JPH03146718A - Pitch-based carbon fiber having high elongation and high strength - Google Patents

Pitch-based carbon fiber having high elongation and high strength

Info

Publication number
JPH03146718A
JPH03146718A JP1282387A JP28238789A JPH03146718A JP H03146718 A JPH03146718 A JP H03146718A JP 1282387 A JP1282387 A JP 1282387A JP 28238789 A JP28238789 A JP 28238789A JP H03146718 A JPH03146718 A JP H03146718A
Authority
JP
Japan
Prior art keywords
fiber
pitch
elongation
carbon fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1282387A
Other languages
Japanese (ja)
Inventor
Makoto Miyazaki
誠 宮崎
Kikuji Komine
小峰 喜久治
Takashi Hino
日野 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP1282387A priority Critical patent/JPH03146718A/en
Priority to US07/601,486 priority patent/US5209975A/en
Priority to KR1019900017454A priority patent/KR910008192A/en
Priority to EP19900311892 priority patent/EP0426438A3/en
Publication of JPH03146718A publication Critical patent/JPH03146718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject carbon fiber having specific crystal structure, O/C ratio of atom numbers on the fiber surface, total oxygen concentration and elongation, giving an easily handleable yarn to enable easy weaving and knitting and suitable as a reinforcing fiber for a light-weight structural material for space industry, etc., by melt-spinning a carbonaceous pitch. CONSTITUTION:A carbonaceous pitch fiber produced by the melt-spinning of a carbonaceous pitch is infusibilized by heating in an oxygen-rich gas atmosphere, carbonized by heating in an inert gas, subjected to vapor phase oxidation by heating in an oxygen-containing atmosphere and, as necessary, further heated to effect the carbonization or graphitization and obtain the objective carbon fiber having a crystal structure characterized by specific X-ray structure parameters comprising an orientation angle of 25-38 deg., a lamination thickness of 19-35Angstrom and a plane spacing of 3.45-3.50Angstrom and having an O/C atomic ratio of 0.1-0.35 on the fiber surface determined by X-ray photoelectron spectrometry, a total oxygen concentration of 0.01-0.2wt.%, an elongation of >=1.0% and preferably a tensile strength of >=150kg/mm<2>.

Description

【発明の詳細な説明】 の1 本発明は、一般には、炭素繊維に関するものであり、特
に、糸扱い性に優れ、編織が容易であって、宇宙産業、
自動車産業、建築産業などにおいて軽量構造材料用強化
繊維として広く使用することのできる高伸度、高強度の
ピッチ系炭素繊維に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1. The present invention generally relates to carbon fiber, and in particular, it has excellent yarn handling properties, is easy to knit and weave, and is useful in the space industry,
This invention relates to pitch-based carbon fibers with high elongation and high strength that can be widely used as reinforcing fibers for lightweight structural materials in the automobile industry, construction industry, etc.

鎧迷」口i歪 従来、炭素繊維としては、PAN系及びレーヨン系炭素
繊維が広く製造及び使用されているが、PAN系及びレ
ーヨン系炭素繊維は原料が高価で炭化収率も悪く、経済
面で良くない、そこで、近年、コストの廉価なピッチを
原料としており、しかも、引張強度及び引張弾性率の点
においても優れているピッチ系炭素繊維が注目を浴びて
いる。
Traditionally, PAN-based and rayon-based carbon fibers have been widely produced and used as carbon fibers, but PAN-based and rayon-based carbon fibers are economically disadvantageous due to their expensive raw materials and poor carbonization yields. Therefore, in recent years, pitch-based carbon fibers, which are made from inexpensive pitch and are excellent in terms of tensile strength and tensile modulus, have been attracting attention.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチなどから炭素繊維に
適した炭素質ピッチを調製し、該炭素質ピッチを加熱溶
融して紡糸機にて紡糸し、集束、合糸してピッチ繊維束
を製造し、 (2)前記ピッチ繊維束を不融化炉で酸化性ガス雰囲気
下にて200〜350℃までに加熱して不融化し、 (3)引き続いて、該不融化された繊維束を炭化炉で不
活性ガス雰囲気下にて500〜2000℃まで加熱して
炭化して、更には3000℃まで加熱して黒鉛化するこ
と、 により製造されている。
Currently, pitch-based carbon fibers are produced by: (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, spinning it in a spinning machine, converging it, (2) The pitch fiber bundle is heated to 200 to 350°C in an oxidizing gas atmosphere in an infusible furnace to make it infusible; (3) Subsequently, It is manufactured by heating the infusible fiber bundle in a carbonization furnace to 500 to 2000°C in an inert gas atmosphere to carbonize it, and further heating it to 3000°C to graphitize it.

が  しよ と る しかしながら、一般に、このようにして得られたピッチ
系炭素繊維は、引張強度は2゜0GPa (200Kg
/mm” )以上、引張弾性率は600GPa (60
ton/mm” )以上と高いものが得られるが、伸度
(伸び率)は、通常0.5%以下、大きくても1%程度
であった。
However, pitch-based carbon fibers obtained in this way generally have a tensile strength of 2°0 GPa (200 kg
/mm”) or more, the tensile modulus is 600GPa (60
Although a high elongation (elongation rate) of more than 1.5 ton/mm" can be obtained, the elongation (elongation rate) was usually 0.5% or less, and at most about 1%.

このように従来のピッチ系炭素繊維は伸度が小さいため
に取扱いが難しく、編織性に劣り、特に複合材料を製造
する場合に大きな問題となっていた。
As described above, conventional pitch-based carbon fibers are difficult to handle due to their low elongation, and have poor weaving and weaving properties, which poses a major problem particularly when manufacturing composite materials.

本発明者らは、ピッチを原料として、引張強度及び引張
弾性率を損なうことなく、高伸度のピッチ系炭素繊維を
得るべく研究開発する過程にて、炭素繊維の結晶構造を
特異なものとすることで、所定レベル以上の引張強度、
引張弾性率を具備し、良好な編織性を示す1.0%以上
の伸度を有した高伸度、高強度のピッチ系炭素繊維を得
ることができることを見出した。
In the process of research and development to obtain pitch-based carbon fibers with high elongation without impairing tensile strength and tensile modulus using pitch as a raw material, the present inventors discovered that the crystal structure of carbon fibers was unique. By doing so, the tensile strength exceeds a specified level,
It has been found that it is possible to obtain high-strength, high-strength pitch-based carbon fibers having a tensile modulus and an elongation of 1.0% or more that exhibits good knitting and weaving properties.

又、本発明者らは、このような炭素繊維を使用して複合
材料を製造する際に最も重要な要素の一つである、繊維
とマトリクス樹脂との接着性が、強化繊維の表面酸素濃
度及び繊維中の全酸素濃度に大きく影響されることを見
出した。つまり、X線光電子分光法(ESCA)によっ
て検出される繊維表面の原子数比0/Cが0.1〜0゜
35であり、繊維中の全酸素濃度が0.01〜0.2重
量%とされる場合に繊維とマトリクス樹脂との間の接着
性は良好であり、この範囲を外れ、繊維表面の原子数比
0/Cが0.1未満であり繊維中の全酸素濃度が0.0
1重量%未満であると、接着性が著しく低下することが
分かった。
In addition, the present inventors have discovered that the adhesion between the fibers and the matrix resin, which is one of the most important factors when manufacturing composite materials using such carbon fibers, is dependent on the surface oxygen concentration of the reinforcing fibers. It was also found that the total oxygen concentration in the fibers greatly influenced the concentration of oxygen in the fibers. In other words, the atomic ratio 0/C on the fiber surface detected by X-ray photoelectron spectroscopy (ESCA) is 0.1 to 0°35, and the total oxygen concentration in the fiber is 0.01 to 0.2% by weight. The adhesion between the fiber and the matrix resin is good when it is outside this range, the atomic ratio 0/C on the fiber surface is less than 0.1, and the total oxygen concentration in the fiber is 0. 0
It has been found that when the amount is less than 1% by weight, the adhesiveness is significantly reduced.

又、繊維表面の原子比0/Cが0.35を越え、繊維中
の全酸素濃度が0.2重量%を越えると、炭素繊維の引
張強度、引張弾性率が著しく低下することが分かった。
Furthermore, it was found that when the atomic ratio 0/C on the fiber surface exceeds 0.35 and the total oxygen concentration in the fiber exceeds 0.2% by weight, the tensile strength and tensile modulus of carbon fiber decrease significantly. .

本発明は、断る新規な知見に基づきなされたものである
The present invention has been made based on the following novel findings.

従って、本発明の目的は、高伸度、高強度を有するピッ
チ系炭素繊維を提供することである。
Therefore, an object of the present invention is to provide a pitch-based carbon fiber having high elongation and high strength.

本発明の他の目的は、取扱いが容易であり、編織性に優
れ、又、マトリクス樹脂との接着性のよい、従って複合
材料を製造するのに適した高伸度、高強度ピッチ系炭素
繊維を提供することである。
Another object of the present invention is to provide high elongation and high strength pitch carbon fibers that are easy to handle, have excellent knitting and weaving properties, and have good adhesion to matrix resins, and are therefore suitable for manufacturing composite materials. The goal is to provide the following.

を ゛ るための 上記諸国的は、本発明に係る高伸度、高強度ピッチ系炭
素繊維によって達成される。要約すれば本発明は、X線
構造パラメーターの配向角(φ)が25〜38° 積層
厚み(Lc)が19〜35Å、層間隔(do。2)が3
.45〜3.50人である結晶構造を有し、X線光電子
分光法によって検出される繊維表面の原子数比0/Cが
0.1〜0.35であり、繊維中の全酸素濃度が0.0
1−0.2重量%であり、伸度が工。
The above-mentioned advantages in various countries can be achieved by the high elongation and high strength pitch-based carbon fiber according to the present invention. In summary, the present invention has an orientation angle (φ) of X-ray structural parameters of 25 to 38°, a stacking thickness (Lc) of 19 to 35 Å, and a layer spacing (do. 2) of 3
.. It has a crystal structure of 45 to 3.50 atoms, the atomic ratio 0/C on the fiber surface detected by X-ray photoelectron spectroscopy is 0.1 to 0.35, and the total oxygen concentration in the fiber is 0.0
1-0.2% by weight, and the elongation is excellent.

0%以上であることを特徴とする高伸度、高強度ピッチ
系炭素繊維である。
It is a pitch-based carbon fiber with high elongation and high strength, characterized by having an elongation of 0% or more.

本発明者らは、上述のように、ピッチを原料として編織
性の良好なピッチ系炭素繊維を得るべく研究開発する過
程にて、先ず、良好な編織性を有するには伸度が少なく
と1.0%以上であることが必要であることが分かった
。又、所定レベル以上の引張強度及び引張弾性率を備え
、しかもこのような高伸度のピッチ系炭素繊維を得るに
は炭素繊維の結晶構造を特異なものとすることが重要で
あることを見出した。
As mentioned above, in the process of research and development to obtain pitch-based carbon fibers with good weaving and weaving properties using pitch as a raw material, we first discovered that in order to have good weaving and weaving properties, the elongation must be at least 1. It was found that it is necessary to have a content of .0% or more. We also discovered that in order to obtain pitch-based carbon fibers that have tensile strength and tensile modulus above a predetermined level and also have such high elongation, it is important to make the crystal structure of the carbon fibers unique. Ta.

更に説明すると、本発明者らは、伸度が少なくとも1.
0%以上であり、且つ、150Kg/mm”以上の引張
強度を有した高伸度、高強度のピッチ系炭素繊維を得る
には炭素繊維の結晶構造は、X I!構造パラメーター
の配向角(φ)が25〜38° 積層厚み(Lc)が1
9〜35Å、層間隔(a、、、)が3.45〜3゜50
人であることが重要であり、特に、配向角(φ)は、ピ
ッチ系炭素繊維の伸度を決定する重要なファクターであ
ることを見出した。又、結晶構造を決定するファクター
の1つである積層厚み(Lc)及び層間隔(dooa)
は、伸度、引張強度及び弾性率を適当にバランスさせる
ために適当範囲に存在することが又重要であることが分
かった。
To explain further, the present inventors have determined that the elongation is at least 1.
0% or more and a tensile strength of 150 Kg/mm" or more, the crystal structure of the carbon fiber should be φ) is 25~38° Lamination thickness (Lc) is 1
9 to 35 Å, layer spacing (a,,,) 3.45 to 3°50
In particular, we have found that the orientation angle (φ) is an important factor in determining the elongation of pitch-based carbon fibers. In addition, the lamination thickness (Lc) and layer spacing (dooa), which are one of the factors that determine the crystal structure,
It has also been found that it is important to exist within an appropriate range in order to properly balance elongation, tensile strength and elastic modulus.

つまり、配向角(φ)が20”より小さい場合には十分
な伸度、即ち、良好な編織性を得るに必要な1.0%以
上の伸度が得られず、又、配向角(φ)が38°を越え
ると引張弾性率が低下し炭素繊維本来の特性である高弾
性率という利点が損なわれてしまう。更に、積層厚み(
Lc)及び層間隔(d002)がそれぞれ19〜35人
及び3゜45〜3.50人の範囲外である場合には、必
要とされる引張強度及び引張弾性率が得られ難いという
問題が生じる。
In other words, if the orientation angle (φ) is smaller than 20", sufficient elongation, that is, the elongation of 1.0% or more necessary to obtain good weaving properties, cannot be obtained; ) exceeds 38°, the tensile modulus decreases and the advantage of high modulus, which is an inherent characteristic of carbon fiber, is lost.Furthermore, if the laminated thickness (
When Lc) and layer spacing (d002) are outside the ranges of 19 to 35 people and 3°45 to 3.50 people, respectively, the problem arises that it is difficult to obtain the required tensile strength and tensile modulus. .

以上のように、高伸度、高強度のピッチ系炭素繊維を得
るには、X線構造パラメーターである配向角(φ) 積
層厚み(Lc)  M間隔(d、。
As described above, in order to obtain pitch-based carbon fibers with high elongation and high strength, the X-ray structure parameters such as orientation angle (φ), lamination thickness (Lc), and M spacing (d) are required.

2)を、極く狭い範囲の適当範囲にバランスさせること
が重要である。
It is important to balance 2) within an appropriate range within a very narrow range.

上記特異な結晶構造を有した本発明に係るピッチ系炭素
繊維によると、伸度が少なくと1.0%以上であり、一
般に、160〜5.0%とされ、しかも、150 K 
g / m m ”以上の引張強度を有した高伸度、高
強度のピッチ系炭素繊維を得ることができる。
According to the pitch-based carbon fiber according to the present invention having the above-mentioned unique crystal structure, the elongation is at least 1.0% or more, generally 160 to 5.0%, and moreover, the elongation is 150 K.
It is possible to obtain a pitch-based carbon fiber with high elongation and high strength and a tensile strength of 10 g/mm'' or more.

又、本発明に係るピッチ系炭素繊維は、X線光電子分光
法によって検出される繊維表面の原子数比0/Cが0.
1〜0.35であり、繊維中の全酸素濃度が0.01〜
0.2重量%であり、そのまま複合樹脂の強化繊維とし
て使用した場合にもマトリクス樹脂との接着性が良好で
あり、高強度、高弾性率の炭素繊維強化複合樹脂を得る
ことができることが分かった。
Further, the pitch-based carbon fiber according to the present invention has an atomic ratio 0/C of the fiber surface detected by X-ray photoelectron spectroscopy of 0.
1 to 0.35, and the total oxygen concentration in the fiber is 0.01 to
0.2% by weight, and it was found that even when used as reinforcing fibers for composite resins, the adhesion with the matrix resin was good, and it was possible to obtain carbon fiber-reinforced composite resins with high strength and high modulus of elasticity. Ta.

又、本発明の炭素繊維は、必要に応じて、更に焼成する
ことにより、より高強度、高弾性率の炭素繊維及び黒鉛
繊維を得ることができることも分かった。
It has also been found that by further firing the carbon fibers of the present invention, if necessary, carbon fibers and graphite fibers with higher strength and higher modulus of elasticity can be obtained.

次に、本発明に係る炭素繊維の製造方法について説明す
る。
Next, a method for manufacturing carbon fiber according to the present invention will be explained.

本発明に係る炭素繊維を製造するに際しては。When manufacturing the carbon fiber according to the present invention.

先ず、熱伝導性の良い挿入部材を入れた紡糸ノズルを使
用して紡糸ノズルにおける溶融ピッチの温度変動、特に
温度降下を最低限度に抑えることにより紡糸し炭素質ピ
ッチ繊維を得る。又、斯かる紡糸法によれば、紡糸時に
生じる配向孔れを適度に制御し得るという利点がある。
First, carbonaceous pitch fibers are obtained by spinning using a spinning nozzle containing an insertion member with good thermal conductivity and minimizing temperature fluctuations, especially temperature drops, of the molten pitch in the spinning nozzle. Further, such a spinning method has the advantage that orientation holes that occur during spinning can be appropriately controlled.

このようにして得られたピッチ繊維を富酸素ガス雰囲気
下(酸素濃度30〜lOO%)にて最低温度120〜2
00℃から1〜b 速度で最高温度240〜350℃まで3〜30分間で加
熱して不融化を行なう。
The pitch fibers obtained in this way were heated under an oxygen-rich gas atmosphere (oxygen concentration 30 to 100%) at a minimum temperature of 120 to 2
The mixture is heated from 00° C. to a maximum temperature of 240° to 350° C. for 3 to 30 minutes at a speed of 1 to 30° C. to infusible.

不融化した繊維は、次に不活性ガス中で、例えば窒素或
はアルゴンガス中で400〜550℃までは昇温速度1
0〜b 1300℃までは昇温速度loo〜5oo℃/分で加熱
し、短時間にて、例えば3〜15分間にて炭化処理を行
う。このように、不融化時には、高温の富酸素ガス雰囲
気下にて迅速に、かつ繊維の表層を選択的に強く酸化(
内部酸化は少)した後、融着しない範囲で不活性ガス雰
囲気下で迅速に炭化することにより達成される。更に、
このとき、本発明によれば、炭素繊維の配向角を改良す
るために、1フイラメント当たり0.001〜0.2g
rのテンショーンが付与され、強制配向がなされる。
The infusible fibers are then heated in an inert gas, for example nitrogen or argon gas, at a heating rate of 1 to 400-550°C.
From 0 to 1300° C., heating is performed at a temperature increase rate of loo to 50° C./min, and carbonization is performed in a short time, for example, for 3 to 15 minutes. In this way, during infusibility, the surface layer of the fiber is rapidly and selectively strongly oxidized (
Internal oxidation is achieved by carbonizing rapidly under an inert gas atmosphere to the extent that no fusion occurs. Furthermore,
At this time, according to the present invention, in order to improve the orientation angle of carbon fibers, 0.001 to 0.2 g per filament is obtained.
A tension of r is applied and forced orientation is performed.

これにより、伸度が少なくと61.0%以上であり、一
般に、1.0〜5.0%とされ、しかも、150Kg/
mm”以上の引張強度を有した高伸度、高強度のピッチ
系炭素繊維を得ることができる。
As a result, the elongation is at least 61.0%, generally 1.0 to 5.0%, and 150 kg/
It is possible to obtain a pitch-based carbon fiber with high elongation and high strength and a tensile strength of 2 mm or more.

このようにして得られた高伸度、高強度のピッチ系炭素
繊維は、引き続いて、酸化処理され、繊維の表面酸素濃
度及び繊維中の全酸素濃度が上記所定範囲内になるよう
に調整される。酸化処理は、酸素含有雰囲気下で短時間
の気相酸化を行うことにより、例えば、繊維を酸素濃度
60%の富酸素雰囲気中にて700℃、30秒間加熱す
ることにより好適に行うことができる。又、このような
高温、短時間の酸化処理により、マトリクスとの接着性
が向上すると共に、繊維の物性も向上することが分かっ
た。
The pitch-based carbon fibers with high elongation and high strength thus obtained are subsequently oxidized and adjusted so that the surface oxygen concentration of the fibers and the total oxygen concentration in the fibers are within the above-mentioned predetermined ranges. Ru. The oxidation treatment can be suitably carried out by performing short-time gas phase oxidation in an oxygen-containing atmosphere, for example, by heating the fiber at 700° C. for 30 seconds in an oxygen-rich atmosphere with an oxygen concentration of 60%. . It has also been found that such high-temperature, short-time oxidation treatment improves the adhesion to the matrix and also improves the physical properties of the fiber.

該炭素繊維は、その後、必要に応じて、不活性ガス雰囲
気下にて2000℃まで加熱して炭化するか、更に30
00℃まで加熱して黒鉛化される。その結果、引張強度
が300 K g / m m ”以上、及び引張弾性
率が60ton/mm”以上の高強度、高弾性率のピッ
チ系炭素繊維が得られる。
The carbon fibers are then carbonized by heating to 2000°C in an inert gas atmosphere, or further heated to 300°C, as necessary.
Graphitized by heating to 00°C. As a result, a high-strength, high-modulus pitch-based carbon fiber having a tensile strength of 300 K g/mm" or more and a tensile modulus of 60 ton/mm" or more is obtained.

本明細書において、炭素繊維の特性は下記の如き測定方
法を採用した。
In this specification, the following measurement method was used to measure the characteristics of carbon fiber.

・X線構造パラメータ 配向角(φ) 積層厚さ(Lc)、層間隔(do。2)
は広角X線回折より求められる炭素繊維の微細構造を表
わすパラメータである。
・X-ray structural parameters Orientation angle (φ) Lamination thickness (Lc), Layer spacing (do. 2)
is a parameter representing the fine structure of carbon fiber determined by wide-angle X-ray diffraction.

配向角(φ)は結晶の繊維軸方向に対する選択的配向の
程度を示すもので、この角度が小さい程配向が良いこと
を意味する。積層厚さ(Lc)は炭素微結晶中の(00
2)面の見掛けの積層の厚さを表わし、一般に積層厚さ
(Lc)が大きい程結晶性が良いと見なされる。又、層
間隔(do。
The orientation angle (φ) indicates the degree of selective orientation of the crystal with respect to the fiber axis direction, and the smaller this angle, the better the orientation. The lamination thickness (Lc) is (00
2) It represents the apparent thickness of the laminated layers on the surface, and it is generally considered that the larger the laminated thickness (Lc), the better the crystallinity. Also, the layer spacing (do.

2)は微結晶の(002)面の層間隔を表わし、層間隔
(doo2)が小さい程結晶性が良いと見なされる。
2) represents the interlayer spacing of the (002) plane of the microcrystal, and it is considered that the smaller the interlayer spacing (doo2), the better the crystallinity.

配向角(φ)の測定は繊維試料台を使用し、繊維束が計
数管の走査面に垂直になっている状態で、計数管を走査
して(002)回折帯の強度が最大となる回折角2θ(
約26°)を予め求める。次に計数管をこの位置に保持
した状態で、繊維試料台を360°回転することにより
(002)回折環の強度分布を測定し、強度最大値の1
72の点における半価幅を配向角(φ)とする。
To measure the orientation angle (φ), use a fiber sample stage, scan the counter with the fiber bundle perpendicular to the scanning plane of the counter, and find the time at which the intensity of the diffraction band reaches its maximum (002). 2θ(
approximately 26°). Next, with the counter held in this position, the fiber sample stage was rotated 360° to measure the intensity distribution of the (002) diffraction ring, and the
The half width at point 72 is defined as the orientation angle (φ).

積層厚さ(Lc)、層間隔(d、。2)は繊維を乳鉢で
粉末状にし、字種法「人造黒鉛の格子定数および結晶子
の大きさ測定法」に準処して測定・解析を行ない、以下
の式から求めた。
Lamination thickness (Lc) and interlayer spacing (d, .2) are measured and analyzed by grinding the fibers into powder in a mortar and following the method ``Lattice constant and crystallite size measurement method of artificial graphite''. It was calculated using the following formula.

Lc=KL/β cos θ daa*=  え/ 2  s  i  n θここで
、K=1.0.  λ= 1.5418入θ:  (0
02)回折角2θより求めるβ:補正により求めた( 
002)回折帯の半価幅 ・X線光電子分光法(ESCA)による繊維の表面酸素
濃度(O、、/ C+S)の測定測定装置としては、ク
ラトス製XSAM−800を使用した。
Lc=KL/β cos θ daa*= E/ 2 s i n θ where K=1.0. λ = 1.5418 in θ: (0
02) β determined from the diffraction angle 2θ: determined by correction (
002) Measurement of surface oxygen concentration (O, , /C+S) of fiber by half width of diffraction band/X-ray photoelectron spectroscopy (ESCA) XSAM-800 manufactured by Kratos was used as the measuring device.

測定すべき繊維をカットし、金製の試料支持台上に拡げ
て並べた後、試料チャンバ内を1×10−”T o r
 r以下に保った。X線源としてMgKα1.2を用い
た。そして、運動エネルギが722eVのO+sビーク
面積、及び970eVのC,ピーク面積の比から、表面
酸素濃度を求めた。
After cutting the fibers to be measured and spreading them out on a gold sample support stand, the inside of the sample chamber was heated to 1×10-”T or
It was kept below r. MgKα1.2 was used as an X-ray source. Then, the surface oxygen concentration was determined from the ratio of the O+s peak area with a kinetic energy of 722 eV and the C peak area with a kinetic energy of 970 eV.

本発明でいう繊維表面とは、繊維表面から繊維中心に向
って約0.01μm以下の超薄層を意味する。
The fiber surface as used in the present invention means an ultra-thin layer of about 0.01 μm or less from the fiber surface toward the fiber center.

次に、本発明を実施例について説明する。Next, the present invention will be described with reference to examples.

実施例1 光学的異方性相(AP)を約50%含有する炭素質ピッ
チを前駆体ピッチとして使用し、これをローター内有効
容積200mAの円筒型連続遠心分離装置でローター温
度350℃に制御しつつ遠心力10000GでAP排出
口よりピッチを抜き出した。得られたピッチは光学的異
方性相を98%含み、軟化点が276℃であった。
Example 1 A carbonaceous pitch containing approximately 50% optically anisotropic phase (AP) was used as a precursor pitch, and the rotor temperature was controlled at 350°C using a cylindrical continuous centrifugal separator with an effective volume of 200 mA in the rotor. While doing so, the pitch was extracted from the AP outlet using a centrifugal force of 10,000 G. The obtained pitch contained 98% of the optically anisotropic phase and had a softening point of 276°C.

次に、得られた光学的異方性相ピッチをノズル径0.3
mmの溶融紡糸装置で330℃で紡糸した。このとき使
用した紡糸装置及び紡糸口金の構造が第1図〜第3図に
図示される。
Next, the obtained optically anisotropic phase pitch was adjusted to a nozzle diameter of 0.3
The fibers were spun at 330° C. using a 1.0 mm melt spinning device. The structures of the spinning device and spinneret used at this time are illustrated in FIGS. 1 to 3.

紡糸装置10はピッチ配管より溶融したピッチ11が注
入された加熱シリンダー12と、該シリンダー12内の
ピッチを加圧するプランジャー13と、加熱シリンダー
12の底面m+Iに取付けられた紡糸口金14とを具備
し、紡糸口金14は、紡糸ノズル15が1個穿設されて
おり、ボルト17及び口金押え18によって加熱シリン
ダー12の低面側に着脱自在に固着することによって構
成された。紡糸されたピッチ繊維は紡糸筒19を通過し
た後巻き取りボビン20に巻き取られた。
The spinning device 10 includes a heating cylinder 12 into which molten pitch 11 is injected from a pitch pipe, a plunger 13 that pressurizes the pitch within the cylinder 12, and a spinneret 14 attached to the bottom surface m+I of the heating cylinder 12. However, the spinneret 14 has one spinning nozzle 15 bored therein, and is configured by being removably fixed to the lower side of the heating cylinder 12 with a bolt 17 and a spinneret holder 18. After passing through the spinning tube 19, the spun pitch fibers were wound onto a winding bobbin 20.

本実施例で使用された紡糸口金14に形成された紡糸ノ
ズル15は、大径のノズル導入部15aと、該ノズル導
入部15aに連通して形成された小径のノズル部15b
とを有し、大径のノズル導入部15aと小径のノズル部
15bとの間には切頭円錐形状のノズル遷移部15cが
形成された。紡糸口金14はステンレス鋼(SUS30
4)にて作製され、紡糸ノズル15部の厚さ(T)は5
mmとされ、大径のノズル導入部15a及び小径のノズ
ル部15bの長さ(T、)及び(T2)はそれぞれ4m
m及び0゜65mmとされた。又、大径のノズル導入部
15a及び小径のノズル部15bの直径(Dl)及び(
D、)はそれぞれ1mm及び0.23mmとされた。
The spinning nozzle 15 formed in the spinneret 14 used in this example includes a large diameter nozzle introduction part 15a and a small diameter nozzle part 15b formed in communication with the nozzle introduction part 15a.
A truncated conical nozzle transition section 15c was formed between the large diameter nozzle introduction section 15a and the small diameter nozzle section 15b. The spinneret 14 is made of stainless steel (SUS30
4), the thickness (T) of 15 parts of the spinning nozzle is 5
mm, and the lengths (T, ) and (T2) of the large diameter nozzle introduction part 15a and the small diameter nozzle part 15b are each 4 m.
m and 0°65 mm. Moreover, the diameter (Dl) and (
D,) were set to 1 mm and 0.23 mm, respectively.

又、紡糸ノズル15の大径ノズル導入部15aには前記
紡糸口金14より大きい熱伝導度を有した、本実施例で
は銅製の挿入部材16が配置された。該挿入部材16は
、一端16aが小径ノズル部15bの入口に近接し、他
端16bは大径ノズル導入部15aの入口より外方へと
延在する細長の棒状体とされ、全長(L)は20mmで
あり、直径(d)は、挿入部材が大径ノズル導入部15
aに円滑に挿入され、且つ確実に保持されるように、大
径ノズル導入部15aと挿入部材16との間の空隙が1
 / 100〜5 / 100 m mとなるように形
成された。
Further, in the present embodiment, an insertion member 16 made of copper, which has a higher thermal conductivity than the spinneret 14, was arranged in the large-diameter nozzle introduction part 15a of the spinning nozzle 15. The insertion member 16 has an elongated rod-like body with one end 16a close to the inlet of the small-diameter nozzle section 15b and the other end 16b extending outward from the inlet of the large-diameter nozzle introducing section 15a, and has an overall length (L). is 20 mm, and the diameter (d) is that the insertion member is the large diameter nozzle introduction part 15.
The gap between the large-diameter nozzle introduction part 15a and the insertion member 16 is set to 1 so that the large-diameter nozzle introduction part 15a and the insertion member 16 can be smoothly inserted into
/100 to 5/100 mm.

又、挿入部材16の該表面には溶融ピッチをノズル部1
5bへと流動案内するべく、該挿入部材の軸線方向に沿
って半径(r)が0.15mmの円弧状をした4個の溝
18が形成された。
Further, the surface of the insertion member 16 is coated with molten pitch at the nozzle portion 1.
5b, four arcuate grooves 18 with a radius (r) of 0.15 mm were formed along the axial direction of the insertion member.

上記構成の紡糸装置にて溶融ピッチを紡糸した場合には
、紡糸ノズルを通過する際の温度降下を3℃以下に抑え
ることができた。
When the molten pitch was spun using the spinning apparatus having the above configuration, the temperature drop during passing through the spinning nozzle could be suppressed to 3° C. or less.

このようにして得られたピッチ繊維を酸素60%の富酸
素ガス雰囲気で開始温度180℃、最終温度310℃、
昇温速度13℃/分で昇温しで10分間で不融化した。
The pitch fiber thus obtained was heated in an oxygen-rich gas atmosphere containing 60% oxygen at a starting temperature of 180°C and a final temperature of 310°C.
The temperature was raised at a heating rate of 13° C./min, and the mixture became infusible in 10 minutes.

不融化処理の終了後、窒素ガス雰囲気中で、400℃か
ら550℃まで50℃/分で昇温し、550℃から11
00℃まで250℃/分昇温しで炭化を行った。このと
き、1100℃での保持時間は零であった。総炭化時間
は5.2分であった。
After the infusibility treatment was completed, the temperature was raised from 400°C to 550°C at a rate of 50°C/min in a nitrogen gas atmosphere, and the temperature was increased from 550°C to 11°C.
Carbonization was carried out by increasing the temperature to 00°C at 250°C/min. At this time, the holding time at 1100°C was zero. Total carbonization time was 5.2 minutes.

又、この炭化処理時には繊維の配向角を改良する目的で
、フィラメント1本当たりO1017grのテンション
を掛けた。
Further, during this carbonization treatment, a tension of O1017 gr was applied to each filament in order to improve the orientation angle of the fibers.

この炭化処理した炭素繊維を更に、700℃に維持され
た、酸素濃度60%の富酸素ガス雰囲気中(0□/Nよ
=60740)を、30秒間通して、気相酸化処理した
This carbonized carbon fiber was further subjected to gas phase oxidation treatment by passing it through an oxygen-rich gas atmosphere with an oxygen concentration of 60% (0□/N=60740) maintained at 700° C. for 30 seconds.

この炭素繊維は、X線回折の結果、配向角(φ)が32
° 積層厚さ(Lc)が19゜4Å、層間隔(do。2
)が3.484人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 32
° Lamination thickness (Lc) is 19°4 Å, layer spacing (do.2
) was 3.484 people.

又、該繊維の糸径は9,9μmであり、引張強度は2.
8GPa (280Kg/mm” ) 、引張弾性率は
110GPa (11ton/mm” )、伸度は2.
5%であって、伸びの大きいしなやかな糸であった。
The fiber has a thread diameter of 9.9 μm and a tensile strength of 2.9 μm.
8GPa (280Kg/mm"), tensile modulus is 110GPa (11ton/mm"), and elongation is 2.
5%, and was a flexible yarn with great elongation.

この繊維をX線光電子分光法により繊維の表面酸素濃度
を測定したところ、繊維表面の原子数比0/Cの値は0
.151であった。又、元素分析で求めた系中の全酸素
濃度はO,1重量%であった。
When the surface oxygen concentration of this fiber was measured using X-ray photoelectron spectroscopy, the value of the atomic ratio 0/C on the fiber surface was 0.
.. It was 151. Further, the total oxygen concentration in the system determined by elemental analysis was O.1% by weight.

更に、このようにして得られた繊維を使用して眉間剪断
強度(ILSS)を測定したところ13.2Kg/mm
”であり、高い値を示した。
Furthermore, when the glabella shear strength (ILSS) of the fiber thus obtained was measured, it was 13.2 Kg/mm.
” and showed a high value.

又、この炭素繊維を2500℃まで昇温しで得た黒鉛繊
維は、糸径が9.8μmであり、引張強度は4.1 G
Pa (410Kg/mm” )、引張弾性率は700
GPa (70ton/mm” )と、高い物性を示し
た。
Furthermore, graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 4.1 G.
Pa (410Kg/mm”), tensile modulus is 700
GPa (70 ton/mm"), showing high physical properties.

比較例1 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
及び炭素繊維を得た。実施例1と異なリ、この炭素繊維
に対し気相酸化は行わなかった。
Comparative Example 1 Infusible fibers and carbon fibers were obtained using the same materials and the same method as in Example 1. Unlike Example 1, this carbon fiber was not subjected to gas phase oxidation.

この炭素繊維のX l!回折の結果、配向角(φ)は3
2@、積層厚さ(Lc)が19,5Å、層間隔(doo
2)が3.485人であった。
This carbon fiber X l! As a result of diffraction, the orientation angle (φ) is 3
2@, stacking thickness (Lc) is 19.5 Å, layer spacing (doo
2) was 3.485 people.

又、該繊維の糸径は10μmであり、引張強度は2.5
GPa (250Kg/mm” ) 、引張弾性率は1
10GPa (11,0ton/mm” ) 、伸度は
2.3%であった。
The fiber has a thread diameter of 10 μm and a tensile strength of 2.5.
GPa (250Kg/mm”), tensile modulus is 1
The strength was 10 GPa (11,0 ton/mm") and the elongation was 2.3%.

この繊維をX線光電子分光法により繊維の表面酸素濃度
を測定したところ、原子数比0/Cの値は0.03であ
り、又、元素分析で求めた系中の全酸素濃度は0.01
重量%以下であった。
When the surface oxygen concentration of this fiber was measured by X-ray photoelectron spectroscopy, the value of the atomic ratio 0/C was 0.03, and the total oxygen concentration in the system determined by elemental analysis was 0. 01
It was less than % by weight.

更に、このようにして得られた繊維を使用して眉間剪断
強度(ILSS)を測定したところ9゜0 K g /
 m m ”であった。
Furthermore, when the glabella shear strength (ILSS) of the fiber thus obtained was measured, it was 9°0 Kg/
It was ``mm''.

又、この炭素繊維を2500℃まで昇温して得た黒鉛繊
維は、糸径が9.8μmであり、引張強度は3.5GP
a (350Kg/mm” )、引張弾性率は700G
Pa (70ton/mm” )であった。
Furthermore, the graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 3.5 GP.
a (350Kg/mm”), tensile modulus is 700G
Pa (70 ton/mm").

比較例2 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 2 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、テンションを掛けなかった以外は実施
例1と同様に炭化して炭素繊維を作製した。炭化後の炭
素繊維の気相酸化は行わなかった。
The infusible fibers were carbonized to produce carbon fibers in the same manner as in Example 1, except that no tension was applied. Gas phase oxidation of the carbon fibers after carbonization was not performed.

この炭素繊維は、X線回折の結果、配向角(φ)が41
°、積層厚さ(Lc)が19゜5Å、層間隔(do。2
)が3.497人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 41
°, lamination thickness (Lc) is 19°5 Å, layer spacing (do.2
) was 3.497 people.

又、該繊維の糸(2は10umであり、引張強度は0.
7GPa (70Kg/mrT?) 、引張弾性率は8
0 G P a (8、Ot o n / m tr?
 )  伸度は0.9%であった。
In addition, the fiber thread (2 is 10 um, and the tensile strength is 0.
7GPa (70Kg/mrT?), tensile modulus is 8
0 G P a (8, Ot on / m tr?
) The elongation was 0.9%.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は650GPa
 (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 650GPa
(65 ton/mm”).

比較例3 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 3 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維に、フィラメント1本当たり0゜33gr
のテンションを掛けて炭化した以外は実施例1と同様に
処理した。但し、炭化後の炭素繊維の気相酸化は、行わ
なかった。
The infusible fiber contains 0°33gr per filament.
The treatment was carried out in the same manner as in Example 1, except that the tension was applied to carbonize. However, gas phase oxidation of the carbonized carbon fibers was not performed.

この炭素繊維は、X線回折の結果、配向角(φ)が24
° 積層厚み(Lc)が19゜5Å、層間隔(d、。2
)が3.482人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 24
° Lamination thickness (Lc) is 19°5 Å, layer spacing (d, .2
) was 3.482 people.

又、該繊維の糸径は10umであり、引張強度は1.3
GPa (130Kg/mm” )、引張弾性率は14
0GPa (14ton/mm” )、伸度は0.9%
であった。
In addition, the fiber has a thread diameter of 10 um and a tensile strength of 1.3.
GPa (130Kg/mm”), tensile modulus is 14
0GPa (14ton/mm”), elongation is 0.9%
Met.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は750GPa
 (75ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 750GPa
(75 ton/mm”).

比較例4 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 4 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、400℃から1100℃まで5℃/分
で昇温し、140分間かけて炭化した以外は実施例1と
同様に処理して炭素繊維を作製した。但し、炭化後の炭
素繊維の気相酸化は行わなかった。
Carbon fibers were produced in the same manner as in Example 1, except that the infusible fibers were heated from 400°C to 1100°C at a rate of 5°C/min and carbonized for 140 minutes. However, the carbon fibers were not subjected to gas phase oxidation after carbonization.

この炭素繊維は、X 11回折の結果、配向角(φ)が
41°、積層厚み(Lc)が19゜6Å、層間隔(d、
。2)が3.495人であった。
As a result of X11 diffraction, this carbon fiber has an orientation angle (φ) of 41°, a lamination thickness (Lc) of 19°6 Å, a layer spacing (d,
. 2) was 3.495 people.

又、該繊維の糸径は10timであり、引張強度は0 
、8 G P a (80K g / m m ” )
 、引張弾性率は90GPa (9,0ton/mm2
)、伸度は0.9%であった。
Moreover, the thread diameter of the fiber is 10tim, and the tensile strength is 0.
, 8 GPa (80K g/mm”)
, tensile modulus is 90GPa (9,0ton/mm2
), and the elongation was 0.9%.

この炭素繊維を2500℃まで昇温しで得た黒鉛繊維は
、糸径が9.8μmであり、引張強度は2.8GPa 
(280Kg/mm” )、引張弾性率は650GPa
 (65ton/mm2)であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.8 μm and a tensile strength of 2.8 GPa.
(280Kg/mm”), tensile modulus is 650GPa
(65 ton/mm2).

比較例5 実施例1と同じ材料を使用し、同じ方法にて不融化繊維
を得た。
Comparative Example 5 Infusible fibers were obtained using the same materials and the same method as in Example 1.

該不融化繊維を、400℃から1100℃まで250℃
/分で昇温し、約3分間で炭化した以外は実施例1と同
様に処理して炭素繊維を作製した。
The infusible fiber was heated at 250°C from 400°C to 1100°C.
Carbon fibers were produced in the same manner as in Example 1, except that the temperature was raised at a rate of 1/min and carbonized for about 3 minutes.

この場合には、炭化時1部融着を起こし、正常な糸が得
られなかった。
In this case, some fusion occurred during carbonization, and a normal thread could not be obtained.

比較例6 実施例1と同一のピッチを用いて、挿入部材なしの紡糸
口金を用いて紡糸温度330℃で紡糸し、得られたピッ
チ繊維を空気雰囲気において180℃から0.3℃/分
の速度で255℃まで昇温て不融化した。
Comparative Example 6 Using the same pitch as in Example 1, spinning was carried out at a spinning temperature of 330°C using a spinneret without an insert member, and the obtained pitch fiber was spun at 0.3°C/min from 180°C in an air atmosphere. The temperature was raised to 255°C at a rapid rate to make it infusible.

該不融化繊維を、テンションなしで窒素ガス雰囲気中に
て400℃から1100℃まで5℃/分で昇温し、14
0分間かけて炭化した。
The temperature of the infusible fiber was raised from 400°C to 1100°C at a rate of 5°C/min in a nitrogen gas atmosphere without tension.
Carbonization took 0 minutes.

1100℃までの保持時間はゼロであった。炭化後の炭
素繊維の気相酸化は実施しなかった。
The holding time up to 1100°C was zero. Gas phase oxidation of the carbon fibers after carbonization was not performed.

この炭素繊維は、X線回折の結果、配向角(φ)が43
° 積層厚み(Lc)が19゜5入、層間隔(a、。2
)が3.497人であった。
As a result of X-ray diffraction, this carbon fiber has an orientation angle (φ) of 43
° Lamination thickness (Lc) is 19°5, layer spacing (a, .2
) was 3.497 people.

又、該繊維の糸径は10μmであり、引張強度は0.6
GPa (60Kg/mm” ) 、引張弾性率は75
GPa (7,5ton/mm” )、伸度は0.8%
であった。
The fiber has a thread diameter of 10 μm and a tensile strength of 0.6.
GPa (60Kg/mm”), tensile modulus is 75
GPa (7.5 ton/mm”), elongation is 0.8%
Met.

この炭素繊維を2500℃まで昇温して得た黒鉛繊維は
、糸径が9.9μmであり、引張強度は2.6GPa 
(260Kg/mm” ) 、引張弾性率は650GP
a (65ton/mm” )であった。
The graphite fiber obtained by heating this carbon fiber to 2500°C has a thread diameter of 9.9 μm and a tensile strength of 2.6 GPa.
(260Kg/mm”), tensile modulus is 650GP
a (65 ton/mm”).

比較例7 実施例1と同じ材料を使用し同じ方法にて、不融化繊維
及び炭素繊維を得た。この炭化処理した炭素繊維を更に
、700℃に保持された酸素濃度60%富酸素ガス雰囲
気中で(Ox /N260/40)を、3分間通して気
相酸化処理した。
Comparative Example 7 Infusible fibers and carbon fibers were obtained using the same materials and the same method as in Example 1. The carbonized carbon fibers were further subjected to gas phase oxidation treatment for 3 minutes in an oxygen-rich gas atmosphere with an oxygen concentration of 60% (Ox/N 260/40) maintained at 700°C.

該繊維の糸径は9.9umであり、引張強度は0.8G
Pa、引張弾性率は89.0GPa、伸度は0.9%で
あり、引張強度は著しく低下した。
The fiber has a thread diameter of 9.9um and a tensile strength of 0.8G.
Pa, tensile modulus was 89.0 GPa, elongation was 0.9%, and tensile strength was significantly decreased.

この繊維をX線光電子分光法により繊維の表面酸素濃度
を測定したところ繊維表面の原子数比は0.42であり
、元素分析で求めた系中の全酸素濃度は0.4重量%で
あった。
When the surface oxygen concentration of this fiber was measured using X-ray photoelectron spectroscopy, the atomic ratio on the fiber surface was 0.42, and the total oxygen concentration in the system determined by elemental analysis was 0.4% by weight. Ta.

このようにして得られた繊維を使用して層間剪断強度(
ILSS)を測定したところ12゜5Kg/mrr?で
あった。
Using the fibers obtained in this way, the interlaminar shear strength (
ILSS) was measured and it was 12゜5Kg/mrr? Met.

実施例1及び比較例1〜7を検討すると、本発明に従っ
た高伸度の、しかも所定レベル以上の引張強度、引張弾
性率を有した炭素繊維を得るには、不融化繊維の炭化処
理工程時に所定のテンションを掛け、更に、繊維が融着
しない範囲で迅速に炭化することが重要であると共に、
富酸素ガス中にて高温、短時間で気相酸化処理すること
により繊維の表面の酸素濃度及び繊維中の全酸素濃度を
所定範囲内に規定することが重要であることが分かる。
Examining Example 1 and Comparative Examples 1 to 7, in order to obtain carbon fibers with high elongation and tensile strength and tensile modulus above a predetermined level according to the present invention, carbonization treatment of infusible fibers is necessary. It is important to apply a predetermined tension during the process and to carbonize quickly without causing the fibers to fuse.
It can be seen that it is important to regulate the oxygen concentration on the surface of the fiber and the total oxygen concentration in the fiber within a predetermined range by carrying out a gas phase oxidation treatment in an oxygen-rich gas at high temperature for a short time.

特に、富酸素ガス中にて高温、短時間で気相酸化処理す
ることにより繊維自体の物性及びマトリクス樹脂との接
着性が向上し、眉間剪断強度が増大することが分かる。
In particular, it can be seen that gas phase oxidation treatment in an oxygen-rich gas at high temperature for a short time improves the physical properties of the fiber itself and the adhesion to the matrix resin, and increases the glabella shear strength.

免亘立11 本発明に係る特異な結晶構造を有し、たピッチ系炭素繊
維は、伸度が1.0%以上といった高伸度でありながら
、所定レベル以上の引張強度及び引張弾性率を有してお
り、編織性に優れており、製造時の糸扱いが非常に容易
となり製造効率が大幅に改善され、宇宙開発、自動車、
建築物などの軽量構造材料用強化繊維として極めて有効
に使用し得る。又、更に2000℃まで加熱して炭化し
、更には3000℃まで加熱して黒鉛化することにより
、著しく高強度、高弾性率の炭素繊維を得ることができ
る。更に又本発明の繊維は、複合材料用強化繊維に使用
した場合にマトリクス樹脂との接着性が極めて良好であ
り、高性能の炭素繊維強化複合樹脂を得ることができる
という利益がある。
11. The pitch-based carbon fiber according to the present invention, which has a unique crystal structure, has a high elongation of 1.0% or more, yet has a tensile strength and tensile modulus of at least a predetermined level. It has excellent knitting and weaving properties, making it extremely easy to handle yarn during manufacturing, greatly improving manufacturing efficiency, and making it suitable for space development, automobiles,
It can be used extremely effectively as a reinforcing fiber for lightweight structural materials such as buildings. Further, by further heating to 2000°C to carbonize, and further heating to 3000°C to graphitize, it is possible to obtain carbon fibers with extremely high strength and high elastic modulus. Furthermore, when the fibers of the present invention are used as reinforcing fibers for composite materials, they have extremely good adhesion with matrix resins, and have the advantage that high-performance carbon fiber-reinforced composite resins can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る炭素繊維を製造するための紡糸
装置に使用される紡糸口金の一実施例の断面図である。 第2図は、第1図の紡糸口金に使用される挿入部材の一
実施例の平面図である。 第3図は、第2図の紡糸口金に使用される挿入部材の一
実施例の平面図である。 14:紡糸口金 15:紡糸ノズル 16:挿入部材
FIG. 1 is a sectional view of one embodiment of a spinneret used in a spinning apparatus for manufacturing carbon fiber according to the present invention. FIG. 2 is a plan view of one embodiment of an insert for use with the spinneret of FIG. 1; FIG. 3 is a plan view of one embodiment of an insert member used in the spinneret of FIG. 2; 14: Spinneret 15: Spinning nozzle 16: Insertion member

Claims (1)

【特許請求の範囲】 1)X線構造パラメーターの配向角(φ)が25〜38
°、積層厚み(Lc)が19〜 35Å、層間隔(d_0_0_2)が3.45〜3.5
0Åである結晶構造を有し、X線光電子分光法によって
検出される繊維表面の原子数比O/Cが0.1〜0.3
5であり、繊維中の全酸素濃度が0.01〜0.2重量
%であり、伸度が1.0%以上であることを特徴とする
高伸度、高強度ピッチ系炭素繊維。 2)引張強度が150Kg/mm^2以上である請求項
1記載の高伸度、高強度ピッチ系炭素繊維。
[Claims] 1) The orientation angle (φ) of the X-ray structure parameter is 25 to 38.
°, lamination thickness (Lc) is 19 to 35 Å, layer spacing (d_0_0_2) is 3.45 to 3.5
It has a crystal structure of 0 Å, and the atomic ratio O/C on the fiber surface detected by X-ray photoelectron spectroscopy is 0.1 to 0.3.
5, the total oxygen concentration in the fiber is 0.01 to 0.2% by weight, and the elongation is 1.0% or more. 2) The high elongation, high strength pitch-based carbon fiber according to claim 1, which has a tensile strength of 150 Kg/mm^2 or more.
JP1282387A 1989-10-30 1989-10-30 Pitch-based carbon fiber having high elongation and high strength Pending JPH03146718A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1282387A JPH03146718A (en) 1989-10-30 1989-10-30 Pitch-based carbon fiber having high elongation and high strength
US07/601,486 US5209975A (en) 1989-10-30 1990-10-22 High elongation, high strength pitch-type carbon fiber
KR1019900017454A KR910008192A (en) 1989-10-30 1990-10-30 High-strength high-strength pitch carbon fiber and its manufacturing method
EP19900311892 EP0426438A3 (en) 1989-10-30 1990-10-30 High strength carbon fibers and method of manufacturing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1282387A JPH03146718A (en) 1989-10-30 1989-10-30 Pitch-based carbon fiber having high elongation and high strength

Publications (1)

Publication Number Publication Date
JPH03146718A true JPH03146718A (en) 1991-06-21

Family

ID=17651742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1282387A Pending JPH03146718A (en) 1989-10-30 1989-10-30 Pitch-based carbon fiber having high elongation and high strength

Country Status (1)

Country Link
JP (1) JPH03146718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571018A (en) * 1991-09-06 1993-03-23 Nippon Oil Co Ltd Pitch-based carbon fiber
JP2014185400A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Pitch-based carbon fiber and production method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6253422A (en) * 1985-09-03 1987-03-09 Kawasaki Steel Corp Production of carbon fiber
JPS63175122A (en) * 1986-12-29 1988-07-19 Mitsubishi Kasei Corp Production of carbon fiber tow
JPH01156513A (en) * 1987-12-11 1989-06-20 Toa Nenryo Kogyo Kk Production of pitch based carbon fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6253422A (en) * 1985-09-03 1987-03-09 Kawasaki Steel Corp Production of carbon fiber
JPS63175122A (en) * 1986-12-29 1988-07-19 Mitsubishi Kasei Corp Production of carbon fiber tow
JPH01156513A (en) * 1987-12-11 1989-06-20 Toa Nenryo Kogyo Kk Production of pitch based carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0571018A (en) * 1991-09-06 1993-03-23 Nippon Oil Co Ltd Pitch-based carbon fiber
JP2014185400A (en) * 2013-03-22 2014-10-02 Kuraray Co Ltd Pitch-based carbon fiber and production method of the same

Similar Documents

Publication Publication Date Title
Fitzer et al. Carbon reinforcements and carbon/carbon composites
JPH0545686B2 (en)
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
JP2009197365A (en) Method for producing precursor fiber of carbon fiber, and method for producing the carbon fiber
US5209975A (en) High elongation, high strength pitch-type carbon fiber
JPS62117820A (en) Production of carbon fiber chopped strand
US5269984A (en) Process of making graphite fiber
CN101560701A (en) Method for preparing high-strength carbon fibers
US5114697A (en) High strength, high modulus pitch-based carbon fiber
US5037590A (en) Method for the preparation of carbon fibers
EP0279687B1 (en) Graphite fiber
JPH03146718A (en) Pitch-based carbon fiber having high elongation and high strength
JPS6128019A (en) Production of pitch based carbon fiber
JPH01306619A (en) High-strength and high elastic modulus carbon fiber
JP4547754B2 (en) Pitch-based carbon fiber fabric
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPH03146720A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH03146719A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH07187833A (en) Carbon fiber reinforced carbon composite material
Mochida et al. Structure and properties of mesophase pitch carbon fibre with a skin-core structure carbonized under strain
WO2024090012A1 (en) Carbon fiber bundle, tow-preg, carbon fiber-reinforced composite material and pressure vessel, and method for producing carbon fiber bundle
JP2678384B2 (en) Pitch for carbon fiber and method of manufacturing carbon fiber using the same
JPS63120112A (en) Pitch type carbon yarn having high modulus of elasticity and production thereof
JPH01145373A (en) Production of carbon fiber-reinforced carbonaceous material
JPH01145374A (en) Production of carbon fiber-reinforced carbonaceous material