JPS616316A - Graphite fiber - Google Patents

Graphite fiber

Info

Publication number
JPS616316A
JPS616316A JP23007384A JP23007384A JPS616316A JP S616316 A JPS616316 A JP S616316A JP 23007384 A JP23007384 A JP 23007384A JP 23007384 A JP23007384 A JP 23007384A JP S616316 A JPS616316 A JP S616316A
Authority
JP
Japan
Prior art keywords
pitch
cross
fiber
spinning
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23007384A
Other languages
Japanese (ja)
Other versions
JPH042687B2 (en
Inventor
Toru Sawaki
透 佐脇
Hideharu Sasaki
佐々木 英晴
Yoshiaki Yoshioka
吉岡 喜秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP23007384A priority Critical patent/JPS616316A/en
Publication of JPS616316A publication Critical patent/JPS616316A/en
Publication of JPH042687B2 publication Critical patent/JPH042687B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:Graphite fibers, producible easily from pitch as a raw material, and having leaflike lamellar orientation in the cross section thereof and a specific tensile strength and modulus values and cross-sectional structure entirely different from the conventional cross-sectional structure. CONSTITUTION:Graphite fibers, obtained by spinning pitch, e.g. coal tar pitch, as a raw material, and having many lamellas in the lamellar orientation in the form of tree leaves extending to both sides at 15-90 deg. angle symmetrically from the central axis in >=30% cross section thereof, >=300kg/mm.<2>, preferably >=350kg/ mm.<2> tensile strength and >=30T/mm.<2>, preferably >=40T/mm.<2> modulus. The cross- sectional shape of the fibers is preferably circular.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ピンチを原料とし、ilT規でかつ特異な内
部構造を有する高強度、高モジュラスの黒鉛轍維VC関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a high-strength, high-modulus graphite rutted fiber VC made from pinch as a raw material and having an IL-T regularity and a unique internal structure.

従来技術 黒鉛縁##は、当初レーヨンを原料とじ″C,製造され
たが、その特性、経済性の点で、現在はポリアクl) 
pニトリル(PANJ繊維を原料とするPAN系黒鉛*
Mと、石炭又は石油系のピッチ類を原料とするピンチ系
黒鉛laMによって占めらハている。なかでも、ピッチ
を原料として高性能グレードの黒鉛FR維を製造する技
術は、経済性にすぐ引でいるため注目を集めておpl例
えば光学異方性ピンチを溶融紡糸して得たピッチ繊維を
不融化、焼成。
Conventional technology Graphite edge ## was initially manufactured using rayon as raw material, but due to its characteristics and economic efficiency, it is now made of polyacrylate.
p-nitrile (PAN-based graphite made from PANJ fibers*
M and pinch type graphite laM made from coal or petroleum pitches. Among these, the technology to produce high-performance grade graphite FR fibers using pitch as a raw material is attracting attention because it is immediately economical. Infusibility and firing.

黒鉛化した黒鉛繊維は、そねまでのピンチ系黒鉛繊維に
比して高強度、高モジュラスのものが得られている。(
特開昭49−19127号公報参照) また、ピッチ系黒鉛繊維の内部断面構造を制御すること
Kより、物性が変化することも見出されている。
Graphitized graphite fibers have higher strength and higher modulus than the pinch type graphite fibers. (
(Refer to JP-A-49-19127) It has also been found that physical properties can be changed by controlling the internal cross-sectional structure of pitch-based graphite fibers.

すなわち、ピッチ系黒鉛繊維の断面構造としては、ラン
ダム、ラジアル、オニオン構造又はその複合構造が存在
し、ラジアル構造はモジュラスが高くなる反面クランク
を生じゃすくマクロ欠陥による強度低下が生じる。また
ピッチ系黒鉛繊維におけるランダム構造は、実際はラメ
ラのサイズが小さいラジアル構造であり、強度的には好
ましい構造であるが、ピッチ調製及び紡糸の高ドラフト
又は急冷化が十分でないとクランクが生じゃすく製造条
件が限定される。またモジュラス面においては、ラジア
ル構造より劣るものとなる。
That is, the pitch-based graphite fiber has a random, radial, onion structure, or a composite structure thereof as a cross-sectional structure, and while the radial structure has a high modulus, it is detrimental to the crank and causes a decrease in strength due to macro defects. In addition, the random structure in pitch-based graphite fibers is actually a radial structure with small lamella sizes, which is a preferable structure in terms of strength, but if the pitch preparation and spinning draft or rapid cooling are not sufficient, the crank will crack. Manufacturing conditions are limited. Also, in terms of modulus, it is inferior to the radial structure.

オニオン構造は、現象的には紡糸ピッチの粘性変化温度
よりも高い温度まで昇温させた後、紡糸することによっ
て得られるが(@開昭59−53717号公報参照)、
通常の光学異方性ピッチにおいては、この粘性変化温度
が350℃以上の高温であるため、紡糸の安定性が悪く
、得られる繊維もボイドを含んだものになり J、)す
いため、ボイドレスのオニオン構造の繊維は、安定に得
ることがむつかしい。
The onion structure can be obtained by spinning after raising the temperature to a temperature higher than the viscosity change temperature of the spinning pitch (see @Kokai No. 59-53717).
With normal optically anisotropic pitch, the viscosity change temperature is as high as 350°C or higher, resulting in poor spinning stability and the resulting fibers containing voids. Fibers with an onion structure are difficult to obtain stably.

発明の目的 本発明の目的は、従来のピッチ系黒鉛繊維とは全く異な
った断面構造を有し、従来のピッチ系黒鉛繊維に比べ℃
飛躍的に改善された強度とモジュラスとを有しており、
しかも製造上の困難が少ない新規なピッチ系黒鉛繊維を
提供することVrある。
Purpose of the Invention The purpose of the present invention is to have a cross-sectional structure completely different from that of conventional pitch-based graphite fibers, and to have a temperature lower than that of conventional pitch-based graphite fibers.
It has dramatically improved strength and modulus,
Furthermore, it is an object of the present invention to provide a new pitch-based graphite fiber that is less difficult to manufacture.

発明の構成 不発明者らは、ピッチ系黒鉛繊維の持つモジュラス面で
の利点を保ちつつ優れた強度を有する従来にない性能の
ピッチ系黒鉛繊維を開発するために鋭意研究を行った結
果、紡糸用ピッチ原料を溶融紡糸する除、特定の工夫を
加えることによねピッチ分子の配列を意のままに制御で
きることを究明し、従来のラジフル、ランダム、又はオ
ニオン構造とは全く異なった特異な微細構造を有し、か
つ従来達成されていない優れた強度とモジュラスを合せ
持つ、新規なピッチ系黒鉛繊維が得られることを見出し
、この知見に基づいて本発明を完成するに至った。
Structure of the Invention The inventors conducted intensive research to develop a pitch-based graphite fiber with unprecedented performance that maintains the advantages of pitch-based graphite fiber in terms of modulus and has excellent strength. In addition to melt-spinning pitch raw materials, the researchers discovered that by adding specific techniques, it is possible to control the arrangement of pitch molecules at will, creating a unique microstructure that is completely different from conventional radial, random, or onion structures. It has been discovered that a new pitch-based graphite fiber can be obtained that has both excellent strength and modulus that have not been achieved in the past, and based on this knowledge, the present invention was completed.

すなわち、本発明の新規なピッチ系黒鉛繊維は、その断
面の30%以上にリーフ状ラメラ配列を有し、かつ、引
張強度が少(とも3sokg/J、モンユラスが少なく
とも30T/−を示すことを特徴とする黒鉛1R1tI
である。
That is, the novel pitch-based graphite fiber of the present invention has a leaf-like lamellar arrangement in 30% or more of its cross section, and has a low tensile strength (3 sokg/J at least, and at least 30 T/- for Monyrus). Features of graphite 1R1tI
It is.

ここでいうリーフ状ラメラ配列とは、黒鉛繊維の長さ方
向とほぼ垂直な方向に切断した断面を走査型電子顕微鏡
によって観察することによって識別ができるもので、基
本的には中心軸から対称に15〜90″Q角度所多数の
ラメラが両側に伸びた木の葉状のラメラ配列を指し、従
来全く知られていなかった新規な構造である。このリー
フ状ラメラ配列の中には、中心軸が不明瞭となったり消
失したものも自ま」する。かかる場合は、中心軸も仮想
−(ることにより、上記定義に従ったリーフ状ラメラ配
列と判別することがで′?る。
The leaf-like lamellar arrangement referred to here can be identified by observing a cross section cut almost perpendicular to the longitudinal direction of graphite fibers using a scanning electron microscope, and is basically symmetrical about the central axis. 15~90'' Q angle refers to a leaf-like lamella arrangement in which many lamellae extend on both sides, and is a completely new, previously unknown structure.In this leaf-like lamella arrangement, the central axis is What becomes clear or disappears is also self. In such a case, the central axis is also virtual (thereby, it can be determined that it is a leaf-like lamella arrangement according to the above definition).

第1図〜第4図は、かかる本発明の黒鉛繊維の断面構造
を模式的に示す線絵断面図である。リーフ状ラメラ配列
は、一つの断面中に複数個存在することかでき、例えば
、第1図の如く4つのリーフ状ラメラが組合わさった場
合、第2図〜第4図の如く3つのリーフ状ラメラが組合
さった場合、75図の如く2つf)リーフ状ラメラが組
合わさり、1つのリーフ状ラメラの如く見える場合等が
ある。
FIGS. 1 to 4 are diagrammatic cross-sectional views schematically showing the cross-sectional structure of the graphite fiber of the present invention. A plurality of leaf-like lamella arrays can exist in one cross section. For example, when four leaf-like lamellas are combined as shown in Fig. 1, three leaf-like lamellas as shown in Figs. 2 to 4 are combined. When the lamellae are combined, two leaf-like lamellae are combined as shown in Fig. 75, and there are cases where it looks like one leaf-like lamella.

各リーフ状ラメラの中心軸は6編又は曲線であ−)ても
よく、中心軸を仮想する8喪がある場合も同様である。
The central axis of each leaf-like lamella may be six loops or a curved line, and the same is true when there are eight loops imagining the central axis.

又、各リーフ状ラメラの大ざさやリーフ状う/うの数は
特に制限されない。一般に線維断面に内在するリーフ状
ラメラの数が多い場合はそi=ぞitのリーフ状ラメラ
は相対的に小さくなり、数が少ない場合はそれぞれのリ
ーフ状ラメラは大きくなる。
Further, the size of each leaf-like lamella and the number of leaf-like lamellae are not particularly limited. Generally, when the number of leaf-like lamellae existing in a fiber cross section is large, the leaf-like lamellae of that i=zoit become relatively small, and when the number is small, each leaf-like lamella becomes large.

一般に繊維断面に内在するリーフ状ラメラの数は2〜8
個が好ましい。また、リーフ状ラメラが繊維断面積に占
める割合(面積比率)は少くとも30チが好ましく50
%以上が特に好ましい。
Generally, the number of leaf-like lamellae inherent in the fiber cross section is 2 to 8.
Preferably. In addition, the proportion (area ratio) of leaf-like lamellae in the cross-sectional area of the fiber is preferably at least 30 cm.
% or more is particularly preferred.

すなわち、本発明の黒鉛繊維には、多くの場合、リーフ
状ラメラ配列を有するリーフ状構造の部分(4)とその
周りの構造が不明確な部分(B)とが存在するがAの面
積/ (A 十B )の面積の割合が少くとも30%以
上、%に50チ以上有することが好ましい。
That is, in many cases, the graphite fiber of the present invention has a leaf-like structured part (4) having a leaf-like lamella arrangement and a part (B) with an unclear structure around it, but the area of A/ It is preferable that the area ratio of (A 1 B) is at least 30% or more, and 50% or more.

本発明に係る黒鉛線維の断面形状(外形)は、円形(第
1図)、楕円形(第5図)、トライp−パル形(第4図
)等のマルチローバル形、トライアングル形(第3図)
等のマルチアングル形のほか、偏平形1曲玉形等任意の
形状をとることができる。
The cross-sectional shape (external shape) of the graphite fibers according to the present invention can be multi-lobal shapes such as circular (Fig. 1), elliptical (Fig. 5), tri-P-pal (Fig. 4), triangular (Fig. figure)
In addition to multi-angle shapes such as , it can take any shape such as a flat shape or a single curved lens shape.

繊維の直径は円形断面に換算して5〜50pの範囲にす
るのが好ましく、繊維長は任意に選択できる。
The diameter of the fiber is preferably in the range of 5 to 50p in terms of circular cross section, and the fiber length can be selected arbitrarily.

前記のような特殊なリーフ状ラメラ配列を有する本発明
の黒鉛繊維は、少なくとも300ゆ/−の強度と、少な
くとも3oT/−のモジュラスとを兼ね備えており、殆
んどの場合350kli+/−以上の強度と40T/−
以上のモジュラスとを有する従来に見られない優れた物
性を示す。特に後述の実施例に示す如く、製造条件によ
っては、400に9/−を超える強度と45T/−を超
えるモジュラスを示す場合もsb、従来のピッチ系黒鉛
繊維からは全く予想できないようなすぐれた物性を有す
る。
The graphite fibers of the present invention having the special leaf-like lamellar arrangement described above have a strength of at least 300 Y/- and a modulus of at least 3 oT/-, and in most cases have a strength of 350 kli+/- or more. and 40T/-
It exhibits excellent physical properties that have not been seen in the past, with a modulus of In particular, as shown in the examples below, depending on the manufacturing conditions, there are cases where the strength exceeds 9/- for 400 and the modulus exceeds 45 T/-. It has physical properties.

本発明の黒鉛繊維のもつ、このようなすぐれた物性は、
該繊維の断面構造が前述のようなリーフ状ラメラ配列を
とっているため、不融化・焼成・黒鉛化の段階でのクラ
ンクの発生が防止され、構造の緻密化が可能となシ高強
度・高モジュラスが発現したものと考えらねる。
Such excellent physical properties of the graphite fiber of the present invention are as follows:
Since the cross-sectional structure of the fiber has a leaf-like lamellar arrangement as described above, the generation of cranks during the infusibility, sintering, and graphitization stages is prevented, and the structure can be made denser. This is considered to be due to a high modulus.

このような優れた諸性能を有する本発明の黒鉛繊維は光
学異方性領域を50%以上有する紡糸用ピッチを溶融し
た後、特定の形状を治する紡糸孔から溶融紡糸し、これ
を不融化。
The graphite fiber of the present invention, which has such excellent performance, is obtained by melting a spinning pitch having an optical anisotropy region of 50% or more, then melt-spinning it through a spinning hole that forms a specific shape, and making it infusible. .

焼成、黒鉛化することKよって容易Kかつ安定に製造す
ることかできる。
It can be easily and stably produced by firing and graphitizing.

次に、この製造方法について詳細罠説明する。Next, this manufacturing method will be explained in detail.

本発明の黒鉛繊維を製造するための原料としては、光学
異方性領域を50%以上、好寸しくは80チ以上有する
ピッチを用いる。光学異方性領域の割合が50%未満の
光学異方性ピッチは、可紡性が悪く、均質かつ安定な物
性のものが得ら引ないばかりでなく、得ろねる黒鉛繊維
の物性も低いものとなる。
As a raw material for producing the graphite fiber of the present invention, pitch having an optical anisotropy area of 50% or more, preferably 80 inches or more is used. Optically anisotropic pitch with an optically anisotropic region ratio of less than 50% has poor spinnability, making it difficult to obtain homogeneous and stable physical properties, and also resulting in graphite fibers with poor physical properties. becomes.

紡糸用ピッチの融点は260〜320℃が好ましく、2
70〜310℃がさらに好ましい。また紡糸用ピッチの
キノリン可溶部の割合は30重量%以上が好ましく、特
に40〜80重f1%が好適である。これらのパラメー
ターは原料ピッチによって異なるが通常は相関があり、
光学異方性量が多い糧融点が高く、キノリン可溶部の割
合は低くなる。本発明において好適に用いられる紡糸用
ピッチ領域の割合(以下、光学異方性量という)が多い
程よい。このようなピッチは糸が均質であり、可紡性に
すぐれている。
The melting point of the pitch for spinning is preferably 260 to 320°C, and 2
More preferably, the temperature is 70 to 310°C. Further, the proportion of the quinoline-soluble portion of the spinning pitch is preferably 30% by weight or more, and particularly preferably 40 to 80% by weight f1. These parameters vary depending on the raw material pitch, but are usually correlated.
The amount of optical anisotropy is high, the melting point is high, and the proportion of quinoline soluble portion is low. The higher the ratio of the spinning pitch region (hereinafter referred to as the amount of optical anisotropy) preferably used in the present invention, the better. With such a pitch, the yarn is homogeneous and has excellent spinnability.

このような紡糸用ピッチの原料としては、例えばコール
タール、コールタールピッチ。
Examples of raw materials for such spinning pitch include coal tar and coal tar pitch.

石炭液化物のような石炭系重質油や、石油の常圧残留、
減圧蒸留残油及びこれらの残油の熱処IIKよって副生
ずるタールやピッチ、オイルサンド、ビチューメンのよ
うな石油系重質油を精製したものを用い、これを熱処3
!l。
Coal-based heavy oil such as coal liquefied oil, residual oil at normal pressure,
Refined petroleum heavy oils such as tar, pitch, oil sand, and bitumen, which are by-products of vacuum distillation residual oil and heat treatment of these residual oils, are used and subjected to heat treatment 3.
! l.

溶剤抽出、水素化処理等を組合せて処理することによっ
て得られる。
It is obtained by a combination of solvent extraction, hydrogenation treatment, etc.

本発明の黒鉛繊維を製造するには、前述の如き紡糸用ピ
ッチを溶融紡糸する際の紡糸口金の紡糸孔(ノズル)形
状が特に重要である。
In order to produce the graphite fiber of the present invention, the shape of the spinning hole (nozzle) of the spinneret when melt-spinning the above-mentioned spinning pitch is particularly important.

すなわち、前述の如き紡糸用ピッチの溶融物を次式(1
) <[1を同時に満足するスリット状部を有する特殊
な紡糸孔を通じて溶融紡糸する。
That is, the melt of the spinning pitch as described above is expressed by the following formula (1
) <[1.

かかる紡糸孔としては、該紡糸孔における中心線距離を
Lnとし、それに対応するぬれぶち幅をWnとしたとき
、(但しn=1〜10の整数ンLnの少なくとも1つが
、 Ln < 5.0 (m )    ・・−(■r1.
5りLn/〜Vn <20  −− (Illを同時罠
満足するものを使用する。
As for such a spinning hole, when the center line distance in the spinning hole is Ln and the corresponding wetting edge width is Wn, (however, at least one of the integer numbers Ln of n=1 to 10 is such that Ln < 5.0 (m)...-(■r1.
5riLn/~Vn<20 -- (Use one that satisfies Ill as a simultaneous trap.

かかる紡糸孔としては、直線状又は曲線状の単一スリッ
トからなる紡糸孔、互いに交差した直線状又は曲線状の
複数のスリットからなる紡糸孔、互いに独立した複数の
スリットを組合せて1つの紡糸孔単位としたもの等があ
げられる。ここで15中心線距離Lnとは、単一のスリ
ットの場合、スリットの中心線の長さし、が中心線距離
であり、複数のスリットが交差した紡糸孔では交差部の
内接円を除いた部分の各スリットの中心線の長さLL 
l LX IL、・・・Lnが中心線距離であり、更に
互いに独立した複数個のスリットを組合せて1つの紡糸
孔単位とした紡糸孔では、各々スリットの中心線の長さ
L□ILI・・・・・Lnが中心距離となる。
Such spinning holes include a spinning hole consisting of a single straight or curved slit, a spinning hole consisting of a plurality of linear or curved slits crossing each other, and a spinning hole consisting of a plurality of mutually independent slits. Examples include units. Here, 15 center line distance Ln is the length of the center line of the slit in the case of a single slit, and is the center line distance, and in the case of a spinning hole where multiple slits intersect, the inscribed circle at the intersection is excluded. Length LL of the center line of each slit in the section
l LX IL,...Ln is the center line distance, and in a spinning hole where multiple independent slits are combined into one spinning hole unit, the length of the center line of each slit is L□ILI... ...Ln is the center distance.

またぬれぶちeWnとは、中心線と直交する方向のスリ
ット最大幅を言う。
Further, the wet edge eWn refers to the maximum width of the slit in the direction perpendicular to the center line.

本発明の黒鉛FI1.維を形成するには、前記Ln及び
Wnの少なくとも1#1が前記式+1) Tl!]を同
時に満足する必要があるが、Ln 、 Wn  が複数
組存在するときは、その全部又は殆んどが前記式(11
(It)を同時に満足するのが好ましい。
Graphite FI1 of the present invention. To form a fiber, at least one #1 of the Ln and Wn satisfies the formula +1) Tl! ] must be satisfied at the same time, but when there are multiple sets of Ln and Wn, all or most of them satisfy the above formula (11
It is preferable to simultaneously satisfy (It).

不発明者らの研究によねば、かかる特殊な紡糸孔の中で
も単一のスリットより成る紡糸孔が好ましく、この中で
もさらK 3 <I、n/Wnく15を満足するものが
好ましい。
According to research conducted by the inventors, among such special spinning holes, a spinning hole consisting of a single slit is preferable, and among these, a spinning hole that satisfies K 3 <I, n/Wn (15) is preferable.

これに対し、従来のピッチ繊維の溶融紡糸に使用されて
いる円形紡糸孔を有する紡糸口金を用いた場合や、Ln
/Wnが前記範囲外の異形紡糸孔を有する紡糸口金を用
いた場合には黒鉛線絵の断面がラジアル構造となるか、
リーフ状ラメラ配列含有率が極めて小さくなる。
In contrast, when using a spinneret with circular spinning holes, which is used for conventional melt spinning of pitch fibers, and when using Ln
When using a spinneret with irregularly shaped spinning holes where /Wn is outside the above range, the cross section of the graphite diagram will have a radial structure;
The leaf-like lamella arrangement content becomes extremely small.

この様な場合、クランクを発生しない繊維を部分的に含
くむこともめるが、完全にクラックを防止することは不
可能となり、その結果得られる黒鉛繊維の物性は低下す
る。
In such a case, it is possible to partially include fibers that do not generate cracks, but it is impossible to completely prevent cracks, and as a result, the physical properties of the graphite fibers obtained deteriorate.

溶融紡糸における紡糸温度は、融点より40〜100℃
高い温度を採用するが、本発明で記した優れた物性を得
るためには380℃を越える温度はさけるべきでわり、
さらwFfましくは370℃を越える温度はさけるべき
である。かような温度以上では炭化反応が開始さね、こ
tl、 K伴うガスの発生が、物性にとって無視できな
い悪影響を持つからである。
The spinning temperature in melt spinning is 40 to 100 degrees Celsius above the melting point.
Although a high temperature is used, temperatures exceeding 380°C should be avoided in order to obtain the excellent physical properties described in the present invention.
Furthermore, temperatures exceeding 370°C should be avoided. This is because at temperatures above such a temperature, the carbonization reaction does not start, and the generation of gas accompanied by Tl, K has a non-negligible adverse effect on the physical properties.

前述のごとき紡糸孔から光学異方性ピッチを紡糸すると
、何故リーフ状ラメラ配列を生ずるかは、未だ充分解明
されておらず、今後の詳細な検討を待たねばならないが
、およそ次の様に考えらねる。
The reason why a leaf-like lamellar arrangement is produced when optically anisotropic pitch is spun from the spinning hole as described above is still not fully understood and will have to wait for detailed investigation in the future, but the idea is as follows. Ranel.

光学異方性を有するピッチは板状分子と推定され、この
ような板状分子は紡糸口金のノズル(紡糸孔)内の等速
度JiK対し直角に配列し易い。円形ノズル内の等速度
線は円状でワシこiK分子が直角に配列するため、得ら
れるピッチ繊維の断面内でピッチ分子はラジアル状に配
列する。このため不融化、焼成。
Pitch having optical anisotropy is presumed to be plate-like molecules, and such plate-like molecules tend to be arranged at right angles to the uniform velocity JiK in the nozzle (spinning hole) of the spinneret. Since the constant velocity line in the circular nozzle is circular and the pitch iK molecules are arranged at right angles, the pitch molecules are arranged radially within the cross section of the resulting pitch fiber. For this reason, it is made infusible and fired.

黒鉛化の段階で分子面間隔の収縮時に応力歪みが生じ易
く、クラックを生じる。
During the graphitization stage, stress distortion tends to occur when the molecular spacing contracts, resulting in cracks.

こhK対し前述の中心線を有するノズル内の等速度線I
′iU字状とな9、これに分子が直角に配列するとピッ
チ分子は繊維断面内でリーフ状に配列する、この配列は
、不融化、焼成、@錯化の段階での分子面間隔の収縮時
に応力歪みを吸収し易い配列であるため、分子は緻@に
充填される等の理由によりクラック発生がなくなり、著
るしくすぐれた物性が発現すると考えられる。
The constant velocity line I in the nozzle having the above-mentioned center line for this hK
When the molecules are arranged at right angles to this, the pitch molecules are arranged in a leaf-like manner within the fiber cross section. This arrangement is caused by the contraction of the molecular spacing during the infusibility, firing, and complexing stages. It is thought that because the arrangement is such that it can easily absorb stress strain, cracks do not occur due to the fact that the molecules are packed tightly, etc., and extremely excellent physical properties are developed.

また必要に応じ、口金細孔上部(上流’l1l)K整流
板を設置する方法も有効圧使用しうる。
Furthermore, if necessary, a method of installing a K rectifier plate above the mouth hole (upstream '111) can also be used for effective pressure.

かような整流板とし工)寡、流線に対し垂直な断面の形
状が平行スリット、格子状、微小円の集合形状等任意の
ものを使用できるが、かような整流板により形成された
個々の流線が、互いに流線方向に交絡しない必要がある
。流線が交絡する場合、それにより流れに乱れが生じ、
軸方向配向が阻害され好ましくない。
Such a rectifying plate may have any shape, such as parallel slits, a lattice shape, or an aggregated shape of minute circles, etc., with a cross section perpendicular to the streamlines. It is necessary that the streamlines of the two do not intertwine with each other in the streamline direction. When streamlines intertwine, it causes turbulence in the flow;
This is not preferable because the axial orientation is inhibited.

このようなスリット状の紡糸孔から紡出された繊維は、
トーラフト率30以上、好ましくは50以上で引き取る
ことが好適である。ここでドラフト率とは次式で定義さ
れる値であり、この値が大きいことは紡糸時の変形速度
が大きく、他の条件が同一の場合はドラフト率が大きい
程、急冷効果が犬となる。
Fibers spun from such slit-shaped spinning holes are
It is suitable to take over at a tow raft ratio of 30 or more, preferably 50 or more. Here, the draft rate is a value defined by the following formula, and the larger this value is, the higher the deformation speed during spinning is.If other conditions are the same, the larger the draft rate is, the sharper the quenching effect will be. .

ドラフト率30以上、特[50以上で引き取ると、引続
く不融化、焼成、黒鉛化処理罠より、好適な物性を発現
しやすいので好捷しい。
It is preferable to take the material at a draft rate of 30 or more, especially 50 or more, because it is easier to develop suitable physical properties than the subsequent infusibility, calcination, and graphitization treatments.

紡糸引取り速度は、前述の紡糸条件では、1o00m/
分以上の高速でもきわめて円滑に紡糸することができる
が、通常300〜2000111/分の範囲が好ましく
用いられる。
The spinning take-off speed is 1000 m/m under the above-mentioned spinning conditions.
Although spinning can be carried out very smoothly even at high speeds of 300 to 2000111 minutes per minute or more, the preferred range is usually 300 to 2000111 minutes.

前記のような特殊な紡糸口金を採用し℃得られたピッチ
繊維は次いで、酸素の存在下に不融化処理される。
The pitch fiber obtained by employing the above-mentioned special spinneret at °C is then treated to be infusible in the presence of oxygen.

この不融化処理工程は生産性および繊維物性を左右する
重要な工程で、できるだけ短時間で実施することが好ま
しい。このため、不融化温度、昇温速度、写囲気ガス等
を紡糸ピッチ繊維に対し適宜選択をする必要があるが、
本発明のピッチ繊維は、高融点の光学異方性ピッチを用
いていること及び、橡維断面、形状が非円形(異形にあ
るとぎは、単位断面積当りの表面積が大きいこと等によ
り、通常の円形断面から紡糸された従来のピッチ繊維よ
りも処理時間を短縮することが可能である。
This infusibility treatment step is an important step that affects productivity and fiber properties, and is preferably carried out in as short a time as possible. For this reason, it is necessary to appropriately select the infusibility temperature, heating rate, air gas, etc. for the spun pitch fiber.
The pitch fiber of the present invention uses optically anisotropic pitch with a high melting point, and the fiber cross section and shape are non-circular (irregularly shaped pitch fibers have a large surface area per unit cross-sectional area, etc.). Processing time can be reduced compared to conventional pitch fibers spun from circular cross-sections.

また、この工INにおいては、融着を防止するため無機
系微粉末等の融着防止剤を用いてもよい。さらに不融化
処理の短時間化のために、不融化促進剤として、沃素、
塩素等も好適に用いられる。このように不融化処理した
繊維は、直接、不活性ガス中において、2000〜30
00CK加熱してもよいが、通常は、不活性ガス中にお
いて、いったん1000〜1500℃に加熱した後、さ
らに不活性ガス中で2000〜3000℃に加熱し、黒
鉛繊維とする。
Further, in this process, an anti-fusing agent such as an inorganic fine powder may be used to prevent fusing. Furthermore, in order to shorten the time of infusibility treatment, iodine,
Chlorine and the like are also suitably used. The fibers thus infusible are directly placed in an inert gas at a temperature of 2,000 to 30
Although it may be heated to 00CK, it is usually heated once to 1000 to 1500°C in an inert gas, and then further heated to 2000 to 3000°C in an inert gas to form graphite fibers.

発明の効果 前述の如き本発明のピッチ系黒鉛繊維は、その断面構造
がリーフ状ラメラ配列を有するためにクラックが防止さ
れ、さらに不融化。
Effects of the Invention The pitch-based graphite fiber of the present invention as described above has a leaf-like lamellar arrangement in its cross-sectional structure, which prevents cracking and further makes it infusible.

焼成、黒鉛化の段階での収縮が円滑におこなわれるため
、強度が飛躍的に増大し、液晶ピッチ系の持つモジュラ
ス面での利点とあわせ従来にない優れた強度とモジュラ
スを合せ持つ黒鉛繊維となる。従って複合材の補強繊維
とL℃好適に用いられる。
Because the contraction occurs smoothly during the firing and graphitization stages, the strength increases dramatically, and in addition to the modulus advantages of the liquid crystal pitch system, graphite fibers have unprecedented strength and modulus. Become. Therefore, it is suitably used as reinforcing fibers in composite materials.

各指標の測定法 次に本発明における紡糸用ピンチ及び繊維特性を表わす
各指標の測定法について説明する。
Methods for Measuring Each Index Next, methods for measuring each index representing spinning pinch and fiber properties in the present invention will be explained.

(a)  紡糸用ピッチの融点 パーキンエルマー社ffDsc−ID 型を用い、アル
くニウム製セル(内径5m/m)K100メソシユ以下
に粉砕したピッチ微粉末lO〜を入れ、上から押えた後
、窒素雰囲気中、昇温速度10℃/分で400℃近く神
で側温しつつ測定(、、、DSCのチャートニおける融
点を示す吸熱ピークをもって紡糸用ピンチの融点とする
(a) Melting point of pitch for spinning Using a PerkinElmer ffDsc-ID type, put lO ~ of pitch finely ground into a cell made of aluminium (inner diameter 5 m/m) to a size of K100 or less, press it down from above, and then add nitrogen to the cell. Measured in an atmosphere while heating at a heating rate of 10° C./min to about 400° C. (The endothermic peak indicating the melting point in the DSC chart is taken as the melting point of the spinning pinch.

(bl  紡糸用ピッチの光学異方性量反射型偏光顕微
鏡を用(・て紡糸ピッチの偏光Sq微鏡写真を任意[5
枚とり、画像解析処理装置を用いて、等方性領域の面積
分率(@を出し、このものの平均値を光学異方性量とす
る。
(bl Amount of optical anisotropy of spinning pitch Using a reflective polarizing microscope (・Polarized Sq microscopic photograph of spinning pitch
Take a sheet, use an image analysis processing device to calculate the area fraction (@) of the isotropic region, and take the average value of this as the amount of optical anisotropy.

(c)  炭素繊維の物性 炭素繊維の繊維径(単糸径)、引張強度。(c) Physical properties of carbon fiber Fiber diameter (single yarn diameter) and tensile strength of carbon fiber.

伸度、モジュラスはJIS  R−7601r炭素繊維
試験方法」に従って測定する。なお繊維径の測定は、円
形断面繊維については一ザーによる測定を行い、非円形
断面繊維については走査型電子顕微鏡写真よりn=15
の断面積の平均値を算出する。なお、実施例等において
は繊維径を相当する断面積を有する円に換算したときの
直径で表示した。
Elongation and modulus are measured according to JIS R-7601r Carbon Fiber Test Method. The fiber diameter was measured using a single laser for fibers with a circular cross section, and for fibers with a non-circular cross section, n = 15 was measured using a scanning electron microscope photograph.
Calculate the average value of the cross-sectional area. In addition, in Examples etc., the fiber diameter is expressed as a diameter when converted into a circle having a corresponding cross-sectional area.

(d)  IJ−フ状うメラ配列の分率炭素繊維断面の
走査型電子顕数鏡写yより、断面積あたりのリーフ状ラ
メラ配列部分の面積比率で表わす。
(d) IJ - Fraction of leaf-like lamellar arrangement Based on a scanning electron microscopy image y of a cross section of a carbon fiber, it is expressed as the area ratio of the leaf-like lamella arrangement per cross-sectional area.

実施例 以下、実施例をあげて本発明をさらに詳細に説明するが
、本発明はこれらの実施例によって何ら限定されるもの
ではない。
EXAMPLES Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way.

実施例173 市販のフール々−ルビッチを原料とし、特開昭59−5
3717号公報に記載の方法に準じ、全面流れgt造で
光学異方性量を88%有し、キノリンネ溶部39係、融
点274℃の紡糸用ピッチを調製した。
Example 173 Using commercially available Fool's Rubich as raw material, JP-A-59-5
According to the method described in Japanese Patent No. 3717, a spinning pitch having an optical anisotropy of 88%, a quinoline welding area of 39, and a melting point of 274° C. was prepared by full-flow GT production.

該紡糸用ピッチを加熱ヒータを備えた定量フィーダーに
仕込み、溶融脱泡後、別に設けた加熱ゾーンを経て、ス
リット幅60μ、中心線距llm540μの直線状単一
スリット紡糸孔を有する口金を用いて、紡糸を行った。
The spinning pitch is charged into a quantitative feeder equipped with a heating heater, and after melting and degassing, it is passed through a separately provided heating zone and then passed through a separately provided heating zone using a spinneret having a linear single slit spinning hole with a slit width of 60 μm and a center line distance of 540 μm. , spinning was performed.

この場合のフィーダー吐出量は0.061//分/孔、
フィーダ一部温度(TI)=320tl:。
In this case, the feeder discharge amount is 0.061//min/hole,
Feeder part temperature (TI) = 320tl:.

加熱ゾーン温度(T、)=320℃とし、口金温度(T
s ) = 340℃で紡糸し、引取り速度800m/
分で巻きとった。
Heating zone temperature (T, ) = 320℃, mouthpiece temperature (T
s) = Spinning at 340°C, take-up speed 800 m/
I rolled it up in minutes.

このピッチ繊維をシリカ微粉末を融着防止剤として塗布
した後、乾燥空気中にて10℃/分の昇温速度で200
1:から300℃まで昇温加熱し、300℃で30分保
持した。
After coating this pitch fiber with fine silica powder as an anti-fusing agent, it was heated to 200°C at a heating rate of 10°C/min in dry air.
The temperature was increased from 1:1 to 300°C and held at 300°C for 30 minutes.

次いで窒素雰囲気中にて500℃/分の昇温速度で13
00℃まで昇温加熱し、5分間保持することによシ焼成
し、次いでアルゴン雰囲気中で2300〜2700℃に
加熱し、黒鉛繊維とした。得られた繊維のリーフ状ラメ
ラ分率は97%でめった。各黒鉛化温度に対応する物性
を次のvg1表に示す。
Then, in a nitrogen atmosphere at a heating rate of 500°C/min,
The mixture was heated to 00°C and held for 5 minutes to be fired, and then heated to 2300 to 2700°C in an argon atmosphere to obtain graphite fibers. The leaf-like lamella fraction of the obtained fiber was 97%. The physical properties corresponding to each graphitization temperature are shown in the following vg1 table.

第1表Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第11−第5図は、叱れそれ本発明に係る黒鉛繊維の断
面構造を模式的に承す断面高−Cあり、図中のAはリー
フ状構造の部分、Bはその周りの構造が不明確な部分を
示す。 稟1 霞   茅2国 昇3因  茅4゜ 斗 y 図
Fig. 11-5 has a cross-sectional height of -C which schematically shows the cross-sectional structure of the graphite fiber according to the present invention, and A in the figure is a portion with a leaf-like structure, and B is a portion where the structure around it is not. Show clear parts. 1 Kasumi Kaya 2 Kokushō 3 reasons Kaya 4゜to y diagram

Claims (6)

【特許請求の範囲】[Claims] (1)ピッチを原料とする黒鉛繊維であって、その繊維
断面の30%以上にリーフ状ラメラ配列を有し、かつ引
張強度が少なくとも300kg/mm^2、モジュラス
が少なくとも30T/mm^2を示すことを特徴とする
黒鉛繊維。
(1) A graphite fiber made from pitch, which has a leaf-like lamella arrangement in 30% or more of its fiber cross section, and has a tensile strength of at least 300 kg/mm^2 and a modulus of at least 30 T/mm^2. A graphite fiber characterized by:
(2)繊維の断面形状が実質的に円形である特許請求の
範囲第(1)項記載の黒鉛繊維。
(2) The graphite fiber according to claim (1), wherein the cross-sectional shape of the fiber is substantially circular.
(3)繊維の断面形状が楕円形である特許請求の範囲第
(1)項記載の黒鉛繊維。
(3) The graphite fiber according to claim (1), wherein the fiber has an elliptical cross-sectional shape.
(4)繊維の断面形状がマルチアングル形である特許請
求の範囲第(1)項記載の黒鉛繊維。
(4) The graphite fiber according to claim (1), wherein the fiber has a multi-angle cross-sectional shape.
(5)繊維の断面形状がマルチローバル形である特許請
求の範囲第(1)項記載の黒鉛繊維。
(5) The graphite fiber according to claim (1), wherein the cross-sectional shape of the fiber is multilobal.
(6)繊維断面に2〜8個のリーフ状ラメラ配列を有す
る特許請求の範囲第(1)項記載の黒鉛繊維。
(6) The graphite fiber according to claim (1), which has an array of 2 to 8 leaf-like lamellas in the fiber cross section.
JP23007384A 1984-11-02 1984-11-02 Graphite fiber Granted JPS616316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23007384A JPS616316A (en) 1984-11-02 1984-11-02 Graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23007384A JPS616316A (en) 1984-11-02 1984-11-02 Graphite fiber

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59125048A Division JPS616314A (en) 1984-06-20 1984-06-20 Pitch carbon fiber

Publications (2)

Publication Number Publication Date
JPS616316A true JPS616316A (en) 1986-01-13
JPH042687B2 JPH042687B2 (en) 1992-01-20

Family

ID=16902117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23007384A Granted JPS616316A (en) 1984-11-02 1984-11-02 Graphite fiber

Country Status (1)

Country Link
JP (1) JPS616316A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859382A (en) * 1986-01-22 1989-08-22 Osaka Gas Company Limited Process for preparing carbon fibers elliptical in section
WO1990007593A1 (en) * 1986-01-22 1990-07-12 Kazutoshi Haraguchi Process for producing carbon fiber having oval cross-section
WO2022255466A1 (en) 2021-06-02 2022-12-08 日本製鉄株式会社 Pitch-based carbon fiber, method for producing same, and fiber-reinforced plastic

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS616314A (en) * 1984-06-20 1986-01-13 Teijin Ltd Pitch carbon fiber

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168126A (en) * 1983-03-14 1984-09-21 Toray Ind Inc Production of pitch based carbon fiber
JPS616314A (en) * 1984-06-20 1986-01-13 Teijin Ltd Pitch carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859382A (en) * 1986-01-22 1989-08-22 Osaka Gas Company Limited Process for preparing carbon fibers elliptical in section
WO1990007593A1 (en) * 1986-01-22 1990-07-12 Kazutoshi Haraguchi Process for producing carbon fiber having oval cross-section
WO2022255466A1 (en) 2021-06-02 2022-12-08 日本製鉄株式会社 Pitch-based carbon fiber, method for producing same, and fiber-reinforced plastic

Also Published As

Publication number Publication date
JPH042687B2 (en) 1992-01-20

Similar Documents

Publication Publication Date Title
Edie et al. Melt-spun non-circular carbon fibers
JPH0529689B2 (en)
JPH0790725A (en) Milled meso-phase pitch carbon fiber and production thereof
JPS616316A (en) Graphite fiber
JPH0561367B2 (en)
JPH10298829A (en) Production of pitch-based carbon fiber
JPS5953717A (en) Pitch-based carbon fiber having high strength and modulus and its manufacture
JPH0133572B2 (en)
JPS60104524A (en) Preparation of carbon fiber
JPH0545685B2 (en)
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPS60104528A (en) Preparation of carbon fiber
JPH0370011B2 (en)
JPH0415289B2 (en)
JPH0380888B2 (en)
JPS61186520A (en) Production of pitch carbon yarn
JP2849156B2 (en) Method for producing hollow carbon fiber
JPS5891826A (en) Hollow carbon fiber and its production
JPS60239520A (en) Carbon fiber
JPH0112851B2 (en)
JPH05272017A (en) Carbon fiber and its production
KR870000534B1 (en) Carbon fiber and it&#39;s making method
JP2722270B2 (en) Carbon fiber and non-woven fabric containing it as a main component
JPS5976925A (en) Manufacture of pitch-based carbon fiber
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term