JPS63120112A - Pitch type carbon yarn having high modulus of elasticity and production thereof - Google Patents

Pitch type carbon yarn having high modulus of elasticity and production thereof

Info

Publication number
JPS63120112A
JPS63120112A JP61223789A JP22378986A JPS63120112A JP S63120112 A JPS63120112 A JP S63120112A JP 61223789 A JP61223789 A JP 61223789A JP 22378986 A JP22378986 A JP 22378986A JP S63120112 A JPS63120112 A JP S63120112A
Authority
JP
Japan
Prior art keywords
fiber
yarn
surface layer
infusible
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61223789A
Other languages
Japanese (ja)
Other versions
JPH042688B2 (en
Inventor
Takashi Hino
日野 隆
Tsutomu Naito
勉 内藤
Hiroyuki Kuroda
博之 黒田
Eiki Tsushima
栄樹 津島
Tomio Nomura
野村 富夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Toa Nenryo Kogyyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Nenryo Kogyyo KK filed Critical Toa Nenryo Kogyyo KK
Priority to KR1019870004165A priority Critical patent/KR960012991B1/en
Priority to CN198787104047A priority patent/CN87104047A/en
Priority to DE8787303886T priority patent/DE3782534T2/en
Priority to EP87303886A priority patent/EP0245035B1/en
Priority to US07/045,835 priority patent/US4822587A/en
Priority to AU72490/87A priority patent/AU7249087A/en
Priority to CA000536283A priority patent/CA1314365C/en
Publication of JPS63120112A publication Critical patent/JPS63120112A/en
Publication of JPH042688B2 publication Critical patent/JPH042688B2/ja
Granted legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/145Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from pitch or distillation residues

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain carbon yarn having extremely high modulus of elasticity and high crystallizability at the interior of the yarn than that at the outer surface layer part at a relatively low temperature and economically, by spinning a carbonaceous pitch consisting essentially of an optically anisotropic component to give yarn, making only the outer surface layer part infusible and calcining. CONSTITUTION:A carbonaceous pitch consisting essentially of an optically anisotropic component is spun to give yarn having 9-14mum diameter. Then the yarn, for example, is treated in an oxidizing atmosphere under conditions of 150-200 deg.C infusibility starting temperature, 1-2 deg.C rate of heating and 250-350 deg.C final temperature. After the final temperature is reached, the yarn is immediately cooled to make only the outer surface layer part (e.g. 1-3mu) infusible. Successively, the infusible yarn is calcined in an inert atmosphere under conditions of 20-500 deg.C/min rate of heating, 2,000-3,000 deg.C final temperature and 4-150min time to give the aimed carbon yarn having higher crystallizability at the interior of the yarn than that at the outer surface layer part of the yarn (usually >=10% larger in size of crystallite) in the cross section of the yarn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はピッチ系炭素繊維およびその製法に係り、より
詳しく述べると、低い焼成温度で製造して高弾性率を達
成したピッチ系炭素繊維に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a pitch-based carbon fiber and a method for producing the same, and more specifically, relates to a pitch-based carbon fiber that is produced at a low firing temperature and achieves a high modulus of elasticity. .

高弾性率炭素繊維はプラスチック、金属、炭素、セラミ
ックス等との複合材料として軽量構造材料(航空機、宇
宙船、自動車、建築物等)、高温材料(ブレーキディス
ク、ロケット等)に使用されるほか、金属、セラミック
スの補強などに使用される。
High modulus carbon fiber is used as a composite material with plastics, metals, carbon, ceramics, etc. in lightweight structural materials (aircraft, spacecraft, automobiles, buildings, etc.) and high-temperature materials (brake discs, rockets, etc.). Used for reinforcing metals and ceramics.

〔従来の技術〕[Conventional technology]

ポリアクリロニトリルを原料として高強度、中弾性率の
PAN系炭素繊維が製造されており、2000℃以上で
焼成された繊維は最大400GPa程度の弾性率を示す
ものもある。しかしながら、PAN系炭素繊維は原料コ
ストが高いという欠点もさることながら、難黒鉛化性で
あるため結晶化度(黒鉛化度)の向上には限界があり、
本質的に、超高弾性率を達成することは困難である。
PAN-based carbon fibers with high strength and medium elastic modulus are manufactured using polyacrylonitrile as a raw material, and some fibers fired at 2000° C. or higher exhibit an elastic modulus of about 400 GPa at maximum. However, PAN-based carbon fibers have the disadvantage of high raw material cost, and are difficult to graphitize, so there is a limit to improving the degree of crystallinity (graphitization degree).
Inherently, it is difficult to achieve ultra-high modulus.

ピッチ系炭素繊維は原料が安価で経済性に優れているの
みならず、石油系液晶ピッチより製造し、3000℃付
近で焼成したものは黒鉛繊維と呼ばれ、700GPa程
度の超高弾性率を示す(特公昭59−3567号公報)
Pitch-based carbon fibers are not only economically efficient as their raw materials are inexpensive, but also those manufactured from petroleum-based liquid crystal pitch and fired at around 3000°C are called graphite fibers and exhibit an ultra-high modulus of elasticity of around 700 GPa. (Special Publication No. 59-3567)
.

また、ピッチ系炭素繊維において、強度、弾性率等の特
性を改良することを目的として、繊維の横断面において
結晶が繊維の表層部では円周方向に配列し、中心部では
放射状またはモザイク状に配列している組織をもつ炭素
繊維(特開昭59−53717号公報)や、特に表面強
度を高めるために繊維の外周表層部がラジアル配向構造
を成し、内核部がオニオンラ1′り配向構造を成してい
る炭素繊維(特開昭60−239520号公報)、など
が提案されている。
In pitch-based carbon fibers, in order to improve properties such as strength and elastic modulus, in the cross section of the fiber, crystals are arranged in the circumferential direction on the surface layer of the fiber, and in a radial or mosaic pattern in the center. Carbon fibers with an aligned structure (Japanese Patent Application Laid-Open No. 59-53717), and carbon fibers in which the outer peripheral surface layer of the fiber has a radial orientation structure and the inner core has an onion-ra 1' orientation structure in order to particularly increase the surface strength. Carbon fibers (Japanese Patent Application Laid-Open No. 60-239520) have been proposed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記の如く、液晶系ピッチを用いて超高弾性率の炭素繊
維の製造が可能であり、また繊維の特性を改良するいく
つかの手法が提案されているが、いずれの方法において
も超高弾性率を達成するためには3000℃付近の高温
での焼成が必要である。
As mentioned above, it is possible to manufacture carbon fibers with ultra-high modulus using liquid crystal pitch, and several methods have been proposed to improve the properties of fibers, but none of the methods In order to achieve this ratio, firing at a high temperature around 3000°C is necessary.

高温の焼成温度は設備費や製造コストの低減の障害であ
ると共に、焼成温度を高くすると、繊維の引張強度が低
下するという不都合がある。
A high firing temperature is an obstacle to reducing equipment costs and manufacturing costs, and increasing the firing temperature also has the disadvantage that the tensile strength of the fibers decreases.

〔問題点を解決するための手段および作用〕本発明者ら
は、低温で焼成して超貰弾性率を有する炭素繊維を得る
べく鋭意研究開発する過程で、繊維の外表層部より内部
で炭素繊維の結晶性を高くすることによってそれが可能
であることを見い出し、本発明を完成した。
[Means and effects for solving the problem] In the process of intensive research and development to obtain carbon fibers having a super-elastic modulus by firing at low temperatures, the present inventors discovered that carbon fibers were removed from the outer surface layer of the fibers and from the inside. They discovered that this was possible by increasing the crystallinity of the fibers, and completed the present invention.

すなわち、本発明は、繊維の横断面内において、繊維の
外表層部より繊維の内部において結晶性が実質的に高い
ことを特徴とするピッチ系炭素繊維にある。また、本発
明は、このようなピッチ系炭素繊維を製造する方法とし
て、光学的異方性部分を主成分とする炭素質ピンチを紡
糸し、得られる炭素質ピッチ繊維を繊維の横断面内にお
いて外表層部だけを選択的に不融化し、然る後その外表
層部のみ不融化した繊維を焼成することを特徴とするピ
ッチ系炭素繊維の製法にも係る。
That is, the present invention resides in a pitch-based carbon fiber characterized by having substantially higher crystallinity in the interior of the fiber than in the outer surface layer within the cross section of the fiber. Furthermore, the present invention provides a method for producing such pitch-based carbon fibers by spinning a carbonaceous pinch whose main component is an optically anisotropic portion, and spinning the resulting carbonaceous pitch fiber within the cross section of the fiber. The present invention also relates to a method for producing pitch-based carbon fibers, which is characterized in that only the outer surface layer portion is selectively infusible, and then the fiber with only the outer surface layer portion infusible is fired.

炭素繊維の結晶性が良くなると弾性率が向上することは
公知である。そして、700GPa程度の超高弾性率を
発現するまで結晶性を高めるために、従来の炭素繊維で
は3000℃付近の高温での焼成が必要とされていた。
It is known that when the crystallinity of carbon fibers improves, the elastic modulus improves. Conventional carbon fibers require firing at a high temperature of around 3000° C. in order to increase crystallinity to the point where they exhibit an ultra-high modulus of elasticity of about 700 GPa.

これに対して、本発明によれば、従来よりも約500℃
低い焼成温度で従来と実質的に同等の弾性率を有する炭
素繊維を得ることが可能である。
On the other hand, according to the present invention, the temperature is about 500°C lower than before.
It is possible to obtain carbon fibers having an elastic modulus substantially equivalent to that of conventional carbon fibers at low firing temperatures.

これは、従来の黒鉛化炭素繊維の製法では、紡糸した液
晶ピッチ繊維は不融化の際にその結晶性が乱されて低下
していたが、本発明では、この不融化の際にピッチ繊維
の横断面内外表層部のみを選択的に不融化することによ
って、焼成時の繊維の融着を防ぐ最低限の不融化を達成
しながらピンチ繊維の横断面内部の結晶性を実質的に乱
さず高いままに保持しておくことによって、従来より低
い焼成温度でも従来と同等あるいはそれ以上の弾性率の
高い炭素繊維を製造することが可能にされたからである
This is because in the conventional graphitized carbon fiber production method, the crystallinity of the spun liquid crystal pitch fibers was disturbed and decreased during the infusibility process, but in the present invention, the pitch fibers were reduced during the infusibility process. By selectively infusifying only the inner and outer surface layers of the cross section, we achieve the minimum level of infusibility that prevents the fibers from fusing during firing, while maintaining high crystallinity within the cross section of the pinched fibers. This is because by keeping the carbon fibers as they are, it is possible to produce carbon fibers with a high elastic modulus equal to or higher than conventional ones even at a lower firing temperature than conventional ones.

液晶ピッチから製造したピッチ繊維の不融化反応につい
ての研究は非常に限られており、一応、酸化による架橋
反応により高分子化が進むことにより不融化が達成され
ると考えられている。さらに、不融化過程における結晶
構造変化については研究がほとんど行なわれていない。
Research on the infusibility reaction of pitch fibers produced from liquid crystal pitch is very limited, and it is thought that infusibility is achieved by progressing polymerization through crosslinking reaction due to oxidation. Furthermore, little research has been conducted on changes in crystal structure during the infusibility process.

本発明者等は、不融化過程における結晶構造変化をX線
回折で詳細に検討した結果、液晶ピッチから製造した結
晶性の良いピッチ繊維の場合には、不融化過程で結晶性
が乱され低下することを見い出した。この不融化過程で
の結晶性の低下は炭化後の炭素繊維の結晶構造も低下さ
せるので、必要最小限に抑えることがより]い性能の炭
素繊維を得るために重要である6本発明者らは、また、
炭化過程での融着を防止するための不融化の達成と結晶
構造の低下を最小限に抑えることとを両立させるために
は、不融化過程で繊維の外表層部を選択的に不融化すれ
ばよいことを見い出した。このように不融化した繊維は
外表層部は不融化が達成されているので、続く炭化過程
で表面が融けて繊維同士が融着することがなく、内部は
結晶構造の乱れが少ないため全体として結晶構造の低下
は最小限に抑えられるのである。
As a result of a detailed study of crystal structure changes during the infusibility process using X-ray diffraction, the present inventors found that in the case of pitch fibers with good crystallinity produced from liquid crystal pitch, the crystallinity is disturbed and deteriorated during the infusibility process. I found something to do. This reduction in crystallinity during the infusibility process also reduces the crystal structure of the carbon fiber after carbonization, so it is important to minimize it to the necessary minimum in order to obtain carbon fiber with better performance. Also,
In order to achieve both infusibility to prevent fusion during the carbonization process and to minimize deterioration of the crystal structure, it is necessary to selectively infusible the outer surface layer of the fiber during the infusibility process. I found something good. Since the outer surface layer of the fibers made infusible in this way has been made infusible, the surface will not melt during the subsequent carbonization process and the fibers will not fuse together, and the internal crystal structure will not be disturbed as a whole. Deterioration of the crystal structure is minimized.

こうしてピンチ繊維の横断面内において外表層部のみを
選択的に不融化した繊維を炭化して得ろれる炭素繊維は
、一般的に、繊維の横断面内において、繊維の外表層部
より繊維の内部において結晶性が畜い。炭素繊維の結晶
性の低い外表層部は炭化焼成時に繊維が融着することを
防止するために不融化する部分であるから、最低限の肉
厚があればよいが、それより肉厚が大きくても繊維の内
部に結晶性の高い部分すなわち不融化されない部分が残
る限りにおいて本発明の効果は達成される。
Carbon fibers obtained by carbonizing fibers in which only the outer surface layer is selectively infusible in the cross section of the pinch fiber are generally found in the inner part of the fiber than in the outer surface layer in the cross section of the fiber. The crystallinity is terrible. The outer surface layer of carbon fiber with low crystallinity is the part that becomes infusible to prevent the fibers from fusing during carbonization firing, so it is sufficient to have a minimum thickness, but it is necessary to have a larger thickness than that. However, the effects of the present invention can be achieved as long as a highly crystalline portion, that is, a portion that is not infusible, remains inside the fiber.

また、繊維の外表層部と内部の結晶性の変化は急峻であ
る必要はなく、漸進的な変化でもよいことは勿論である
。なお、不融化すべき外表層iβの肉厚さは繊維径に依
存して増加しないので、一般に繊維径を大きくするほど
、繊維内部の結晶性の高い部分の割合を増加させること
ができ、炭素繊維の弾性率も向上させることができる。
Furthermore, the change in crystallinity between the outer surface layer and the inside of the fiber does not need to be steep, and it goes without saying that the change may be gradual. In addition, since the thickness of the outer surface layer iβ to be infusible does not increase depending on the fiber diameter, generally speaking, the larger the fiber diameter, the more the proportion of the highly crystalline part inside the fiber can be increased. The elastic modulus of the fibers can also be improved.

炭素繊維の外表層部と内部の結晶性の差は、紡糸するピ
ッチの種類と品質、不融化の条件と程度、炭化の条件な
どに依存するが、本発明では内部の方が外表層部より結
晶子の大きさで10%以上大きい。結晶子の大きさは、
制限視野電子線回折法で測定した回折パターンをマイク
ロデンシトメーターで計測し、口折強度の半価幅の逆数
で比較する。この差が10V6以下の場合は余り効果が
期待できない。
The difference in crystallinity between the outer surface layer and the interior of carbon fibers depends on the type and quality of the spinning pitch, the conditions and degree of infusibility, the carbonization conditions, etc., but in the present invention, the crystallinity of the interior is higher than that of the outer surface layer. The crystallite size is 10% or more larger. The size of the crystallite is
Diffraction patterns measured using selected area electron diffraction are measured using a microdensitometer and compared using the reciprocal of the half width of the diffraction intensity. If this difference is less than 10V6, not much effect can be expected.

次に、本発明による上記の如きピッチ系炭素繊維の製法
について説明すると、紡糸する炭素質ピッチは光学的異
方性部分が主成分をなす結晶性の高いものを使用し、好
ましいものは、特開昭57−88016号公報、同58
−45277号公報、同58−37084号公報等に記
載されているような軟化点230〜320℃、光学的異
方性部分が90〜100%の炭兼質ピッチであるが、こ
れに限定されない。紡糸は慣用手法によることができる
が、上記の好ましい炭素質ピッチは280〜370°C
の範囲内の一定温度で紡糸することが好ましい。
Next, the method for producing pitch-based carbon fiber as described above according to the present invention will be explained. As the carbonaceous pitch to be spun, a highly crystalline one whose main component is an optically anisotropic portion is used, and a preferable one is a particularly Publication No. 57-88016, 58
It is a carbonaceous pitch with a softening point of 230 to 320°C and an optically anisotropic portion of 90 to 100%, as described in Publication No. 45277, Publication No. 58-37084, etc., but is not limited thereto. . Although spinning can be done by conventional methods, the above preferred carbonaceous pitch is 280-370°C.
It is preferable to perform spinning at a constant temperature within the range of .

こうして紡糸されて結晶性を有するピンチ繊維は、本発
明に従って、繊維の横断面内において外表層部のみを選
択的に不融化する。この目的のためには、ピッチ繊維に
通常より短い特定の範囲内の短時間の不融化を行なうと
良い。例えば上記の好ましい態様によって得られた5μ
m〜20μm、好ましくは、9μm−14μmの径のピ
ッチ繊維を空気中で不融化する場合、不融化開始温度を
150℃〜200℃とし、昇温速度1℃/分以上好まし
くは、1℃/分〜2℃/分で最終温度250℃〜350
℃まで昇温し、昇温後直ちに室温まで冷却する。
According to the present invention, only the outer surface layer of the spun pinch fiber having crystallinity is selectively infusible in the cross section of the fiber. For this purpose, the pitch fibers are preferably infusible for a short time within a certain range, which is shorter than usual. For example, the 5μ obtained by the above preferred embodiment
When pitch fibers having a diameter of m to 20 μm, preferably 9 μm to 14 μm, are infusible in air, the infusibility start temperature is 150°C to 200°C, and the heating rate is 1°C/min or more, preferably 1°C/min. Final temperature 250℃~350min at ~2℃/min
The temperature is raised to ℃ and immediately cooled to room temperature.

昇温速度が1℃/分より遅いと、最終温度に達するまで
に時間がかかり、繊維内部まで不融化が進行してしまう
。また、2℃/分より速いと、不融化の過程で繊維が融
着してしまう。昇温速度を上記の温度の範囲内で1°C
/分〜2℃/分にすると、融着を起こさずに比較的短時
間で最終温度まで到達することができ、その結果不融化
は外表層部のみで行なわれ、繊維内部の結晶性は乱され
ずにするので、上記不融化を達成するため不融化温度に
対応して決定する必要がある。不融化の雰囲気としては
空気以外に酸素、オゾン、二酸化窒素等でもよ<、酸化
性の強いガスを使用する場合には、昇温速度もそれだけ
速い範囲内で行ない、また最終温度を下げることができ
る。
If the heating rate is slower than 1° C./min, it will take time to reach the final temperature, and infusibility will progress to the inside of the fiber. Moreover, if the speed is faster than 2° C./min, the fibers will fuse together during the infusibility process. The heating rate is 1°C within the above temperature range.
/min to 2℃/min, the final temperature can be reached in a relatively short time without fusion, and as a result, infusibility occurs only in the outer surface layer, and the crystallinity inside the fiber is disturbed. Therefore, in order to achieve the above-mentioned infusibility, it is necessary to determine the infusibility temperature in accordance with the infusibility temperature. In addition to air, the infusible atmosphere may be oxygen, ozone, nitrogen dioxide, etc. If a strongly oxidizing gas is used, the heating rate should be kept within a correspondingly high range, and the final temperature should be lowered. can.

ピッチ繊維を炭化焼成時に融着させないために不融化す
べき外表層部の最小限の厚さはピッチ繊維の種類、不融
化の程度などにも依存するが、例えば、1μm〜3μm
の程度であると考えられ、またこの厚さは繊維の径には
あまり依存しないことが見い出されている。
The minimum thickness of the outer surface layer that must be infusible to prevent the pitch fibers from fusing during carbonization and firing depends on the type of pitch fiber, the degree of infusibility, etc., but is, for example, 1 μm to 3 μm.
It has been found that this thickness is not significantly dependent on the fiber diameter.

こうして繊維の外表層部のみを選択的に不融化したピッ
チ繊維は、常法に従い焼成して炭化することができる。
The pitch fibers in which only the outer surface layer of the fibers has been selectively infusible can be fired and carbonized using a conventional method.

この炭化焼成において、不融化されていなかった繊維内
部は結晶性が高いまま焼成されるため、繊維の外表層部
より結晶性が荷くなる。焼成条件は、例えば、昇温速度
20°C/分〜500℃/分、最終温度2000”C〜
3000°C1焼成時間4分〜150分である。本発明
の方法によれば従来700GPaの弾性率を達成するた
めに必要とされている3000℃より約500℃低い2
500℃の焼成温度で同じ<7QOGPaの弾性率を有
する超高弾性率の炭素繊維が得られるが、本発明の焼成
温度はこれに限定されるわけではない。
In this carbonization firing, the interior of the fiber, which has not been made infusible, is fired with high crystallinity, so the crystallinity is higher than that of the outer surface layer of the fiber. Firing conditions include, for example, a temperature increase rate of 20°C/min to 500°C/min, and a final temperature of 2000"C to
The firing time at 3000° C. is 4 minutes to 150 minutes. According to the method of the present invention, 2
Although ultra-high modulus carbon fibers with the same modulus of <7QOGPa are obtained at a firing temperature of 500° C., the firing temperature of the present invention is not limited thereto.

本発明による炭素繊維は、低温焼成で超高弾性率を達成
できるほか、引張強度も高い。さらに、本発明による炭
素繊維は繊維横断面内において外表層部より内部が結晶
性が良いという特異な構造を有し、従来にない特性を奏
し得るものである。
The carbon fiber according to the present invention can achieve an ultra-high modulus of elasticity by low-temperature firing, and also has high tensile strength. Furthermore, the carbon fiber according to the present invention has a unique structure in which the inner part of the fiber has better crystallinity than the outer surface layer within the fiber cross section, and can exhibit unprecedented characteristics.

また、本発明による炭素繊維は出発ピッチ原料、紡糸条
件、炭化焼成条件などに加えて、特に繊維径と選択的不
融化の割合を選択することによって、得られる炭素繊維
の特性をある程度任意に変更し得るという利点がある。
In addition, the carbon fibers according to the present invention can be modified to a certain extent to a certain extent by arbitrarily selecting the fiber diameter and selective infusibility ratio in addition to the starting pitch raw material, spinning conditions, carbonization firing conditions, etc. It has the advantage of being possible.

〔実施例〕〔Example〕

実施例において炭素繊維の特性は下記の如きパラメータ
あるいは測定方法を採用した。
In the examples, the following parameters or measurement methods were used to measure the characteristics of carbon fibers.

X線構造パラメータ 配向角(φ)、積層厚さくLco。2)、層間隔(dO
02)は広角X線回折より求められる炭素繊維の微細構
造を表わすパラメータである。配向角(φ)は結晶の繊
維軸方向に対する選択的配向の程度を示すもので、この
角度が小さい程配向が良いことを意味する。積層厚さく
 L cooz)は炭素微結晶中の(002)面の見掛
けの積層の厚さを表わし、層間隔(doot)は微結晶
の(002)面の層間隔を表わす。一般に積層厚さく 
L coot)が大きい程、層間隔(d ooz)が小
さい程結晶性が良いと見なされる。
X-ray structural parameters orientation angle (φ), lamination thickness Lco. 2), layer spacing (dO
02) is a parameter representing the fine structure of carbon fiber determined by wide-angle X-ray diffraction. The orientation angle (φ) indicates the degree of selective orientation of the crystal with respect to the fiber axis direction, and the smaller this angle, the better the orientation. The lamination thickness (L cooz) represents the apparent lamination thickness of the (002) plane in the carbon microcrystal, and the interlayer spacing (doot) represents the interlayer spacing of the (002) plane of the microcrystal. Generally the lamination thickness is
It is considered that the larger the L coot and the smaller the interlayer spacing (d ooz), the better the crystallinity.

配向角(φ)の測定は繊維試料台を使用し、繊維束が計
数管の走査面に垂直になっている状態で、計数管を走査
して(002)回折帯の強度が最大となる回折角2θ(
約26°)を予め求める。次に計数管をこの位置に保持
した状態で、繊維試料台を360°回転することにより
(002)回折環の強度分布を測定し、強度最大値の1
/2の点における半価幅を配向角(φ)とする。
To measure the orientation angle (φ), use a fiber sample stage, scan the counter with the fiber bundle perpendicular to the scanning plane of the counter, and find the time at which the intensity of the diffraction band reaches its maximum (002). 2θ(
approximately 26°). Next, with the counter held in this position, the fiber sample stage was rotated 360° to measure the intensity distribution of the (002) diffraction ring, and the
The half width at the point /2 is defined as the orientation angle (φ).

積層厚さくLcooz) 、F1層間隔 d 002)
は繊維を乳鉢で粉末状にし、学振法「人造黒鉛の格子定
数および結晶子の大きさ測定法」に準拠して測定・解析
を行ない、以下の式から求めた。
Lamination thickness Lcooz), F1 layer spacing d002)
The fiber was powdered in a mortar and measured and analyzed in accordance with the Gakushin method "Lattice constant and crystallite size measurement method of artificial graphite", and was determined from the following formula.

do。2 = □ 2  sinθ K = 1.0、λ=1.5418人 θ: (002)回折角2θより求めるβ:補正により
求めた(002)回折帯の半価幅透゛「・  電子顕微
鏡(T E M)観察法及び電子線回折測定法 炭素繊維試料をその繊維軸方向に引きそろえて加熱硬化
型エポキシ樹脂に包埋し、硬化する。硬化した炭素繊維
包埋ブロックを包埋された繊維が露出するようトリミン
グした後、ダイヤモンドナイフを装(itffしたウル
トラミクロトームを用いて、厚さが1000オングスト
ローム(人)以下の超薄切片を作製する。この超薄切片
を活着処理したグリッド上に載置し、電子顕微鏡を用い
て明視野像、暗視野像の撮影を行なう。明視野像とは通
常の透過型電子顕微鏡(TEM)写真のことで、暗視野
像とは特定の回折面からの回折電子線を取り込み結像さ
せることにより、その回折面の集合状態を観察するもの
である。実施例の(002)暗視野像は、明視野像と同
一視野において、直径約10μmの対物絞りを用いて、
(002)回折面からの回折電子線を取り込み結像させ
ることにより、(002)回折面の集合状態を観察した
ものである。写真で(002)回折面は白く光って観察
される。従って白く光る部分が太い所は(002)結晶
面がよく発達している所で結晶性が良い所と考えられる
do. 2 = □ 2 sin θ K = 1.0, λ = 1.5418 θ: β obtained from the (002) diffraction angle 2θ: Half-power width of the (002) diffraction band obtained by correction EM) Observation method and electron diffraction measurement method Carbon fiber samples are aligned in the fiber axis direction, embedded in heat-curable epoxy resin, and cured. After trimming to expose, an ultra-thin section with a thickness of 1000 angstroms or less is prepared using an ultramicrotome equipped with a diamond knife. This ultra-thin section is placed on a grid treated with engraving. Then, use an electron microscope to take bright-field and dark-field images.A bright-field image is a normal transmission electron microscope (TEM) photograph, and a dark-field image is a photograph of the diffraction from a specific diffraction surface. By capturing an electron beam and forming an image, the collective state of the diffraction surface is observed.The (002) dark-field image in the example was obtained using an objective aperture with a diameter of approximately 10 μm in the same field of view as the bright-field image. hand,
The aggregated state of the (002) diffraction surface was observed by capturing and imaging the diffracted electron beam from the (002) diffraction surface. In the photograph, the (002) diffraction plane is observed to shine white. Therefore, the areas where the white glowing parts are thick are considered to be areas where the (002) crystal plane is well developed and the crystallinity is good.

繊維内の結晶性の内外差を調べるために、制■視野電子
線回折法を使用して特定部分からの電子線回折像を測定
する。測定条件は加速電圧200KV、直径約1.7μ
mの制限視野絞りで、上記超薄切片の繊維軸に対して垂
直な方向にエツジからエツジまで連続的に電子線回折写
真を撮影する。得られた回折パターンをマイクロデンシ
トメーターを使用して、電子線回折像の(002) 、
 (004) 、 (100) 、 (110)回折線
について赤道並びに子午線の2方向の回折強度の走査プ
ロファイルを測定する。このようにして得られた走査プ
ロファイルの各々の回折強度の半価幅(△S)を計測す
る。結晶子の大きさLはS cherrerの式L=に
/△Sから求められる。
In order to investigate internal and external differences in crystallinity within the fiber, electron beam diffraction images from specific areas are measured using a controlled field electron diffraction method. Measurement conditions are acceleration voltage 200KV, diameter approximately 1.7μ
Electron diffraction photographs are taken continuously from edge to edge in the direction perpendicular to the fiber axis of the ultrathin section using a selected area aperture of m. The obtained diffraction pattern was analyzed using a microdensitometer to obtain electron beam diffraction images of (002),
Scanning profiles of diffraction intensities in two directions, ie, the equator and the meridian, are measured for the (004), (100), and (110) diffraction lines. The half width (ΔS) of the diffraction intensity of each of the scanning profiles thus obtained is measured. The crystallite size L is determined from the Scherrer equation L=/ΔS.

には定数で各回折線により異なった値、をとる。この式
から明らかなように同一回折線では結晶子の大きさは半
価幅と反比例の関係にあるので、各測定点において計測
した半価幅の逆数を計算し結晶子の大きさの比較をする
ことができる。
is a constant and takes a different value for each diffraction line. As is clear from this equation, the crystallite size is inversely proportional to the half-width for the same diffraction line, so the reciprocal of the half-width measured at each measurement point is calculated and the crystallite sizes are compared. can do.

実施例1゜ 光学的異方性相(AP)を約50%含有する炭素質ピッ
チを前駆体ピ・ノチとして使用し、これをローター内有
効容積2001の円筒型連続遠心分師WF’で、ロータ
ー温度360℃に制御しつつ遠心力10.0OOGでA
P排出口より光学的異方性相に冨むピンチを抜き出した
。得られた光学的異方性ピンチは、光学的異方性相を9
9%以上含み、軟化点は271″Cであった。
Example 1 Carbonaceous pitch containing about 50% of optically anisotropic phase (AP) was used as a precursor pitch, and it was heated in a cylindrical continuous centrifugal fractionator WF' with an effective volume of 2001 in the rotor. A with a centrifugal force of 10.0OOG while controlling the rotor temperature to 360℃
A pinch of optically anisotropic phase was extracted from the P outlet. The optically anisotropic pinch obtained has an optically anisotropic phase of 9
The content was 9% or more, and the softening point was 271″C.

次に得られた光学的異方性ピッチをノズル径Q、 3 
m mの溶融紡糸機で315℃で紡糸した。
Next, the obtained optical anisotropy pitch is defined as the nozzle diameter Q, 3
The fibers were spun at 315°C on a mm melt spinning machine.

得られたピッチ繊維を空気雰囲気で開始温度180℃、
最終温度290℃、昇温速度2°C/分で不融化した。
The obtained pitch fibers were heated at a starting temperature of 180°C in an air atmosphere.
Infusibility was achieved at a final temperature of 290°C and a heating rate of 2°C/min.

不融化処理の終了後、アルゴン雰囲気中で昇温速度を1
00℃/分、最終温度2500°Cで炭化を行ない直径
約13μmの炭素繊維を得た。
After the infusibility treatment is completed, the temperature increase rate is increased to 1 in an argon atmosphere.
Carbonization was carried out at 00°C/min and a final temperature of 2500°C to obtain carbon fibers with a diameter of about 13 μm.

この炭素繊維は表1に示したように配向角(φ)が6.
8°、積層厚さく L COO2)が210人、層間隔
(dooz)が3.395人であり、弾性率は736G
Paであった。また引張強度は2.77GPaであった
As shown in Table 1, this carbon fiber has an orientation angle (φ) of 6.
8°, lamination thickness (L COO2) is 210 layers, layer spacing (dooz) is 3.395 layers, and elastic modulus is 736G.
It was Pa. Moreover, the tensile strength was 2.77 GPa.

第1図は得られた炭素繊維の横断面を示す走査型電子顕
微鏡写真であるが、断面配向構造に内部と外表層部で差
が認められる。第2図(ア)は得られた炭素繊維の縦断
面の透過型電子顕微鏡による(002)暗視野像で、外
表層部より走査型内部の方が光っている部分が太く見え
るが、これは内部の方が(002)積層厚さが大きく結
晶性が良いためと考えられる。第2図(イ)は同じ縦断
面の透過型電子顕微鏡による明視野像(通常のTEM写
真)で、これも繊維内部の方が外表層部より結晶性が良
いことを示している。事実、電子線回折パターン中の(
002)回折線の半価幅を測定して前述の如く半価幅の
逆数から求めたところ、繊維内部の方が外表層部より結
晶子が大きい割合は21%であった。
FIG. 1 is a scanning electron micrograph showing a cross section of the obtained carbon fiber, and a difference in the cross-sectional orientation structure is recognized between the inner and outer surface layers. Figure 2 (a) is a (002) dark field image of the longitudinal section of the carbon fiber obtained using a transmission electron microscope. This is thought to be because the (002) layer thickness inside is larger and the crystallinity is better. FIG. 2(a) is a bright field image (ordinary TEM photograph) of the same longitudinal section taken with a transmission electron microscope, and this also shows that the inside of the fiber has better crystallinity than the outer surface layer. In fact, (
002) When the half-width of the diffraction line was measured and calculated from the reciprocal of the half-width as described above, the proportion of crystallites larger in the inside of the fiber than in the outer surface layer was 21%.

此W粗し 実施例1で得られた光学的異方性ピッチを同じ溶融紡糸
機で、315℃、ビ・ノチ吐出量を実施例1の約1/2
で紡糸した。
The optically anisotropic pitch obtained in W roughening Example 1 was processed using the same melt spinning machine at 315°C and the bi-notch discharge rate was approximately 1/2 that of Example 1.
It was spun with

得られたピッチ繊維を実施例1と同一条件で不融化、炭
化を行ない、直径約9μmの炭素繊維を得た。
The obtained pitch fibers were infusible and carbonized under the same conditions as in Example 1 to obtain carbon fibers with a diameter of about 9 μm.

この炭素繊維は表1に示したように、配向角(ψ)が8
.9°、積層厚さくり、。。2)が160人、層間隔(
dooz)が3.401 人であり、弾性率は573G
Pa、引張強度は2.74GPaであった。
As shown in Table 1, this carbon fiber has an orientation angle (ψ) of 8
.. 9°, laminate thickness reduced. . 2) is 160 people, and the layer interval (
dooz) is 3.401 people, and the elastic modulus is 573G
Pa, and the tensile strength was 2.74 GPa.

繊維横断面の走査型電子顕微鏡写真(第3図)では断面
配向構造に内部と外表層部で差が認められない。透過型
電子顕微鏡による繊維の縦断面の暗視野像(第4図(ア
))と明視野像(第4図(イ))では、繊維内部と外表
層部とで結晶性に差がないことが認められる。事実、電
子線回折パターン中の(002)回折綿の半価幅の測定
より求めると、繊維内部の方が外表層部より結晶子が太
きい割合は0.3%であり、内外差なしとみなされる。
In the scanning electron micrograph of the cross-section of the fiber (Fig. 3), no difference in cross-sectional orientation structure is observed between the inner and outer surface layers. Dark-field images (Figure 4 (a)) and bright-field images (Figure 4 (a)) of the longitudinal cross-section of the fiber using a transmission electron microscope show that there is no difference in crystallinity between the inside of the fiber and the outer surface layer. is recognized. In fact, based on the measurement of the half width of (002) diffraction cotton in the electron beam diffraction pattern, the percentage of crystallites thicker inside the fiber than in the outer surface layer is 0.3%, and there is no difference between the inside and outside. It is regarded.

几笠炎1 実施例1と同一のピッチ繊維を空気雰囲気で開始温度1
80℃、最終温度290’C,昇A速度0.3°C/分
で不融化した。
Kasakasa flame 1 The same pitch fiber as in Example 1 was placed in an air atmosphere at a starting temperature of 1.
It was made infusible at 80° C., a final temperature of 290° C., and an A rate of 0.3° C./min.

不融化処理の終了後、実施例1と同一条件で炭化を行な
い直径約13μmの炭素繊維を得た。この繊維は炭化時
に融着しなかった。
After the infusibility treatment was completed, carbonization was performed under the same conditions as in Example 1 to obtain carbon fibers with a diameter of about 13 μm. This fiber did not fuse during carbonization.

この炭素繊維は表1に示したように、配向角(φ)が7
.0°、積層厚さく■−6゜。2)が190人、層間隔
(aO02)が3.399人であり、弾性率は685G
Pa、引張強度は2.37GPaであった。
As shown in Table 1, this carbon fiber has an orientation angle (φ) of 7.
.. 0°, lamination thickness -6°. 2) is 190 people, the layer spacing (aO02) is 3.399 people, and the elastic modulus is 685G.
Pa, and the tensile strength was 2.37 GPa.

繊維の横断面の走査型電子顕微鏡写真(第5図)では断
面配向構造に内部と外表層部で差が認められない。また
、透過型電子顕微鏡による繊維のヤl断面の暗視野像(
第6図(ア))と明視野像(第6図(イ))でも、繊維
の内部と外表層部で結晶性に差は認められない。事実、
電子線回折パターン中の(002)回折線の半価幅の測
定より求めると、繊維内部の方が外表層部より結晶子が
大きい割合は−0,2%であり内外差なしとみなされる
A scanning electron micrograph of a cross section of the fiber (FIG. 5) shows no difference in the cross-sectional orientation structure between the inner and outer surface layers. In addition, a dark-field image (
There is no difference in crystallinity between the interior and outer surface layer of the fiber in the bright field image (Figure 6 (a)) and the bright field image (Figure 6 (a)). fact,
As determined by measuring the half width of the (002) diffraction line in the electron beam diffraction pattern, the ratio of crystallites inside the fiber being larger than the outer surface layer is -0.2%, and it is considered that there is no difference between inside and outside.

ル較開1 これは市販のピンチ系超高弾性炭素繊維(ユニオンカー
バイド社の商品U CC−P 100)である。
Comparison 1 This is a commercially available pinch type ultra-high modulus carbon fiber (Union Carbide product U CC-P 100).

この繊維の横断面の透過型電子顕微鏡写真(第7図)は
断面配向構造に内部と外表層部に明瞭な差がないことを
示す。また、透過型電子顕微鏡による繊維の縦断面の暗
視野像(第8図(ア))と明視野層(第8図(伺)でも
繊維の内部と外表層部で差がないことが認められる。電
子線回折パターン中の(002)回折線半価幅の測定よ
り求めると、繊維内部の方が外表層部より結晶子が大き
い割合は一5%であり、むしろ内部の方が多少結晶子が
小さい傾向にある。
A transmission electron micrograph of a cross section of this fiber (FIG. 7) shows that there is no clear difference in cross-sectional orientation structure between the inner and outer surface layers. Furthermore, it is observed that there is no difference between the inner and outer surface layers of the fiber in the dark field image (Figure 8 (a)) and the bright field image (Figure 8 (see)) of the longitudinal cross section of the fiber using a transmission electron microscope. According to the measurement of the half width of the (002) diffraction line in the electron beam diffraction pattern, the proportion of crystallites in the interior of the fiber is larger than that in the outer surface layer is 15%; tends to be small.

以下余白 χ且五l 繊維径を9.6μm、11.5μm、12.5μm・1
4μmとした以外実施例1と同様の操作を繰り返して炭
素繊維を作成した。
The following margins are χ and 5 l.The fiber diameters are 9.6 μm, 11.5 μm, and 12.5 μm・1
Carbon fibers were produced by repeating the same operations as in Example 1 except that the thickness was 4 μm.

これらの炭素繊維の配向角(φ)、積層厚さくLc、。Orientation angle (φ) of these carbon fibers, lamination thickness Lc,

Z)、弾性率を繊維径に関して表わすと第9図のグラフ
の如くである。繊維径の増加と共に配向角(φ)は減少
し、積層厚さくり、。。2)および弾性率は増加してい
る。これは、繊維外表層部の不融化される部分は繊維径
に殆んど依存しないので、繊維径の増加と共に繊維内部
の結晶体の高い部分の割合が増加し、その結果、繊維全
体としての結晶性が良くなったことを示している。
Z), the elastic modulus is expressed in relation to the fiber diameter as shown in the graph of FIG. As the fiber diameter increases, the orientation angle (φ) decreases and the lamination thickness decreases. . 2) and the elastic modulus is increasing. This is because the part of the outer surface layer of the fiber that is infusible is almost independent of the fiber diameter, so as the fiber diameter increases, the proportion of the high-crystalline part inside the fiber increases, and as a result, the fiber as a whole This shows that the crystallinity has improved.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、700GPa以上の超高弾性率繊維を
従来より低い焼成温度で製造できるので、製造設備費、
製造コストを大幅に低減し得る。また、繊維の内部が外
表層部より結晶性が斉い特異な構造お゛よび物性を有す
る超窩弾性繊維が提供される。
According to the present invention, ultra-high modulus fibers of 700 GPa or more can be produced at a lower firing temperature than conventional ones, reducing production equipment costs.
Manufacturing costs can be significantly reduced. Further, a super-elastic fiber is provided which has a unique structure and physical properties in which the inside of the fiber is more uniform in crystallinity than the outer surface layer.

そのほか、引張強度が向上すること、従来より太い繊維
径の製品のため生産効率が良くなり取扱いも楽になるこ
と、などの効果がある。
Other benefits include improved tensile strength, and because the product has a larger fiber diameter than conventional products, it improves production efficiency and is easier to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた炭素繊維の横断面を含む走
査型電子顕微鏡による斜視写真、第2図(ア)、(イ)
は実施例1で得られた炭゛素繊維の縦断面の透過型電子
顕微鏡によるそれぞれ暗視野像および明視野像(9通の
T E M写真)、第3図は比較例1で得られた炭素繊
維の横断面を含む走査型電子顕微鏡による斜視写真、!
第4図(ア)、(イ)は比較例1で得られた炭素繊維の
縦断面の透過型電子顕微鏡によるそれぞれ暗視野像およ
び明視野像(9通のT E M写真)、第5図は比較例
2で得られた炭素繊維の横断面を含む走査型電子顕微鏡
による斜視写真、第6図(ア)、(イ)は比較例2で得
られた炭素繊維の縦断面の透過型電子顕微鏡によるそれ
ぞれ暗視野像および明視野像(9通のTEN写真)、第
゛7図は比較例3の炭素繊維の横断面を含む走査型電子
顕微鏡2こよる斜視写真、 第8図(ア)、(イ)は比較例3の炭素繊維の縦断面の
透過型電子顕微鏡によるそれぞれ暗視野像および明視野
像(普通のTEM写真)である。 第9図は実施例2の炭素繊維の特性の繊維径依存性を示
すグラフ図である。
Figure 1 is a perspective photograph taken by a scanning electron microscope including a cross section of the carbon fiber obtained in Example 1, and Figures 2 (A) and (B).
3 is a dark-field image and a bright-field image (nine TEM photographs) of the longitudinal section of the carbon fiber obtained in Example 1, respectively, taken by a transmission electron microscope. FIG. A perspective photograph taken by a scanning electron microscope, including a cross section of carbon fiber!
Figures 4 (A) and (B) are dark-field and bright-field images (nine TEM photographs) of the longitudinal section of the carbon fiber obtained in Comparative Example 1, respectively, taken with a transmission electron microscope. 6(A) and (B) are transmission electron micrographs of longitudinal sections of the carbon fibers obtained in Comparative Example 2. A dark-field image and a bright-field image (nine TEN photographs) taken with a microscope, Figure 7 is a perspective photograph taken with a scanning electron microscope 2 containing a cross section of the carbon fiber of Comparative Example 3, and Figure 8 (A). , (A) are a dark-field image and a bright-field image (ordinary TEM photograph) of a longitudinal section of the carbon fiber of Comparative Example 3 taken by a transmission electron microscope, respectively. FIG. 9 is a graph showing the fiber diameter dependence of the characteristics of the carbon fiber of Example 2.

Claims (1)

【特許請求の範囲】 1、繊維の横断面内において、繊維の外表層部より繊維
の内部において結晶性が実質的に高いことを特徴とする
ピッチ系炭素繊維。 2、光学的異方性部分を主成分とする炭素質ピッチを紡
糸し、得られる炭素質ピッチ繊維を繊維の横断面内の外
表層部だけを選択的に不融化し、然る後その外表層部の
み不融化した繊維を焼成することを特徴とするピッチ系
炭素繊維の製法。
[Scope of Claims] 1. A pitch-based carbon fiber characterized by having substantially higher crystallinity in the interior of the fiber than in the outer surface layer within the cross section of the fiber. 2. Spinning carbonaceous pitch whose main component is an optically anisotropic part, selectively infusible only the outer surface layer in the cross section of the obtained carbonaceous pitch fiber, and then A method for producing pitch-based carbon fiber, which is characterized by firing fibers in which only the surface layer is infusible.
JP61223789A 1986-05-02 1986-09-24 Pitch type carbon yarn having high modulus of elasticity and production thereof Granted JPS63120112A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1019870004165A KR960012991B1 (en) 1986-05-02 1987-04-29 High modulus pitch-based carbon-fiber and method for preparing the same
CN198787104047A CN87104047A (en) 1986-05-02 1987-04-30 High modulus pitch-based carbon fiber and manufacture method thereof
DE8787303886T DE3782534T2 (en) 1986-05-02 1987-04-30 PECH-BASED CARBON FIBERS WITH HIGH ELASTICITY MODULE AND METHOD FOR THE PRODUCTION THEREOF.
EP87303886A EP0245035B1 (en) 1986-05-02 1987-04-30 High modulus pitch-based carbon fiber and method for preparing same
US07/045,835 US4822587A (en) 1986-05-02 1987-05-01 High modulus pitch-based carbon fiber and method for preparing same
AU72490/87A AU7249087A (en) 1986-05-02 1987-05-01 Pitch-based carbon fibre
CA000536283A CA1314365C (en) 1986-05-02 1987-05-04 High modulus pitch-based carbon fiber and method for preparing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10109886 1986-05-02
JP61-101098 1986-05-02

Publications (2)

Publication Number Publication Date
JPS63120112A true JPS63120112A (en) 1988-05-24
JPH042688B2 JPH042688B2 (en) 1992-01-20

Family

ID=14291619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61223789A Granted JPS63120112A (en) 1986-05-02 1986-09-24 Pitch type carbon yarn having high modulus of elasticity and production thereof

Country Status (2)

Country Link
JP (1) JPS63120112A (en)
KR (1) KR960012991B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180514A (en) * 1988-12-26 1991-08-06 Toray Ind Inc Acrylic carbon fiber and production thereof
US5370856A (en) * 1990-04-06 1994-12-06 Nippon Steel Corporation High strength carbon fiber and pre-carbonized fiber

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953717A (en) * 1982-09-16 1984-03-28 Agency Of Ind Science & Technol Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS60239520A (en) * 1984-05-11 1985-11-28 Mitsubishi Chem Ind Ltd Carbon fiber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03180514A (en) * 1988-12-26 1991-08-06 Toray Ind Inc Acrylic carbon fiber and production thereof
US5370856A (en) * 1990-04-06 1994-12-06 Nippon Steel Corporation High strength carbon fiber and pre-carbonized fiber

Also Published As

Publication number Publication date
JPH042688B2 (en) 1992-01-20
KR870011290A (en) 1987-12-22
KR960012991B1 (en) 1996-09-25

Similar Documents

Publication Publication Date Title
KR950008909B1 (en) High strength, ultra high modulus carbon fiber
Edie et al. High thermal conductivity ribbon fibers from naphthalene-based mesophase
US4822587A (en) High modulus pitch-based carbon fiber and method for preparing same
US5733484A (en) Method for manufacturing carbon preform and carbon/carbon composite material
JP2981536B2 (en) Mesophase pitch-based carbon fiber mill and method for producing the same
US6303096B1 (en) Pitch based carbon fibers
EP0426438A2 (en) High strength carbon fibers and method of manufacturing them
US5269984A (en) Process of making graphite fiber
JPS63120112A (en) Pitch type carbon yarn having high modulus of elasticity and production thereof
US5114697A (en) High strength, high modulus pitch-based carbon fiber
JPS5953717A (en) Pitch-based carbon fiber having high strength and modulus and its manufacture
JPS6241320A (en) Carbon yarn having section with wavy structure
Curtis et al. Hollow carbon fibres for high performance polymer composites
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JPH03146718A (en) Pitch-based carbon fiber having high elongation and high strength
JPH05272017A (en) Carbon fiber and its production
JPH03146717A (en) Pitch-based carbon fiber having high elongation and high strength
JPH02216221A (en) High-strength, high-modulus activated carbon fiber
JPH01250415A (en) Carbon fiber and graphite fiber and production thereof
JPH0316403B2 (en)
JPH03146720A (en) Production of pitch-based carbon fiber having high elongation and high strength
JP4343312B2 (en) Pitch-based carbon fiber
JPS616316A (en) Graphite fiber
JPH03146719A (en) Production of pitch-based carbon fiber having high elongation and high strength
JPH0112851B2 (en)