面積の計算法はBET理論を適用した。同理論式に従ってBETプロットの約0.05〜0.3の相対圧域を解析して比表面積を算出した。
<ストランド引張強度および弾性率の測定>
束状の炭素繊維に下記組成の樹脂を含浸させ、130℃で35分間硬化させた後、JIS R7601に基づいて引張試験を行った。
【0041】
*樹脂組成
Figure 0004433676
<炭素繊維の表面酸素濃度比(O/C)>
表面酸素濃度比O/Cは、次の手順に従ってX線光電子分光法により求めた。試料となる炭素繊維は、適当な長さにカットしてステンレス製の試料支持台上に拡げて並べた。光電子脱出角度を90゜とし、X線源としてMgKα1,2を用い、試料チャンバー内を1×10-8Torrの真空度に保った。測定時の帯電に伴うピークの補正として、C1Sの主ピークの結合エネルギー値を284.6eVに合わせた。C1Sピーク面積は、282〜296eVの範囲で直線のベースラインを引くことにより求め、O1Sピーク面積は、528〜540eVの範囲で直線のベースラインを引くことにより求めた。表面酸素濃度O/Cは、上記C1sピーク面積に対するO1Sピーク面積の比を、装置固有の感度補正値で割ることにより算出した原子数比で表した。なお、本実施例ではX線光電子分光測定装置として島津製作所(株)製ESCA−750を用い、かかる装置固有の感度補正値は2.85であった。
<C/C複合材料の引張強度>
一方向C/C複合材料の平板を切断し、繊維軸方向に長さ50±1mm、繊維軸方向に幅10±1mm、厚さ2.0±0.2mmからなる試験片を作製した。試験片の中央部10mmを残して両端の両側に厚さ1mmのアルミ製タブを接着して、引張強度用の試験片とした。試験速度は0.5mm/分とした。試験数は5つとし、その平均を引張強度とした。尚、試験機には、荷重測定誤差が±1%を超えない、クロスヘッド移動速度を一定に保てる形式の適当な材料試験機を用いるが、本実施例においては、試験機としてインストロン(登録商標)試験機4208を用いた。C/C複合材料の切断にはダイヤモンドカッターを用いた。
<C/C複合材料の層間剪断強度>
一方向C/C複合材料の平板を切断し、繊維軸方向に長さ14±1mm、繊維軸方向に幅10±0.2mm、厚さ2±0.2mmの試験片を作製した。支点間距離10mm、試験速度1mm/分として、JIS K7078に規定する試験方法に従って測定した。本実施例においては、試験機としてインストロン(登録商標)試験機4208を用いた。
【0042】
(実施例1)
ストランド強度が4.9GPa、ストランド弾性率が240GPaの束状のポリアクリロニトリル系炭素繊維(単繊維直径6.9μm、単繊維数12000本/束)を陽極とし、白金を陰極として、電気伝導度が15mS/cmになるように調整された硫酸水溶液中で、炭素繊維1g当たりの電流10Aで2秒間電解処理した後、水洗し、260℃の加熱空気中で乾燥した。得られた炭素繊維の表面の算術平均粗さRa5.0nm、比表面積0.62m2/g、表面酸素濃度比0.22であった。
【0043】
この束状の炭素繊維を金型中に置いた後、レゾール系フェノール樹脂(住友ベークライト社製スミライトレジン(登録商標PR−50087))を含浸して、150℃で9.8MPa(100kgf/cm2)にて加圧加熱成形して、厚さ2.0mmの成形板を得た。さらにこの成形板を空気中で昇温速度3℃/hrにて250℃まで加熱処理して後硬化を行った後、窒素中にて15℃/hrで1000℃まで加熱して炭素化処理を行った。さらに15℃/hrで2000℃まで加熱して24時間保持し、黒鉛化処理を行った。このC/C複合材料の繊維体積含有率は40%、引張強度は570MPa、層間剪断強度は14.6MPaで、優れた引張強度、層間剪断強度が得られた。
【0044】
(比較例1)
前記実施例1において、0.2A、100秒で電解処理した以外は実施例1と同じ製造方法により束状の炭素繊維および一方向C/C複合材料を製造した。得られた炭素繊維の表面の算術平均粗さRa3.1nm、比表面積0.45m2/g、表面酸素濃度比0.16であった。また、C/C複合材料の繊維体積含有率は40%、引張強度は540MPa、層間剪断強度は9.1MPaであった。
【0045】
(実施例2)
前記実施例1において、15A、2秒で電解処理した以外は実施例1と同じ製造方法により束状の炭素繊維および一方向C/C複合材料を製造した。得られた炭素繊維の表面の算術平均粗さRa5.5nm、比表面積0.74m2/g、表面酸素濃度比0.25であった。また、C/C複合材料の繊維体積含有率は40%、引張強度は588MPa、層間剪断強度は14.1MPaであり、良好な引張強度、層間剪断強度が得られた。
【0046】
(比較例2)
前記実施例1において、120A、1秒で電解処理した以外は実施例1と同じ製造方法により一方向C/C複合材料を製造した。得られた炭素繊維の表面の算術平均粗さRa6.3nm、比表面積0.94m2/g、表面酸素濃度比0.29であった。また、C/C複合材料の繊維体積含有率は40%、引張強度は493MPa、層間剪断強度は12.5MPaであった。
【0047】
実施例1〜2、比較例1〜2の結果を表1にまとめて示す。
【0048】
【表1】
Figure 0004433676
【0049】
表1から明らかなように、実施例1〜2は、比較例1〜2に比して、C/C複合材料の層間剪断強度および引張強度の両方が著しく優れていることがわかる。
【0050】
【発明の効果】
本発明によれば、引張強度を低下させることなく層間剪断強度を向上させたC/C複合材料の製造方法を提供することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to method of producing a carbon fiber-reinforced carbon composite materials. More particularly, this invention without reducing the tensile strength of the carbon fiber reinforced carbon composite material, a method of manufacturing a high interlaminar shear strength of carbon fiber-reinforced carbon composite materials obtained.
[0002]
[Prior art]
Conventionally, carbon fiber reinforced carbon composite materials (hereinafter referred to as C / C composite materials) are generally made of carbon fibers such as polyacrylonitrile-based, pitch-based, or rayon-based starting fibers such as phenolic resin, furan. A method of carbonizing and graphitizing in a non-oxidizing atmosphere such as an inert gas by impregnating or mixing a binder such as a thermosetting resin such as a resin or a thermoplastic resin such as pitch, or a chemical gas Manufactured by a method of filling pyrolytic carbon between carbon fibers by phase vapor deposition method, and has heat resistance, specific strength and light weight that cannot be achieved by metal etc., so it is attracting attention as structural material, friction material, conductive material Yes.
[0003]
In the manufacturing process of the C / C composite material, the process that affects the mechanical properties of the molded body is a carbonization process. Usually, this carbonization process is performed in the range of 500-2000 degreeC. In this step, the binder shrinks in volume more than the carbon fiber as its carbonized, so that thermal stress is generated between the matrix carbon and the carbon fiber. This thermal stress increases as the bonding force between the matrix carbon and the carbon fiber increases, and this large thermal stress causes a crack at the interface between the matrix carbon and the carbon fiber, and the crack grows rapidly and the interface peels off. The phenomenon that is likely to occur. As a result, when the interlaminar shear strength of the C / C composite material is improved, a decrease in tensile strength occurs.
[0004]
As methods for solving these problems, conventionally, a method in which the carbon fiber is not subjected to a surface treatment and a method in which the surface treatment is performed and then heated to 1500 ° C. or higher in an inert gas are disclosed (for example, Patent Document 1). 2). By eliminating functional groups that are effective for bonding to matrix carbon existing on the carbon fiber surface, these weaken the bonding force at the interface between the matrix carbon and the carbon fiber, and reduce the thermal stress in the carbonization process at the interface. By relieving by the effective peeling, a fatal large crack at the interface is prevented, and as a result, the tensile strength is improved. However, in these methods, the tensile strength is improved, but the decrease in the interlaminar shear strength cannot be applied to structural materials that require remarkably shear characteristics.
[0005]
In addition, a method of modifying the carbon fiber surface to be hydrophilic by irradiating ultraviolet rays in an ozone atmosphere (see, for example, Patent Document 3), a method of fluorinating the carbon fiber surface (see, for example, Patent Document 4), Various surface treatment methods for treating with hydrogen peroxide (for example, see Patent Document 5) are disclosed. These are functional groups introduced on the surface of the carbon fiber to improve the adhesion to the carbon matrix, and to improve the adhesion between the carbon matrix of the C / C composite material, which is a molded body, and the carbon fiber. Yes. However, although these surface treatment methods have improved the shear strength, the tensile strength as a structural material has not been sufficient.
[0006]
That is, there is a trade-off relationship between the tensile strength and the interlaminar shear strength of the C / C composite material, and in the above conventional method, carbon fibers that improve both the tensile strength and the interlaminar shear strength at the same time have not been obtained. Was the current situation.
[0007]
[Patent Document 1]
JP-A-6-157139 (page 3)
[0008]
[Patent Document 2]
JP 59-107913 (2nd page)
[0009]
[Patent Document 3]
Japanese Patent Laid-Open No. 3-8866 (page 3)
[0010]
[Patent Document 4]
Japanese Patent Laid-Open No. 4-175266 (Page 2)
[0011]
[Patent Document 5]
JP-A-1-145375 (page 2)
[0012]
[Problems to be solved by the invention]
In view of the background of the prior art, the present invention has excellent fatigue resistance and the like by a method for producing a C / C composite material that can obtain high interlaminar shear strength without reducing the tensile strength of the C / C composite material. The present invention provides C / C structural materials, friction materials, conductive materials, and the like.
[0013]
[Means for Solving the Problems]
The present invention employs the following means in order to solve such problems. That is, the arithmetic average roughness (Ra) of the surface is 1 nm or more and 20 nm or less, the BET specific surface area obtained from krypton gas adsorption is 0.5 m 2 / g or more and 1.2 m 2 / g or less, and X-ray photoelectron spectroscopy After impregnating a binder into a carbon fiber having a surface oxygen concentration ratio O / C of the carbon fiber determined by the method of 0.13 or more and 0.27 or less and heat-curing, carbonization treatment at 500 to 2000 ° C., 2000 to 2000 It is a manufacturing method of the carbon fiber reinforced carbon composite material which performs a graphitization process at 3000 degreeC .
[0014]
In order to solve such a problem, the following means is adopted. That is, in the method for producing a reinforced carbon composite material, in an electrolytic solution having an electric conductivity of 15 mS / cm or more and 100 mS / cm or less, the current value per unit weight of the carbon fiber is 0.5 A or more using the carbon fiber as an anode. This is a method for producing carbon fiber for carbon fiber reinforced carbon composite material, in which an electrolytic oxidation treatment is performed by applying a current of 100 A or less and a treatment time of 0.5 seconds to 20 seconds.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
As a result of intensive studies, the present inventors have found that the arithmetic average roughness (Ra) of the surface is 1 nm or more and 20 nm or less, and the BET specific surface area obtained from krypton gas adsorption is 0.5 m 2 / g or more and 1.2 m. 2 / g or less and carbon fiber having a surface oxygen concentration ratio O / C of carbon fiber obtained by X-ray photoelectron spectroscopy of 0.13 or more and 0.27 or less is impregnated with a binder and heated and cured. It has been clarified that this problem can be solved at once by performing carbonization treatment at ˜2000 ° C. and graphitization treatment at 2,000-3000 ° C.
[0017]
The carbon fiber used in the present invention needs to have a surface arithmetic average roughness (Ra) of 1 nm or more and 20 nm or less. A material in this range is suitable for a C / C composite material because a C / C structure material easily exhibits high tensile strength. Since carbon fibers having a surface with an arithmetic average roughness exceeding 20 nm have remarkable surface irregularities, when used in a C / C composite material, physical adhesion called an anchor effect is increased and tensile strength may be lowered. Moreover, since the carbon fiber which has the surface of arithmetic average roughness smaller than 1 nm is smooth, it may be unable to obtain the C / C composite material which has high interlayer shear strength. More preferably, they are 1 nm or more and 15 nm or less, More preferably, they are 1 nm or more and 10 nm or less.
[0018]
Here, the arithmetic average roughness (Ra) of the surface is an index of unevenness on the surface of the carbon fiber, and the roundness of the fiber is measured for an image of a three-dimensional surface shape of 600 nm × 600 nm measured by an atomic force microscope (AFM). Is an arithmetic mean roughness (Ra) calculated for an image of the obtained three-dimensional surface shape as an average line.
[0019]
The carbon fiber used in the present invention has a BET specific surface area of 0.5 m 2 / g or more and 1.2 m 2 / g or less, more preferably 0.5 m 2 / g or more and 0.8 m, determined from carbon fiber krypton gas adsorption. 2 / g or less, and the surface oxygen concentration ratio O / C of the carbon fiber obtained by X-ray photoelectron spectroscopy is in the range of 0.13 to 0.27, more preferably 0.17 to 0.25. Control to be. When controlled in this way, high tensile strength and high interlaminar shear strength can be obtained simultaneously. The reason for this is not clear, but it prevents cracks at the interface due to thermal stress generated between the matrix carbon and carbon fiber in the carbonization process by balancing the fine voids and functional groups in the carbon fiber surface layer. It is estimated that And a specific surface area greater than 1.2 m 2 / g, results in reduction in the strength of many defects carbon fibers themselves carbon fiber surfaces, If it is less than 0.5 m 2 / g, sufficient contact between the carbon matrix and the carbon fiber In addition, a C / C composite material with good adhesion cannot be obtained. In addition, when the surface oxygen concentration ratio O / C of the carbon fiber is less than 0.13, a carbon / carbon composite material having a poor adhesion due to insufficient affinity between the carbon fiber and the carbon matrix cannot be obtained. If the ratio O / C is larger than 0.27, the bonding force between the carbon fiber and the carbon matrix becomes too large, and the integration of the carbon fiber and the carbon matrix occurs, the C / C composite material becomes brittle, tensile strength, etc. The mechanical properties of the are significantly reduced.
[0020]
Here, the surface oxygen concentration ratio O / C of the carbon fiber referred to in the present invention can be obtained by X-ray photoelectron spectroscopy by the following method.
[0021]
If a post-treatment agent such as a sizing agent is attached to the carbon fiber to be measured, wash it with a solvent such as methylene chloride, methyl ethyl ketone, acetone, or ethanol, wash it off with distilled water, and ultrasonically wash it if necessary. After removing the sizing agent, etc., the sample can be cut to an appropriate length and spread on a stainless steel sample support table, and then measured under the following conditions.
[0022]
Moreover, when measuring about the carbon fiber mixed with the binder etc., it removes resin with solvents, such as a methylene chloride, methyl ethyl ketone, acetone, ethanol, can take out carbon fiber, and can measure by the same method.
[0023]
X-ray source: AlKα1,2 or MgKα1,2
In addition, the correction of the peak accompanying charging at the time of measurement is the binding energy value B.B. E. To 284.6 eV.
[0024]
Next, the C1s peak area [C1s] is obtained by drawing a straight base line in the range of 282 to 296 eV, and the O1s peak area [O1s] is obtained by drawing a straight base line in the range of 528 to 540 eV.
[0025]
The surface oxygen / carbon ratio (O / C) can be obtained from the ratio of the O1s peak area [O1s], the C1s peak area [C1s], and the sensitivity correction value unique to the apparatus by the following equation.
[0026]
O / C = ([O1s] / [C1s]) / (sensitivity correction value)
Further, the carbon fiber used in the present invention may be a bundle-like carbon fiber in which the carbon fibers are bundled, preferably 1000 to 100,000, more preferably 3000 to 70000, and still more preferably 10,000 to 50000, Particularly preferred is a bundle-like carbon fiber in which 12000 to 24000 single fibers are bundled, from the viewpoint of handleability. Further, such a bundle-like carbon fiber has a strand strength of 4 GPa or more and 7 GPa or less, preferably 4.5 GPa or more and 6.5 GPa, so that the strength of the C / C composite itself can be increased and is particularly suitable for a structural material. It is. Such strand strength can be obtained by a tensile test performed in accordance with JIS R7601, after impregnating a bundle of carbon fibers with a resin having the following composition and curing at 130 ° C. for 35 minutes.
[0027]
(Resin composition)
Figure 0004433676
In addition, the bundle-like carbon fiber preferably has a strand elastic modulus of 200 GPa or more and 400 GPa or less from the viewpoint of obtaining a C / C composite material having high strength and high adhesion. The strand elastic modulus here can be obtained from a slope of a load-elongation curve by conducting a tensile test in the same manner as the strand strength measuring method.
[0028]
Next, the manufacturing method of the carbon fiber for C / C composite materials of this invention is demonstrated.
[0029]
The carbon fibers used in the present invention are mainly fibers obtained by carbonizing fibers such as rayon, polyacrylonitrile, pitch, or graphitized fibers obtained by heat-treating them at a higher temperature. In order to obtain a high-strength C / C composite material, it is preferable to use an acrylonitrile fiber from which a high-strength carbon fiber can be easily obtained.
[0030]
The carbon fiber for C / C composite material having the BET specific surface area determined from the krypton gas adsorption and the surface oxygen concentration ratio O / C determined by X-ray photoelectron spectroscopy can be obtained by electrolytic oxidation treatment. The electrolytic oxidation treatment can control unevenness of treatment and can be oxidized deeply in the carbon fiber surface layer in a short time, so that it is easy to control the specific surface area and the surface oxygen concentration. The electrolytic solution used for such electrolytic oxidation treatment may be either acidic or alkaline.
[0031]
Specifically, in the electrolytic solution tank in which the electrical conductivity of the electrolytic solution is adjusted to 15 mS / cm or more and 100 mS / cm or less, the current value per unit weight of the carbon fiber is 0.5 A or more and 100 A or less, preferably 2 A. 80 A or less and a processing time of 0.5 second or more and 20 seconds or less, preferably 1 second or more and 10 seconds or less, by the BET method specific surface area and X-ray photoelectron spectroscopy obtained from the krypton gas adsorption described above. The required surface oxygen concentration ratio O / C can be controlled. When the electrical conductivity of the electrolyte is less than 15 mS / cm, it is difficult to control the current value because it is difficult for current to flow. When it exceeds 100 mS / cm, the concentration is high, so the electrolyte is removed in the subsequent water washing step. May be insufficient. Further, if the current value per unit weight of the carbon fiber is less than 0.5 A, the current value is small, so that processing spots occur. If the current value exceeds 100 A, the strength of the fiber itself decreases due to excessive oxidation treatment of the carbon fiber surface. There is a case. Further, when the treatment time is longer than 20 seconds, the oxidation treatment of the carbon fiber surface proceeds slowly, so that the surface unevenness is difficult to be formed. When the treatment time is shorter than 0.5 seconds, treatment spots are generated and the shear strength of the C / C composite is lowered. There is a case. In the above-described electrolytic oxidation treatment, the carbon fiber can be used as an anode and the platinum plate can be used as a cathode, and such treatment can be performed.
[0032]
After the electrolytic oxidation treatment, after washing with water and drying, when the oxygen concentration ratio O / C on the surface of the carbon fiber exceeds the above-mentioned value, the temperature is further set to 250 ° C. or more and 1000 ° C. or less in an inert atmosphere, preferably The oxygen concentration ratio O / C can also be controlled within a predetermined range by performing heat treatment in a range of 250 ° C. to 750 ° C. and a treatment time of 30 minutes to 5 hours.
[0033]
Further, a sizing agent can be added to the carbon fiber as necessary. As the sizing agent, for example, a thermosetting resin such as an epoxy resin, a phenol resin, an alkyd resin, or a urethane resin, a thermoplastic resin such as polyethylene, polyvinyl chloride, or polyamide, or a pitch such as coal tar pitch or petroleum pitch is used. be able to.
[0034]
By applying the carbon fiber for a C / C composite material of the present invention, a C / C composite material excellent in mechanical properties, particularly tensile strength and interlaminar shear strength can be produced. Such a C / C composite material may be a C / C composite material in which the reinforcing fiber direction is substantially unidirectional, or bi-directional C / C in which the reinforcing fiber direction intersects the 90 ° and 0 ° directions. The fiber direction can be arbitrarily set according to the composite material and other purposes. In particular, by using the carbon fiber for C / C composite material, a unidirectional C / C composite material having a tensile strength of 500 to 700 MPa and an interlayer shear strength of 10 to 20 MPa can be obtained.
[0035]
Here, the tensile strength of the unidirectional C / C composite material is obtained by cutting a flat plate into a length of 50 ± 1 mm in the fiber axis direction, a width of 10 ± 1 mm in the fiber axis direction, and a thickness of 2.0 ± 0.2 mm. It is the intensity | strength at the time of converting into the fiber volume content rate (Vf) 40%, when the test piece was measured as a gauge part of 10 mm and the test speed of 0.5 mm / min. Further, the interlaminar shear strength of the unidirectional C / C composite material is obtained by measuring a test piece similar to the above in accordance with a test method specified in JIS K7078.
[0036]
Such a method for producing a C / C composite material according to the present invention can be obtained by impregnating the carbon fiber with various binders and curing by heating. There are no particular restrictions on the type of binder used in the production of the C / C composite material. Thermosetting resins such as phenol resins, epoxy resins, alkyd resins, urethane resins and furan resins, and thermoplastic resins such as polyethylene and polyvinyl chloride. Alternatively, any pitch, such as coal tar pitch or petroleum pitch, can be used, and these binders are mixed or impregnated with carbon fibers and dried to obtain a composition comprising carbon fibers and binders. At that time, a binder which is dissolved in a solvent such as alcohol, acetone or anthracene oil and adjusted to an appropriate viscosity can be used. In addition, the temperature and time for heat curing can be appropriately set depending on the type of the binder. For example, in the case of using a phenol resin, after being heated under pressure at 120 to 150 ° C. and 5 to 10 MPa, in the air After heat-treating to 170 to 250 ° C. and post-curing, carbonization treatment is further performed at 500 to 2000 ° C. in nitrogen, and graphitization treatment is performed at 2000 to 3000 ° C. Moreover, as a fiber volume content rate in a C / C composite material, 30 to 70% is preferable and 40 to 60% is preferable. By setting the carbon fiber fiber content in such a range, a C / C composite material having excellent tensile strength and excellent shear strength can be obtained.
[0037]
【Example】
Hereinafter, the present invention will be specifically described by way of examples, but is not limited thereto.
[0038]
The method for measuring the characteristics used in this example is as follows.
<Measurement of arithmetic average roughness (Ra)>
The arithmetic average roughness (Ra) of the surface was measured as follows. As a measurement sample, a carbon fiber cut to a length of about several mm was used. It fixed on the board | substrate (silicon wafer) using the silver paste, and obtained the image of the three-dimensional surface shape in the center part of each single fiber with the atomic force microscope (AFM). As an atomic force microscope, a Dimension 3000 stage system was used in NanoScope IIIa manufactured by Digital Instruments. The observation conditions were as follows.
[0039]
・ Scanning mode: Tapping mode ・ Probe: Silicon cantilever ・ Scanning range: 0.6μm × 0.6μm
・ Scanning speed: 0.3Hz
-Number of pixels: 512 × 512
-Measurement environment: For each sample obtained at room temperature and in the air, by observing one single fiber at a location one by one, the roundness of the fiber cross section is approximated by a cubic surface, and the entire image obtained is targeted. Arithmetic mean roughness (Ra) was calculated. The arithmetic average roughness (Ra) was obtained and averaged for five single fibers.
<Measurement of BET specific surface area of carbon fiber>
The BET method specific surface area of the carbon fiber was measured as follows. The sample used was a carbon fiber cut to a length of several tens of centimeters. The sample was precisely weighed and then sealed in a test tube, and the BET specific surface area was measured by adsorption of krypton gas. For gas adsorption, a high-precision fully automatic gas adsorption device “BELSORP 36” manufactured by Nippon Bell Co., Ltd. was used, and the measurement conditions were as follows.
[0040]
・ Adsorption gas: Kr
・ Dead volume: He
・ Adsorption temperature: Liquid nitrogen temperature (77K)
・ Measurement pretreatment: 200 ℃
Measurement mode: Isothermal adsorption Measurement range: Relative pressure (P / P0) = 0.01-0.4
P: Measurement pressure P0: Saturated vapor pressure and equilibrium time of adsorbed gas: 180 sec for each equilibrium relative pressure
The specific surface area was calculated by applying the BET theory. The specific surface area was calculated by analyzing the relative pressure range of about 0.05 to 0.3 in the BET plot according to the same theoretical formula.
<Measurement of strand tensile strength and elastic modulus>
A bundle of carbon fibers was impregnated with a resin having the following composition, cured at 130 ° C. for 35 minutes, and then subjected to a tensile test based on JIS R7601.
[0041]
* Resin composition
Figure 0004433676
<Surface oxygen concentration ratio of carbon fiber (O / C)>
The surface oxygen concentration ratio O / C was determined by X-ray photoelectron spectroscopy according to the following procedure. The carbon fiber used as a sample was cut to an appropriate length and spread on a stainless steel sample support table. The photoelectron escape angle was 90 °, MgKα1,2 was used as the X-ray source, and the inside of the sample chamber was kept at a vacuum of 1 × 10 −8 Torr. As correction of the peak accompanying charging during measurement, the binding energy value of the main peak of C1S was adjusted to 284.6 eV. The C1S peak area was determined by drawing a straight base line in the range of 282 to 296 eV, and the O1S peak area was determined by drawing a straight base line in the range of 528 to 540 eV. The surface oxygen concentration O / C was expressed as an atomic ratio calculated by dividing the ratio of the O1S peak area to the C1s peak area by the sensitivity correction value unique to the apparatus. In this example, ESCA-750 manufactured by Shimadzu Corporation was used as the X-ray photoelectron spectrometer, and the sensitivity correction value unique to the device was 2.85.
<Tensile strength of C / C composite material>
A flat plate of a unidirectional C / C composite material was cut to prepare a test piece having a length of 50 ± 1 mm in the fiber axis direction, a width of 10 ± 1 mm in the fiber axis direction, and a thickness of 2.0 ± 0.2 mm. An aluminum tab having a thickness of 1 mm was adhered to both sides of the both ends except for the central portion of the test piece, thereby obtaining a test piece for tensile strength. The test speed was 0.5 mm / min. The number of tests was five, and the average was taken as the tensile strength. As the tester, an appropriate material tester of a type in which the load measurement error does not exceed ± 1% and the crosshead moving speed can be kept constant is used. In this embodiment, Instron (registered as a tester) Trademark) Tester 4208 was used. A diamond cutter was used to cut the C / C composite material.
<Interlaminar shear strength of C / C composite material>
A flat plate of a unidirectional C / C composite material was cut to prepare a test piece having a length of 14 ± 1 mm in the fiber axis direction, a width of 10 ± 0.2 mm in the fiber axis direction, and a thickness of 2 ± 0.2 mm. The distance between the fulcrums was 10 mm, and the test speed was 1 mm / min. In this example, an Instron (registered trademark) testing machine 4208 was used as a testing machine.
[0042]
Example 1
A bundle of polyacrylonitrile-based carbon fibers having a strand strength of 4.9 GPa and a strand elastic modulus of 240 GPa (single fiber diameter: 6.9 μm, number of single fibers: 12,000 fibers / bundle) as an anode, platinum as a cathode, and electric conductivity In an aqueous sulfuric acid solution adjusted to 15 mS / cm, electrolytic treatment was performed at a current of 10 A per 1 g of carbon fiber for 2 seconds, followed by washing with water and drying in 260 ° C. heated air. The surface of the obtained carbon fiber had an arithmetic average roughness Ra of 5.0 nm, a specific surface area of 0.62 m 2 / g, and a surface oxygen concentration ratio of 0.22.
[0043]
After placing the bundled carbon fiber in a mold, it was impregnated with a resol-based phenol resin (Sumilite Resin (registered trademark PR-50087) manufactured by Sumitomo Bakelite Co., Ltd.) and 9.8 MPa (100 kgf / cm at 150 ° C.). In 2 ), press molding was performed to obtain a molded plate having a thickness of 2.0 mm. Further, this molded plate was heat-treated in air at a heating rate of 3 ° C./hr to 250 ° C. and post-cured, and then heated in nitrogen at 15 ° C./hr to 1000 ° C. for carbonization treatment. went. Furthermore, it heated to 2000 degreeC by 15 degreeC / hr, was hold | maintained for 24 hours, and performed the graphitization process. This C / C composite material had a fiber volume content of 40%, a tensile strength of 570 MPa, and an interlaminar shear strength of 14.6 MPa, and excellent tensile strength and interlaminar shear strength were obtained.
[0044]
(Comparative Example 1)
A bundle-like carbon fiber and a unidirectional C / C composite material were produced by the same production method as in Example 1 except that the electrolytic treatment was conducted at 0.2 A for 100 seconds in Example 1. The surface of the obtained carbon fiber had an arithmetic average roughness Ra of 3.1 nm, a specific surface area of 0.45 m 2 / g, and a surface oxygen concentration ratio of 0.16. The C / C composite material had a fiber volume content of 40%, a tensile strength of 540 MPa, and an interlayer shear strength of 9.1 MPa.
[0045]
(Example 2)
A bundle-like carbon fiber and a unidirectional C / C composite material were produced by the same production method as in Example 1 except that the electrolytic treatment was performed in 15 A for 2 seconds in Example 1. The arithmetic mean roughness Ra of the surface of the obtained carbon fiber was 5.5 nm, the specific surface area was 0.74 m 2 / g, and the surface oxygen concentration ratio was 0.25. Further, the fiber volume content of the C / C composite material was 40%, the tensile strength was 588 MPa, and the interlaminar shear strength was 14.1 MPa, and good tensile strength and interlaminar shear strength were obtained.
[0046]
(Comparative Example 2)
In Example 1, a unidirectional C / C composite material was produced by the same production method as in Example 1 except that the electrolytic treatment was performed at 120 A for 1 second. The surface of the obtained carbon fiber had an arithmetic average roughness Ra of 6.3 nm, a specific surface area of 0.94 m 2 / g, and a surface oxygen concentration ratio of 0.29. The C / C composite material had a fiber volume content of 40%, a tensile strength of 493 MPa, and an interlayer shear strength of 12.5 MPa.
[0047]
The results of Examples 1-2 and Comparative Examples 1-2 are summarized in Table 1.
[0048]
[Table 1]
Figure 0004433676
[0049]
As apparent from Table 1, Examples 1 and 2 are significantly superior in both the interlaminar shear strength and tensile strength of the C / C composite material as compared with Comparative Examples 1 and 2.
[0050]
【The invention's effect】
According to the present invention, it is possible to provide a manufacturing how tensile C / C composite materials having the strength to improve the interlaminar shear strength without lowering.

Claims (6)

表面の算術平均粗さ(Ra)が、1nm以上20nm以下、クリプトンガス吸着から求めたBET法比表面積が0.5m2 /g以上1.2m2 /g以下で、かつX線光電子分光法によって求められる炭素繊維の表面酸素濃度比O/Cが0.13以上0.27以下である炭素繊維に、バインダーを含浸させ加熱硬化した後、500〜2000℃にて炭素化処理、2000〜3000℃にて黒鉛化処理を行う炭素繊維強化炭素複合材料の製造方法The arithmetic average roughness (Ra) of the surface is 1 nm or more and 20 nm or less, the BET specific surface area determined from krypton gas adsorption is 0.5 m 2 / g or more and 1.2 m 2 / g or less, and by X-ray photoelectron spectroscopy A carbon fiber having a surface oxygen concentration ratio O / C of the required carbon fiber of 0.13 or more and 0.27 or less is impregnated with a binder and heated and cured, and then carbonized at 500 to 2000 ° C., 2000 to 3000 ° C. A method for producing a carbon fiber reinforced carbon composite material that is graphitized at a temperature . 炭素繊維が4GPa以上7GPa以下のストランド強度を有する束状である請求項1記載の炭素繊維強化炭素複合材料の製造方法 The method for producing a carbon fiber-reinforced carbon composite material according to claim 1, wherein the carbon fiber has a bundle shape having a strand strength of 4 GPa or more and 7 GPa or less. 炭素繊維が200GPa以上400GPa以下のストランド弾性率を有する束状である請求項1または2記載の炭素繊維強化炭素複合材料の製造方法 The method for producing a carbon fiber-reinforced carbon composite material according to claim 1 or 2, wherein the carbon fiber has a bundle shape having a strand elastic modulus of 200 GPa or more and 400 GPa or less. 電気伝導度が15mS/cm以上100mS/cm以下の電解液中で、炭素繊維を陽極として、炭素繊維の単位重量あたりの電流値が0.5A以上100A以下、かつ処理時間が0.5秒以上20秒以下に通電して電解酸化処理する請求項1記載の炭素繊維強化炭素複合材料の製造方法。In an electrolytic solution having an electrical conductivity of 15 mS / cm or more and 100 mS / cm or less, with the carbon fiber as the anode, the current value per unit weight of the carbon fiber is 0.5 A or more and 100 A or less, and the treatment time is 0.5 seconds or more. the process according to claim 1 carbon fiber reinforced carbon composite materials according to the electrolytic oxidation treatment by energizing the following 20 seconds. 請求項1〜のいずれかに記載の製造方法によって得られる炭素繊維強化炭素複合材料。The carbon fiber reinforced carbon composite material obtained by the manufacturing method in any one of Claims 1-4 . 引張強度が500〜700MPaかつ層間剪断強度が10〜20MPaである請求項5に記載の一方向炭素繊維強化炭素複合材料。 The unidirectional carbon fiber reinforced carbon composite material according to claim 5, wherein the tensile strength is 500 to 700 MPa and the interlaminar shear strength is 10 to 20 MPa.
JP2003009312A 2003-01-17 2003-01-17 Method for producing carbon fiber reinforced carbon composite material Expired - Fee Related JP4433676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003009312A JP4433676B2 (en) 2003-01-17 2003-01-17 Method for producing carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003009312A JP4433676B2 (en) 2003-01-17 2003-01-17 Method for producing carbon fiber reinforced carbon composite material

Publications (3)

Publication Number Publication Date
JP2004217485A JP2004217485A (en) 2004-08-05
JP2004217485A5 JP2004217485A5 (en) 2005-12-08
JP4433676B2 true JP4433676B2 (en) 2010-03-17

Family

ID=32898850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003009312A Expired - Fee Related JP4433676B2 (en) 2003-01-17 2003-01-17 Method for producing carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JP4433676B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226238B2 (en) * 2007-03-30 2013-07-03 東邦テナックス株式会社 Carbon fiber and composite material using the same
JP5251655B2 (en) * 2009-03-24 2013-07-31 東レ株式会社 Carbon fiber and method for producing the same

Also Published As

Publication number Publication date
JP2004217485A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
Liu et al. A surface treatment technique of electrochemical oxidation to simultaneously improve the interfacial bonding strength and the tensile strength of PAN-based carbon fibers
WO2016068034A1 (en) Carbon fiber bundle and method for manufacturing same
CA2764662C (en) Carbon fiber bundle that develops high mechanical performance
US20100266827A1 (en) Carbon fiber and composite material using the same
JPWO2016068034A1 (en) Carbon fiber bundle and method for producing the same
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JP2664047B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP4433676B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP2004244258A (en) Carbon fiber for carbon fiber reinforced carbon composite materials and method of manufacturing the same
JP4953410B2 (en) Carbon fiber and method for producing the same
JP2004277192A (en) Carbon fiber for carbon fiber-reinforced carbon composite material, and production method therefor
JP2010047865A (en) Carbon fiber for composite material and composite material produced by using the same
JP5226238B2 (en) Carbon fiber and composite material using the same
Yip et al. Effect of surface oxygen on adhesion of carbon fiber reinforced composites
JP7005822B1 (en) C / C composite and its manufacturing method, heat treatment jig and its manufacturing method
JP7338176B2 (en) Carbon fiber reinforced vinyl ester resin composition and method for producing the same
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP5455408B2 (en) Polyacrylonitrile-based carbon fiber and method for producing the same
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP2010222739A (en) Carbon fiber and method for producing the same
JP5419768B2 (en) Carbon fiber surface treatment method and carbon fiber produced by the treatment method
JP2004217466A (en) Carbon fiber, carbon fiber bundle for carbon composite material and method of manufacturing the same
JP2004277907A (en) Carbon fiber and method for producing the same
JPH054463B2 (en)
JP6304046B2 (en) Carbon fiber bundle and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees