JP3031197B2 - Pitch-based carbon fiber - Google Patents

Pitch-based carbon fiber

Info

Publication number
JP3031197B2
JP3031197B2 JP7085672A JP8567295A JP3031197B2 JP 3031197 B2 JP3031197 B2 JP 3031197B2 JP 7085672 A JP7085672 A JP 7085672A JP 8567295 A JP8567295 A JP 8567295A JP 3031197 B2 JP3031197 B2 JP 3031197B2
Authority
JP
Japan
Prior art keywords
carbon fiber
pitch
fiber
graphite
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7085672A
Other languages
Japanese (ja)
Other versions
JPH07331536A (en
Inventor
巌 山本
明 中越
明彦 葭谷
一男 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26413305&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3031197(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7085672A priority Critical patent/JP3031197B2/en
Publication of JPH07331536A publication Critical patent/JPH07331536A/en
Application granted granted Critical
Publication of JP3031197B2 publication Critical patent/JP3031197B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はピッチ系炭素繊維および
ピッチ系炭素繊維織物およびそれらの製造方法に係わる
ものである。本発明により製造されるピッチ系炭素繊維
およびその織物は高強度で高弾性で且高熱伝導の性状を
示すものであって、高い寸法安定性、耐熱衝撃性の要求
される宇宙用構造材料や、高エネルギー密度エレクトロ
ニックデバイスの放熱用材料に好適に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pitch-based carbon fiber, a pitch-based carbon fiber woven fabric and a method for producing the same. The pitch-based carbon fiber and the woven fabric produced according to the present invention exhibit high strength, high elasticity and high thermal conductivity, and are required to have high dimensional stability and thermal shock resistance, It is suitably used as a heat radiation material for high energy density electronic devices.

【0002】[0002]

【従来の技術】高性能の炭素繊維は、ポリアクリロニト
リル(PAN)を原料とするPAN系炭素繊維とピッチ
類を原料とするピッチ系炭素繊維に大別され、それぞれ
高比強度、高比弾性率という特徴を生かして航空機用材
料、スポーツ用品用材料、建築用材料等として広く用い
られている。
2. Description of the Related Art High-performance carbon fibers are roughly classified into PAN-based carbon fibers made from polyacrylonitrile (PAN) and pitch-based carbon fibers made from pitches, and have high specific strength and high specific elastic modulus, respectively. It is widely used as a material for aircraft, a material for sporting goods, a material for building, etc. by taking advantage of this feature.

【0003】しかし、大きな温度分布の下での寸法安定
性や、耐熱衝撃性の要求される宇宙用材料や、高エネル
ギー密度化の進み続けるエレクトロニックデバイスの放
熱用材料等の用途では、上述の機械的性質に加え高い熱
伝導率が要求され、これまでも炭素繊維の熱伝導率を向
上させる為に多くの検討がなされてきた。しかし、市販
されているPAN系炭素繊維の熱伝導率は200W/m
・kよりも小さい。
However, in applications such as space materials that require dimensional stability under a large temperature distribution and thermal shock resistance, and heat radiation materials for electronic devices in which high energy densities continue to increase, the above-described machines are used. High thermal conductivity is required in addition to the mechanical properties, and many studies have been made to improve the thermal conductivity of carbon fibers. However, the thermal conductivity of a commercially available PAN-based carbon fiber is 200 W / m
-It is smaller than k.

【0004】一方、ピッチ系炭素繊維は、一般にPAN
系炭素繊維に比べ、高熱伝導率を達成し易いと確認され
ているが、市販されているピッチ系炭素繊維の熱伝導率
は通常700W/m・kよりも小さい。最近、ピッチの
軟化点、紡糸温度、焼成温度を規定することによりさら
に高熱伝導の炭素繊維を製造する方法が提案されている
(特開平2−242919号公報、特開平4−1633
18号公報、特開平4−163319号公報)。
On the other hand, pitch-based carbon fibers are generally
Although it has been confirmed that a high thermal conductivity can be easily achieved as compared with the system carbon fiber, the thermal conductivity of a commercially available pitch system carbon fiber is usually smaller than 700 W / m · k. Recently, there has been proposed a method of producing a carbon fiber having higher heat conductivity by defining a softening point of a pitch, a spinning temperature, and a firing temperature (JP-A-2-242919, JP-A-4-1633).
No. 18, JP-A-4-163319).

【0005】しかしながら、熱伝導率500〜1500
W/m・Kと高いものであって且、圧縮強度が35kg
/mm2 以上の高圧縮強度の炭素繊維又は、引張強度が
400kg/mm2 以上である高引張強度の炭素繊維お
よびその製造方法は報告されていない。そして上述の様
な特性を具備した炭素繊維により製織された織物も報告
されるに至っていない。
However, thermal conductivity of 500 to 1500
High W / m · K and compressive strength of 35 kg
/ Mm 2 or more carbon fibers high compression strength or tensile strength carbon fiber and a production method thereof high tensile strength is 400 kg / mm 2 or more has not been reported. A woven fabric woven from carbon fibers having the above-mentioned properties has not been reported.

【0006】[0006]

【発明が解決しようとする課題】上記のように高熱伝導
率の炭素繊維が開発されつつあるものの強度面、弾性率
面で特性が不足している為に応用分野での加工性や強度
特性の不足により、使用しづらく改良が要求されてい
た。
As described above, carbon fibers having high thermal conductivity are being developed, but the properties in terms of strength and elasticity are insufficient. Due to the shortage, it was difficult to use and improved.

【0007】[0007]

【課題を解決するための手段】本発明者等は、上課題を
解決すべく、鋭意検討した結果、黒鉛結晶の積層厚みL
cと黒鉛結晶の層面方向の広がりLaとの比(La/L
c)、さらにドメインサイズが適度な大きさになる様に
調節された原料炭素繊維を特殊な条件下で黒鉛化するこ
とにより達成されることを見出し本発明に到達した。
Means for Solving the Problems The present inventors have conducted intensive studies in order to solve the above problems, and as a result, have found that the lamination thickness L of graphite crystals
c and the ratio La of the spread of the graphite crystal in the layer plane direction (La / L
c) In addition, the present invention was found to be achieved by graphitizing a raw carbon fiber whose domain size was adjusted to an appropriate size under special conditions, and reached the present invention.

【0008】すなわち本発明の目的は、高熱伝導率でか
つ圧縮強度と引張弾性率に同時にすぐれる炭素繊維及び
これを用いた各種材料を提供しようとするものであり、
かかる目的は、繊維軸方向の熱伝導率が500〜150
0W/m・K引張弾性率が85ton/mm2 以上、
圧縮強度が35kg/mm2 以上であり、黒鉛結晶の積
層厚みLcが30〜50nm、黒鉛結晶の層面方向の広
がりLaとの比(La/Lc)が1.5以上であり、か
繊維軸方向の断面を1000倍の倍率で偏光顕微鏡で
観察したときのドメインサイズが実質的に500nm以
下であることを特徴とするピッチ系炭素繊維により容易
に達成される。
That is, an object of the present invention is to provide a carbon fiber having high thermal conductivity and simultaneously excellent compressive strength and tensile modulus, and various materials using the same.
The purpose is that the thermal conductivity in the fiber axis direction is 500 to 150.
0 W / m · K , tensile modulus of 85 ton / mm 2 or more,
The compressive strength is 35 kg / mm 2 or more, the lamination thickness Lc of the graphite crystal is 30 to 50 nm, and the ratio (La / Lc) to the spread La of the graphite crystal in the layer surface direction is 1.5 or more .
One domain size when observed with polarizing microscope fiber axis direction of the cross section at 1000 times magnification is readily achieved by the pitch-based carbon fiber characterized in that less than substantially 500 nm.

【0009】以下、本発明をより詳細に説明する。本発
明で用いる炭素繊維を得るための紡糸ピッチとしては、
配向しやすい分子種が形成されており、光学的に異方性
の炭素繊維を与えるようなものであれば特に制限はな
い。
Hereinafter, the present invention will be described in more detail. As the spinning pitch for obtaining the carbon fiber used in the present invention,
There is no particular limitation as long as a molecular species that is easily oriented is formed and gives an optically anisotropic carbon fiber.

【0010】紡糸ピッチを得るための炭素質原料として
は、例えば、石炭系のコールタール、コールタールピッ
チ、石炭液化物、石油系の重質油、タール、ピッチ、ま
たは、ナフタレンやアントラセンの触媒反応による重合
反応生成物等が挙げられる。これらの炭素質原料には、
フリーカーボン、未溶解石炭、灰分、触媒等の不純物が
含まれているが、これらの不純物は、濾過、遠心分離、
あるいは溶剤を使用する静置沈降分離等の周知の方法で
あらかじめ除去しておくことが望ましい。
Examples of the carbonaceous raw material for obtaining the spinning pitch include coal-based coal tar, coal-tar pitch, coal liquefaction, petroleum heavy oil, tar, pitch, and catalytic reaction of naphthalene and anthracene. And the like. These carbonaceous materials include
It contains impurities such as free carbon, undissolved coal, ash, and catalysts. These impurities are filtered, centrifuged,
Alternatively, it is desirable to remove in advance by a known method such as stationary sedimentation using a solvent.

【0011】また、前記炭素質原料を、例えば、加熱処
理した後、特定溶剤で可溶分を抽出するといった方法、
あるいは、水素供与性溶剤、水素ガスの存在下に水添処
理するといった方法で予備処理を行っておいても良い。
本発明においては、40%以上、好ましくは、70%以
上、さらに好ましくは90%以上の光学的異方性組織を
含む炭素質原料が好適であり、このために前述の炭素質
原料を必要によっては、通常350〜500℃、好まし
くは380〜450℃で、2分から50時間、好ましく
は5分〜5時間、窒素、アルゴン、水蒸気等の不活性ガ
ス雰囲気下、あるいは、吹き込み下に加熱処理すること
がある。
[0011] Further, for example, a method of subjecting the carbonaceous raw material to heat treatment and then extracting a soluble component with a specific solvent,
Alternatively, preliminary treatment may be performed by a method such as hydrogenation treatment in the presence of a hydrogen-donating solvent and hydrogen gas.
In the present invention, a carbonaceous raw material containing an optically anisotropic structure of 40% or more, preferably 70% or more, more preferably 90% or more is suitable. Is usually heated at 350 to 500 ° C., preferably 380 to 450 ° C., for 2 minutes to 50 hours, preferably 5 minutes to 5 hours, under an atmosphere of an inert gas such as nitrogen, argon, or steam, or under blowing. Sometimes.

【0012】本発明でいうピッチの光学的異方性組織割
合は、常温下、偏光顕微鏡でのピッチ試料中の光学的異
方性を示す部分の面積割合として求めた値である。具体
的には、例えば、ピッチ試料を数mm角に粉砕したもの
を、常法にしたがって2cm直径の樹脂の表面のほぼ全
面に試料片を埋め込み、表面を研磨後、表面全体をくま
なく偏光顕微鏡(100倍率)下で観察し、試料の全表
面積に占める光学的異方性部分の面積の割合を測定する
ことによって求める。
The optically anisotropic structure ratio of pitch in the present invention is a value obtained as an area ratio of a portion showing optical anisotropy in a pitch sample with a polarizing microscope at room temperature. Specifically, for example, a pitch sample crushed into a few mm square is embedded with a sample piece over substantially the entire surface of a resin having a diameter of 2 cm according to a conventional method, and after polishing the surface, a polarizing microscope is applied to the entire surface. It is determined by observing under (100 magnification) and measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.

【0013】高熱伝導率の炭素繊維を調製するに先立っ
て行われた種々の検討の結果、炭素繊維の熱伝導率は、
炭素繊維を構成する黒鉛結晶子の大きさのみに支配され
ていることが判明した。すなわち、炭素繊維は、その原
料や製法によらず、黒鉛結晶子が大きい程、格子欠陥に
よる電気および熱のキャリアーの散乱が小さくなり、熱
伝導率が大きくなる。
As a result of various studies conducted prior to preparing a carbon fiber having a high thermal conductivity, the thermal conductivity of the carbon fiber was found to be:
It was found that the size was controlled only by the size of the graphite crystallites constituting the carbon fiber. That is, regardless of the raw material and manufacturing method of the carbon fiber, the larger the graphite crystallite, the smaller the scattering of electric and heat carriers due to lattice defects and the higher the thermal conductivity.

【0014】一方、ピッチ系炭素繊維の引張強度、圧縮
強度は上述の黒鉛結晶子が集合した構造、すなわち0.
1μmから100μm程度の大きさで評価される“組織
構造”によって支配される(大谷杉郎、真田雄三著、炭
素化工学の基礎オーム社(1980)130)。つまり
結晶子サイズより大きな構造体の云わば境界の様な所に
存する大きなボイドが強度を支配しており、本発明の炭
素繊維のように、35kg/mm2 以上の高圧縮強度、
85ton/mm2 以上の高引張弾性率にするにはこの
ボイドを極力小さく、少なくする必要がある。
On the other hand, the tensile strength and compressive strength of the pitch-based carbon fiber have a structure in which the above-mentioned graphite crystallites are aggregated, that is, 0.1 mm.
It is governed by the “texture structure” evaluated at a size of about 1 μm to 100 μm (Sugio Otani, Yuzo Sanada, Basic Ohmsha Co., Ltd. (1980) 130). In other words, a large void existing at a place such as a boundary of a structure larger than the crystallite size controls the strength. As in the case of the carbon fiber of the present invention, high compressive strength of 35 kg / mm 2 or more,
In order to obtain a high tensile modulus of elasticity of 85 ton / mm 2 or more, it is necessary to minimize and reduce this void.

【0015】この“組織構造”は走査型電子顕微鏡で4
000〜10000倍に拡大して観察することが出来、
又、偏光顕微鏡で400〜1500倍に拡大して“ドメ
イン”として観察することも出来る。本発明の炭素繊維
では1000倍で観察した時に500nm以下であるド
メインから実質的になっている。
This "tissue structure" is obtained by a scanning electron microscope.
It can be observed at a magnification of 000 to 10000 times,
It can also be observed as a "domain" with a polarizing microscope at a magnification of 400 to 1500 times. The carbon fiber of the present invention substantially consists of a domain of 500 nm or less when observed at a magnification of 1000 times.

【0016】炭素繊維は、ピッチ繊維の段階におけるピ
ッチ繊維軸方向へ配向性が良いほど、後の炭化又は黒鉛
化工程において炭素繊維の黒鉛結晶子が大きくなりやす
いことと、炭素繊維の“組織構造”又は“ドメイン”が
大きくなりすぎると強度面での特性が低下することを考
え合わせ、本発明者等は炭素繊維の熱伝導率を大きくし
且圧縮強度、引張強度の高いものを製造する為には、ま
ず紡糸工程において配向性の良いピッチを用い且つ必要
以上に大きな“ドメイン”を有するピッチ繊維にならな
い様にすることが重要であり具体的にはドメインサイズ
が500nm以下になる様にする必要があり、そのため
には、例えば前述のピッチからピッチ繊維を紡糸する際
に、ピッチ分子の配向性を高めるとともに、延伸による
配向の乱れを小さくするために、吐出孔における紡糸ピ
ッチの粘度が150ポイズ以下になる温度で紡糸を行な
い非常に配向性の良いピッチ繊維を調製する。その際の
温度は通常ピッチのメトラー軟化点より32℃以上、4
5℃以下、好ましくは360℃以上42℃以下の温度で
あるのが望ましい。
The better the orientation of the carbon fiber in the pitch fiber axis direction at the stage of the pitch fiber, the larger the graphite crystallite of the carbon fiber is in the subsequent carbonization or graphitization step. Considering that if the "domain" or "domain" is too large, the properties in terms of strength are degraded, the inventors of the present invention intend to increase the thermal conductivity of carbon fibers and to produce carbon fibers having high compressive strength and tensile strength. First, in the spinning process, it is important to use a pitch having good orientation and to prevent pitch fibers having an unnecessarily large "domain" from being formed. Specifically, the domain size is set to 500 nm or less. For this purpose, for example, when spinning pitch fibers from the pitch described above, the orientation of pitch molecules is increased, and the disorder of orientation due to stretching is reduced. To, the viscosity of the spinning pitch at the discharge hole to prepare a highly oriented good pitch fiber subjected to spinning at a temperature equal to or less than 150 poise. At this time, the temperature is usually 32 ° C. or more from the Mettler softening point of the pitch.
The temperature is desirably 5 ° C or lower, preferably 360 ° C or higher and 42 ° C or lower.

【0017】さらにドメインサイズを小さくする為にノ
ズル孔内部に液晶ピッチの流路を分断する為の充填物を
設置しておくことが好ましい。この充填物としては40
〜2000メッシュ、好ましくは100〜1000メッ
シュのフィルターを用いることが出来る。この充填物は
ノズル孔内の流路を分断する機能をもつものであれば何
でも用いることが出来る。例えば金属やセラミックガラ
スのビーズ状のもの、剪断濾過材として使用されるメタ
ルパウダーなどでも用いることが可能である。
In order to further reduce the domain size, it is preferable to provide a filler for dividing the liquid crystal pitch flow path inside the nozzle hole. The filling is 40
A filter of up to 2000 mesh, preferably 100 to 1000 mesh can be used. Any material can be used as the filler as long as it has a function of dividing the flow path in the nozzle hole. For example, metal or ceramic glass beads, metal powder used as a shear filter, and the like can be used.

【0018】このようにして得られたピッチ繊維を、常
法にしたがって不融化し、所望の温度で炭化および/ま
たは黒鉛化を行うことにより本発明の炭素繊維の“原料
となる炭素繊維”を得る。
The pitch fiber thus obtained is infusibilized in a conventional manner, and carbonized and / or graphitized at a desired temperature to obtain the carbon fiber "raw material" of the carbon fiber of the present invention. obtain.

【0019】具体的にはピッチ繊維を酸化性ガス雰囲気
中で、300〜380℃で加熱処理することにより、不
融化繊維トウを得る。更にこの不融化繊維トウを窒素、
アルゴン等の不活性ガス雰囲気中通常、800〜300
0℃で炭化、黒鉛化される。この際の炭化、黒鉛化処理
は得られた炭化又は黒鉛化繊維の炭素含有量が97%以
上になる温度、好ましくは99%以上になる温度で処理
される。この様な温度で処理しておくことで次工程での
黒鉛化処理での炭素繊維の炭素化収縮による寸法変化を
極力小さく抑制し、糸傷みによる炭素繊維強度の低下を
未然に防止することが出来る。
More specifically, the infusible fiber tow is obtained by subjecting pitch fibers to heat treatment at 300 to 380 ° C. in an oxidizing gas atmosphere. Furthermore, this infusible fiber tow is nitrogen,
800 to 300 in an inert gas atmosphere such as argon
Carbonized and graphitized at 0 ° C. The carbonization or graphitization treatment at this time is performed at a temperature at which the carbon content of the obtained carbonized or graphitized fiber becomes 97% or more, preferably at a temperature at which the carbon content becomes 99% or more. By treating at such a temperature, the dimensional change due to carbonization shrinkage of the carbon fiber in the graphitization treatment in the next step can be suppressed as small as possible, and a decrease in carbon fiber strength due to yarn damage can be prevented beforehand. I can do it.

【0020】次に通常の方法で表面処理したのちサイジ
ング剤を繊維に対し0.2〜10重量%、好ましくは
0.5〜7重量%添着し炭素繊維を得る。サイジング剤
としては通常用いられる任意のものが使用でき、具体的
にはエポキシ化合物、水溶性ポリアミド化合物、飽和又
は不飽和ポリエステル、酢酸ビニル、水又はアルコー
ル、グリコール単独又はこれらの混合物があげられる。
こうして、得られた炭素繊維は、紡糸時の粘度の低さ
や、フィルター等の存在により、容易に引張弾性率85
ton/mm2 以上、圧縮強度35kg/mm2 以上、
繊維軸方向の熱伝導率が500〜1500W/m・Kの
炭素繊維となる。又、炭素繊維中の黒鉛繊維の積層厚み
Lcが30〜50nm、黒鉛結晶の層面方向の広がりL
aとの比(La/Lc)が1.5倍以上となる。そして
後述する方法で繊維軸方向の断面のドメインサイズが5
00nm以下となっている。
Next, after a surface treatment is carried out by a usual method, a sizing agent is impregnated in the fiber in an amount of 0.2 to 10% by weight, preferably 0.5 to 7% by weight, to obtain a carbon fiber. Any commonly used sizing agent can be used, and specific examples include an epoxy compound, a water-soluble polyamide compound, a saturated or unsaturated polyester, vinyl acetate, water or alcohol, glycol alone or a mixture thereof.
The carbon fiber thus obtained can easily have a tensile modulus of 85 due to the low viscosity during spinning and the presence of a filter or the like.
ton / mm 2 or more, compressive strength 35 kg / mm 2 or more,
The carbon fiber has a thermal conductivity of 500 to 1500 W / m · K in the fiber axis direction. Further, the lamination thickness Lc of the graphite fiber in the carbon fiber is 30 to 50 nm, and the spread L of the graphite crystal in the layer surface direction is L.
The ratio (La / Lc) to a is 1.5 times or more. The domain size of the cross section in the fiber axis direction is 5 by the method described later.
00 nm or less.

【0021】更に、本発明の炭素繊維織物を得るには上
記の“原料となる炭素繊維”トウを用いて例えばシャト
ル織機やレピア織機を使用して、予め平織あるいは朱子
織の織物の製織を行いFAW(Fiber Areal
Weight:織物の単位面積当たりの重さ)50〜
250g/m2 の“原料となる炭素繊維織物”を製造し
ておく。
Further, in order to obtain the carbon fiber fabric of the present invention, plain weave or satin weave is preliminarily woven using the above-mentioned "raw material carbon fiber" tow using, for example, a shuttle loom or a rapier loom. FAW (Fiber Real
Weight: weight per unit area of the fabric) 50 to
250 g / m 2 of “raw carbon fiber fabric” is manufactured.

【0022】次に本発明では上述の“原料となる炭素繊
維”又は“原料となる炭素繊維織物”を予め黒鉛化処理
されたパッキングコークスとともに黒鉛製のルツボの中
に入れ黒鉛化処理する。黒鉛製のルツボは上記の炭素繊
維又は炭素繊維織物を所望の量入れることが出来るもの
であるならば大きさ形状に特に制約はないが、黒鉛化処
理中又は冷却中に焼成炉内の酸化性のガス又は炭素蒸気
との反応による炭素繊維又は炭素繊維織物の損傷を防ぐ
ために、フタ付きの、気密性の高いものが好まれる。
Next, in the present invention, the above-described "raw carbon fiber" or "raw carbon fiber fabric" is placed in a graphite crucible together with packing coke which has been previously graphitized, and is graphitized. The size and shape of the graphite crucible are not particularly limited as long as the desired amount of the above-mentioned carbon fiber or carbon fiber fabric can be put therein. In order to prevent damage to the carbon fiber or the carbon fiber fabric due to the reaction with the gas or the carbon vapor, a highly airtight material with a lid is preferred.

【0023】炭素繊維又は炭素繊維織物は黒鉛製のボビ
ン又は芯材に巻きつけて黒鉛ルツボに充填される黒鉛ル
ツボに一緒に充填されるパッキングコークスは予め黒鉛
化処理しておいたものを用い該黒鉛化温度はパッキング
コークスの脱揮発分が達成される温度以上であることが
必要により1400℃以上3500℃以下、好ましくは
2500℃以上3500℃以下で黒鉛化処理されたもの
である。
The carbon fiber or the carbon fiber fabric is wound around a graphite bobbin or a core material, and the graphite crucible filled in the graphite crucible is filled together with the packing coke which has been graphitized in advance. The graphitization temperature is required to be higher than the temperature at which the devolatilized component of the packing coke is achieved. If necessary, the coke is graphitized at a temperature of 1400 ° C to 3500 ° C, preferably 2500 ° C to 3500 ° C.

【0024】粒径は平均粒径で0.1mm以上100m
m以下、好ましくは5mm以上30mm以下のものを用
いる。黒鉛化処理は2500℃以上3500℃以下、好
ましくは2800℃以上3300℃以下、より好ましく
は2900℃以上3100℃以下の温度で行なわれる。
The average particle size is 0.1 mm or more and 100 m or more.
m, preferably 5 mm or more and 30 mm or less. The graphitization treatment is performed at a temperature of 2500 ° C to 3500 ° C, preferably 2800 ° C to 3300 ° C, more preferably 2900 ° C to 3100 ° C.

【0025】又黒鉛化処理する設備としては生産効率の
面からアチソン抵抗加熱炉を用いるのが特に好ましい
が、2500℃以上の温度で処理することが出来るもの
で、上述の黒鉛ルツボを加熱炉内部に設置出来るもので
あるならば特に制約はない。黒鉛化時間は2500℃以
上の温度で存する時間が1時間以上300日以下、好ま
しくは4時間以上30日以内である。かくして本発明の
炭素繊維又は炭素繊維織物を得ることが出来る。
As equipment for graphitization, it is particularly preferable to use an Acheson resistance heating furnace from the viewpoint of production efficiency, but it is possible to perform the treatment at a temperature of 2500 ° C. or more. There is no particular restriction as long as it can be installed in The graphitization time is at a temperature of 2500 ° C. or more for 1 hour to 300 days, preferably 4 hours to 30 days. Thus, the carbon fiber or carbon fiber fabric of the present invention can be obtained.

【0026】そして、これらの炭素繊維又は炭素繊維織
物を常法に従って熱硬化性樹脂を含浸することにより耐
熱性に優れ(放熱性に優れている)、又、高強度、ある
いは軽量化が計れる炭素繊維強化樹脂を得ることができ
る。かかる炭素繊維強化樹脂は、熱伝導率が高いため、
温度上昇が素子の破壊や効率の低下に直結するIC用基
板や、太陽電池用基板として特に好適に利用することが
できる。特に炭素繊維強化樹脂の強度、軽さ、高熱伝導
性のすべてが必要とされる宇宙機用の太陽電池基板とし
てすぐれた効果を発揮する。
The carbon fiber or the carbon fiber fabric is impregnated with a thermosetting resin according to a conventional method so that the carbon fiber is excellent in heat resistance (excellent in heat dissipation) and high in strength and light in weight. A fiber reinforced resin can be obtained. Such carbon fiber reinforced resin has high thermal conductivity,
The present invention can be particularly suitably used as an IC substrate or a solar cell substrate in which a rise in temperature is directly linked to destruction of an element or reduction in efficiency. In particular, it exerts an excellent effect as a solar cell substrate for a spacecraft that requires all of the strength, lightness and high thermal conductivity of carbon fiber reinforced resin.

【0027】[0027]

【実施例】以下、実施例を用いてより詳細に本発明を説
明するが、本発明はその要旨を越えない限り、実施例に
限定されるものではない。例中の黒鉛結晶子の積層厚み
Lc、黒鉛結晶の層面方向の広がりLaは日本学術振興
会第117委員会で定められた「人造黒鉛の格子定数及
び結晶子の大きさの測定法」(大谷杉郎等炭素繊維近代
編集(1986)P733〜740)により黒鉛の(0
02)回折線と(110)回折線から求めた。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples unless it exceeds the gist. In the examples, the lamination thickness Lc of graphite crystallites and the spread La of graphite crystals in the layer plane direction were determined by the 117th Committee of the Japan Society for the Promotion of Science, “Method of measuring lattice constant and crystallite size of artificial graphite” (Otani Sugiro et al. Carbon Fiber Modern Editing (1986) P733-740)
02) Diffraction line and (110) diffraction line.

【0028】ドメインサイズは炭素繊維を樹脂に埋め込
み炭素繊維軸方向に平行な断面が表面になる様に試料片
を成型し、研磨後1000倍の倍率の偏光顕微鏡下で測
定する。ドメインサイズは偏光顕微鏡下試料を試料台上
にて最低10°ずつ以上回転させながら各角度で炭素繊
維軸方向に帯状に観察される明るい部分と暗い部分の各
々の巾の平均値として求める。
The domain size is determined by embedding a carbon fiber in a resin, molding a sample such that a cross section parallel to the carbon fiber axis direction becomes a surface, polishing the sample, and measuring the size under a polarizing microscope with a magnification of 1000 times. The domain size is determined as an average value of the width of each of a bright portion and a dark portion that are observed in a band shape in the carbon fiber axis direction at each angle while rotating the sample on the sample table at least 10 ° or more under a polarizing microscope.

【0029】熱伝導率は、炭素繊維を直径10mm、厚
さ3〜6mmの円板状一方向炭素繊維強化プラスチック
(CFRP)とし、真空理工(株)製レーザーフラッシ
ュ法熱定数測定装置TC−3000によって、該CFR
Pの比熱と熱拡散率を測定し、次式によって算出した。
The thermal conductivity was measured by using a carbon fiber as a disc-shaped unidirectional carbon fiber reinforced plastic (CFRP) having a diameter of 10 mm and a thickness of 3 to 6 mm. The CFR
The specific heat and thermal diffusivity of P were measured and calculated by the following equation.

【0030】K=Cp・α・ρ/Vf ここで、Kは炭素繊維の熱伝導率、CpはCFRPの比
熱、αはCFRPの熱拡散率、ρはCFRPの密度、V
fはCFRP中に含まれる炭素繊維の体積分率を表す。
K = Cp · α · ρ / Vf where K is the thermal conductivity of carbon fiber, Cp is the specific heat of CFRP, α is the thermal diffusivity of CFRP, ρ is the density of CFRP, V
f represents the volume fraction of carbon fibers contained in CFRP.

【0031】CFRPの厚さは、炭素繊維の熱伝導率に
応じて変え、熱伝導率の大きい試料は厚く、小さい試料
は薄くした。具体的には、レーザー照射後、試料背面の
温度が上昇し、最高温度に到達するには数10msec
を要するが、その際の温度上昇幅ΔTmの1/2だけ温
度が上昇するまでの時間t1/2が10msec以上
(最高15msec)となるようにCFRPの厚さを調
節した(図1参照)。
The thickness of the CFRP was changed according to the thermal conductivity of the carbon fiber. The sample having a large thermal conductivity was made thick, and the sample having a small thermal conductivity was made thin. Specifically, after laser irradiation, the temperature on the back surface of the sample increases, and it takes several tens of msec to reach the maximum temperature.
However, the thickness of the CFRP was adjusted so that the time t1 / 2 until the temperature rises by 1/2 of the temperature rise width ΔTm at that time was 10 msec or more (maximum 15 msec) (see FIG. 1).

【0032】比熱は、試料前面に受光板としてグラッシ
ーカーボンを貼付け、レーザー照射後の温度上昇を試料
背面中央に接着したR熱電対によって測定することによ
り求めた。また、測定値は、サファイアを標準試料とし
て校正した。熱拡散率は、試料の両面にカーボンスプレ
ーによってちょうど表面が見えなくなるまで皮膜を付
け、赤外線検出器によって、レーザ照射後の試料背面の
温度変化を測定し求めた。なお、炭素繊維の熱伝導率
は、炭素繊維の熱伝導率と電気伝導率の間の非常に良い
相関関係を利用して、電気伝導率から推算することもで
きる。
The specific heat was determined by attaching glassy carbon as a light receiving plate to the front surface of the sample and measuring the temperature rise after laser irradiation with an R thermocouple bonded to the center of the back surface of the sample. The measured values were calibrated using sapphire as a standard sample. The thermal diffusivity was determined by applying a film to both surfaces of the sample by carbon spray until the surface was no longer visible and measuring the temperature change on the back surface of the sample after laser irradiation with an infrared detector. The thermal conductivity of the carbon fiber can be estimated from the electrical conductivity using a very good correlation between the thermal conductivity and the electrical conductivity of the carbon fiber.

【0033】(実施例1)コールタールピッチより偏光
顕微鏡下で観察した光学異方性割合が100%でメトラ
法で求めた軟化点が302℃のメソフェーズピッチを調
製した。このメソフェーズピッチをノズルの吐出孔にお
けるノズル径0.1mm、ノズル孔の最細径部に400
メッシュのフィルターを要する孔数2000の紡糸口金
で、紡糸ノズルの吐出孔における紡糸温度が340℃で
溶融粘度が120ポイズになるようにして紡糸して、糸
径12μmのピッチ繊維のトウを得た。
Example 1 A mesophase pitch having an optical anisotropy ratio of 100% observed from a coal tar pitch under a polarizing microscope and having a softening point of 302 ° C. determined by the Metra method was prepared. This mesophase pitch is set at a nozzle diameter of 0.1 mm at the discharge hole of the nozzle and 400 mm at the narrowest portion of the nozzle hole.
Spinning was performed with a spinneret having a number of holes of 2000 requiring a mesh filter so that the spinning temperature at the discharge hole of the spinning nozzle was 340 ° C. and the melt viscosity was 120 poise to obtain a pitch fiber tow having a yarn diameter of 12 μm. .

【0034】このピッチ繊維を空気中360℃まで約1
℃/分の速度でゆっくりと昇温し、加熱処理することに
より不融化繊維を得た。更にこの不融化繊維を不活性ガ
ス中で最高温度2700℃まで焼成し予備黒鉛化した。
このものの炭素含有量は99%以上であった。次いで表
面処理した後、エポキシ系のサイジング剤を2%添着し
炭素繊維トウを得た。この炭素繊維は糸径9μm、スト
ランド引張弾性率87t/mm2 、ストランド引張強度
290kg/mm2 で熱伝導率は290W/m・Kであ
った。
This pitch fiber is heated to 360 ° C. in air for about 1 hour.
The temperature was slowly increased at a rate of ° C./min, followed by heat treatment to obtain infusible fibers. Further, the infusibilized fiber was calcined in an inert gas up to a maximum temperature of 2700 ° C. to be pregraphitized.
Its carbon content was 99% or more. Next, after surface treatment, 2% of an epoxy sizing agent was impregnated to obtain a carbon fiber tow. This carbon fiber had a yarn diameter of 9 μm, a strand tensile elasticity of 87 t / mm 2 , a strand tensile strength of 290 kg / mm 2 and a thermal conductivity of 290 W / m · K.

【0035】この炭素繊維をさらに黒鉛製のボビンに巻
きとり、これを予め黒鉛化処理されたパッキングコーク
ス中に埋め込む様にして黒鉛ルツボ中に入れ、アチソン
抵抗加熱炉で3000℃で黒鉛化処理した。結果糸径9
μm、熱伝導率640W/m・k、ストランド引張弾性
率96t/mm2 、ストランド引張強度440kg/m
2 、ASTM D3410法で測定したVf60%の
FRPの圧縮強度40kg/mm2 であった。更にこの
炭素繊維の黒鉛結晶のX線パラメーターLcは350
Å、La/Lc=1.75でありドメインサイズは33
0nmであった。
The carbon fiber was further wound around a graphite bobbin, embedded in a pre-graphitized packing coke, placed in a graphite crucible, and graphitized at 3000 ° C. in an Acheson resistance heating furnace. . Result thread diameter 9
μm, thermal conductivity 640 W / mk, strand tensile elasticity 96 t / mm 2 , strand tensile strength 440 kg / m
m 2 , the compressive strength of FRP having a Vf of 60% measured by ASTM D3410 method was 40 kg / mm 2 . Further, the X-ray parameter Lc of the graphite crystal of the carbon fiber is 350
Å, La / Lc = 1.75 and domain size is 33
It was 0 nm.

【0036】(実施例2)実施例1と同様にして、糸径
9.5μmのピッチ繊維のトウを得た。このピッチ繊維
を不融化処理した後、不活性ガス雰囲気中で最高温度2
700℃まで焼成し、予備黒鉛化した。このものの炭素
含有率は99%以上であった。次いで表面処理した後、
エポキシ系のサイジング剤を2%添着し炭素繊維トウを
得た。この炭素繊維は糸系7μm、ストランド引張弾性
率79t/mm2 、ストランド引張強度380kg/m
2で熱伝導率は240W/m・kであった。
Example 2 In the same manner as in Example 1, a pitch fiber tow having a thread diameter of 9.5 μm was obtained. After infusibilizing this pitch fiber, the maximum temperature is 2 in an inert gas atmosphere.
It was baked to 700 ° C and pregraphitized. Its carbon content was 99% or more. Then after surface treatment,
2% of an epoxy sizing agent was impregnated to obtain a carbon fiber tow. This carbon fiber has a yarn type of 7 μm, a strand tensile elasticity of 79 t / mm 2 , and a strand tensile strength of 380 kg / m.
At m 2 , the thermal conductivity was 240 W / mk.

【0037】この炭素繊維トウをレピア織機を用いて製
織し、FAW80g/m2 の炭素繊維織物を得た。続い
て、この炭素繊維織物をさらに黒鉛製のボビンに巻取
り、これを予め黒鉛化処理されたパッキングコークス中
に埋め込む様にして黒鉛ルツボに入れ、アチソン抵抗加
熱炉で3000℃で黒鉛化処理した。得られた炭素繊維
織物のFAWは、82g/m2 であった。
The carbon fiber tow was woven using a rapier loom to obtain a carbon fiber woven fabric having a FAW of 80 g / m 2 . Subsequently, the carbon fiber fabric was further wound on a graphite bobbin, which was then buried in a packing coke which had been previously graphitized, placed in a graphite crucible, and graphitized at 3000 ° C. in an Acheson resistance heating furnace. . The FAW of the obtained carbon fiber fabric was 82 g / m 2 .

【0038】この織物の炭素繊維は糸径7μm、熱伝導
率600W/m・K、引張弾性率89t/mm2 、引張
強度390kg/mm2 、黒鉛結晶のX線パラメーター
Lcは33nm、La/Lc=1.7でありドメインサ
イズは330nmであった。この炭素繊維織物に熱硬化
性樹脂を含浸し成型、硬化させたVf=50%の複合材
の曲げ弾性率は19t/mm2 であった。
The carbon fiber of this woven fabric has a yarn diameter of 7 μm, a thermal conductivity of 600 W / m · K, a tensile modulus of 89 t / mm 2 , a tensile strength of 390 kg / mm 2 , an X-ray parameter Lc of graphite crystal of 33 nm, and La / Lc. = 1.7 and the domain size was 330 nm. The carbon fiber woven fabric was impregnated with a thermosetting resin, molded and cured, and the composite material having Vf = 50% had a flexural modulus of 19 t / mm 2 .

【0039】かかる複合材を人工衛星用太陽電池板とし
て用いるため、10×2mのサイズの太陽電池板を2枚
作成した。各々の板は、両面上にかかる複合材を用い、
かつ一枚の複合材は炭素繊維クロスを2枚積層して用い
た。従って使用した炭素繊維クロスの大きさは、10×
2(1枚の面積)×2(複合材1枚当たりのクロスの枚
数)×2(表面と裏面)×2(通常人工衛星は2枚の太
陽電池を有する)=160m2 となる。この2枚の太陽
電池板の重量は、約20kgであった。
In order to use the composite material as a solar cell plate for an artificial satellite, two solar cell plates having a size of 10 × 2 m were prepared. Each plate uses composite material on both sides,
In addition, one composite material was formed by laminating two carbon fiber cloths. Therefore, the size of the carbon fiber cloth used was 10 ×
2 (one area) × 2 (number of cloths per composite) × 2 (front and back) × 2 (normal satellites have two solar cells) = 160 m 2 . The weight of the two solar cell plates was about 20 kg.

【0040】[0040]

【発明の効果】高熱伝導率と、高引張弾性率、高圧縮強
度を併せもつ炭素繊維と、これを用いた各種材料を提供
できる。
According to the present invention, it is possible to provide carbon fibers having high thermal conductivity, high tensile modulus, and high compressive strength, and various materials using the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例中、真空理工(株)製レーザー
フラッシュ法熱定数測定装置TC−3000を用いて熱
伝導率を決定する際の、レーザー照射後の経過時間と試
料背面の温度の関係を表わすグラフである。
FIG. 1 shows the time elapsed after laser irradiation and the temperature of the back surface of a sample when the thermal conductivity is determined using a thermal constant measuring device TC-3000 manufactured by Vacuum Riko Co., Ltd. in Examples of the present invention. 5 is a graph showing the relationship of.

フロントページの続き (72)発明者 白崎 一男 神奈川県横浜市緑区鴨志田町1000番地 三菱化成株式会社総合研究所内 (56)参考文献 特開 平4−163319(JP,A) 特開 平1−272827(JP,A) (58)調査した分野(Int.Cl.7,DB名) D01F 9/12 - 9/155 Continuation of the front page (72) Inventor Kazuo Shirasaki 1000 Kamoshita-cho, Midori-ku, Yokohama-shi, Kanagawa Prefecture, Mitsubishi Research Institute, Ltd. (56) References JP-A-4-163319 (JP, A) JP-A 1-272827 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) D01F 9/12-9/155

Claims (11)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 繊維軸方向の熱伝導率が500〜150
0W/m・K引張弾性率が85ton/mm2 以上、
圧縮強度が35kg/mm2 以上であり、黒鉛結晶の積
層厚みLcが30〜50nm、黒鉛結晶の層面方向の広
がりLaとの比(La/Lc)が1.5以上であり、か
繊維軸方向の断面を1000倍の倍率で偏光顕微鏡で
観察したときのドメインサイズが実質的に500nm以
下であることを特徴とするピッチ系炭素繊維。
1. A thermal conductivity in a fiber axis direction of 500 to 150.
0 W / m · K , tensile modulus of 85 ton / mm 2 or more,
The compressive strength is 35 kg / mm 2 or more, the lamination thickness Lc of the graphite crystal is 30 to 50 nm, and the ratio (La / Lc) to the spread La of the graphite crystal in the layer surface direction is 1.5 or more .
Pitch-based carbon fiber characterized by One domain size when observed with polarizing microscope fiber axis direction of the cross section at 1000 times magnification is less than substantially 500 nm.
【請求項2】 引張強度が400kg/mm2 以上であ
ることを特徴とする請求項1記載のピッチ系炭素繊維。
2. The pitch-based carbon fiber according to claim 1, wherein the tensile strength is 400 kg / mm 2 or more.
【請求項3】 請求項1又は2記載のピッチ系炭素繊維
からなるトウで製織された構造を有しており、FAW
(織物の単位面積当たりの重さ)が50〜250g/m
2 であることを特徴とする炭素繊維織物。
3. A FAW having a structure woven with a tow comprising the pitch-based carbon fiber according to claim 1.
(Weight per unit area of woven fabric) 50 to 250 g / m
2. A carbon fiber woven fabric, which is 2 .
【請求項4】 70%以上の光学的異方性組織を含むピ
ッチを、内部にピッチの流路を分断する充填物を有する
ノズルを用いて、吐出孔におけるピッチの粘度が150
ポイズ以下になる温度で紡糸してピッチ繊維とし、この
ピッチ繊維を酸化性ガス雰囲気中で加熱処理して不融化
繊維とし、この不融化繊維を不活性ガス雰囲気中で加熱
処理して炭素含有率が97%以上の炭素繊維とし、この
炭素繊維を黒鉛製のルツボに入れて2500℃以上に加
熱することにより黒鉛化することを特徴とする請求項1
又は2記載のピッチ系炭素繊維の製造方法。
4. A pipe containing at least 70% of an optically anisotropic structure.
With a filling inside that separates the pitch channel
Using a nozzle, the viscosity of the pitch at the discharge hole is 150
Spun into a pitch fiber at a temperature below the poise
Heat treatment of pitch fiber in oxidizing gas atmosphere to make it infusible
Fiber and heat the infusible fiber in an inert gas atmosphere
It is processed to a carbon fiber with a carbon content of 97% or more.
Put the carbon fiber in a graphite crucible and heat it to 2500 ° C or higher.
2. The material is graphitized by heating.
Or the method for producing a pitch-based carbon fiber according to 2.
【請求項5】 70%以上の光学的異方性組織を含むピ
ッチを、内部にピッチの流路を分断する充填物を有する
ノズルを用いて、吐出孔におけるピッチの粘度が150
ポイズ以下になる温度で紡糸してピッチ繊維とし、この
ピッチ繊維を酸化性ガス雰囲気中で加熱処理して不融化
繊維とし、この不融化繊維を不活性ガス雰囲気中で加熱
処理して炭素含有率が97%以上の炭素繊維とし、この
炭素繊維で織物を形成したのちこれを黒鉛製のルツボに
入れて2500℃以上に加熱することにより黒鉛化する
ことを特徴とする請求項3記載の炭素繊維織物の製造方
法。
5. A pipe containing an optically anisotropic structure of 70% or more.
With a filling inside that separates the pitch channel
Using a nozzle, the viscosity of the pitch at the discharge hole is 150
Spun into a pitch fiber at a temperature below the poise
Heat treatment of pitch fiber in oxidizing gas atmosphere to make it infusible
Fiber and heat the infusible fiber in an inert gas atmosphere
It is processed to a carbon fiber with a carbon content of 97% or more.
After forming a woven fabric with carbon fiber, it is turned into a graphite crucible.
Graphitize by putting and heating to 2500 ° C or more
4. The method for producing a carbon fiber woven fabric according to claim 3, wherein
Law.
【請求項6】 ピッチの紡糸を、吐出口におけるピッチ
の温度が、ピッチの(メトラー軟化点+32℃)〜(メ
トラー軟化点+45℃)の範囲で行うことを 特徴とする
請求項4記載のピッチ系炭素繊維又は請求項5記載の炭
素繊維物の製造方法。
6. The spinning of a pitch is performed at a pitch at a discharge port.
Is between (Mettler softening point + 32 ° C)
And carrying out a range of Butler softening point + 45 ° C.)
The pitch-based carbon fiber according to claim 4, or the charcoal according to claim 5.
Manufacturing method of raw fiber material.
【請求項7】 黒鉛化を、黒鉛製のルツボに予じめ黒鉛
化されたパッキングコークスを共存させて行うことを特
徴とする請求項4ないし6のいずれかに記載のピッチ系
炭素繊維又は炭素繊維織物の製造方法。
7. Graphite can be graphitized in advance in a graphite crucible.
Of coking coke coke.
A pitch system according to any one of claims 4 to 6, characterized in that:
A method for producing carbon fiber or carbon fiber fabric.
【請求項8】 アチソン抵抗加熱炉で黒鉛化することを
特徴とする請求項4ないし7のいずれかに記載のピッチ
系炭素繊維又は炭素繊維織物の製造方法。
8. The method for producing a pitch-based carbon fiber or carbon fiber woven fabric according to claim 4, wherein the graphitization is carried out in an Acheson resistance heating furnace.
【請求項9】 請求項1もしくは請求項2記載のピッチ
炭素繊維又は請求項3記載の炭素繊維織物に熱硬化性
樹脂を含浸してなるプリプレグ。
9. A pitch according to claim 1 or claim 2.
A prepreg obtained by impregnating a thermosetting resin into the base carbon fiber or the carbon fiber fabric according to claim 3.
【請求項10】 請求項記載のプリプレグを成型、硬
化して得られた炭素繊維強化プラスチックを主たる材料
とする太陽電池用基板。
10. A solar cell substrate comprising a carbon fiber reinforced plastic obtained by molding and curing the prepreg according to claim 9 as a main material.
【請求項11】 請求項記載のプリプレグを成型、硬
化して得られた炭素繊維強化プラスチックを主たる材料
とするIC用基板。
11. An IC substrate comprising a carbon fiber reinforced plastic obtained by molding and curing the prepreg according to claim 9 as a main material.
JP7085672A 1994-04-11 1995-04-11 Pitch-based carbon fiber Expired - Lifetime JP3031197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7085672A JP3031197B2 (en) 1994-04-11 1995-04-11 Pitch-based carbon fiber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7218294 1994-04-11
JP6-72182 1994-04-11
JP7085672A JP3031197B2 (en) 1994-04-11 1995-04-11 Pitch-based carbon fiber

Publications (2)

Publication Number Publication Date
JPH07331536A JPH07331536A (en) 1995-12-19
JP3031197B2 true JP3031197B2 (en) 2000-04-10

Family

ID=26413305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7085672A Expired - Lifetime JP3031197B2 (en) 1994-04-11 1995-04-11 Pitch-based carbon fiber

Country Status (1)

Country Link
JP (1) JP3031197B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532822B2 (en) 2015-06-18 2022-12-20 Teijin Limited Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0892099A1 (en) * 1997-07-15 1999-01-20 Mitsubishi Chemical Corporation Carbon fiber woven fabric
JP2004515610A (en) * 2000-12-12 2004-05-27 シュリ ディクシャ コーポレイション Lightweight circuit board including conductive constrained core
JP2008208490A (en) * 2007-02-27 2008-09-11 Teijin Ltd Pitch-based carbon fiber and carbon fiber-reinforced composite material
JP4750882B2 (en) 2008-12-01 2011-08-17 住友ゴム工業株式会社 Sidewall reinforcing layer or sidewall rubber composition and tire
JP5395900B2 (en) 2009-06-12 2014-01-22 住友ゴム工業株式会社 vehicle
JP5421024B2 (en) * 2009-08-10 2014-02-19 住友ゴム工業株式会社 Rubber composition for inner liner and pneumatic tire
JP5421025B2 (en) * 2009-08-10 2014-02-19 住友ゴム工業株式会社 Rubber composition for carcass, pneumatic tire and method for producing pneumatic tire
JP5222250B2 (en) 2009-08-20 2013-06-26 住友ゴム工業株式会社 Run flat tire
JP5395739B2 (en) 2010-05-18 2014-01-22 住友ゴム工業株式会社 vehicle
US9905713B2 (en) 2010-10-15 2018-02-27 Cyprian Emeka Uzoh Method and substrates for material application
JP6307395B2 (en) * 2014-09-16 2018-04-04 日本グラファイトファイバー株式会社 Heat dissipation sheet
JP2018054507A (en) * 2016-09-29 2018-04-05 株式会社カネカ Measuring method of heat transport capacity or heat conductivity of heat conduction material, and measuring apparatus
JP6922443B2 (en) 2017-06-05 2021-08-18 住友ゴム工業株式会社 Pneumatic tires with external apex
JP7300809B2 (en) 2017-07-28 2023-06-30 住友ゴム工業株式会社 Pneumatic tire with outer apex

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744617B2 (en) * 1988-04-21 1998-04-28 日機装 株式会社 Method and apparatus for continuous graphitization of vapor grown carbon fiber
JPH04163319A (en) * 1990-10-19 1992-06-08 Tonen Corp Pitch-based carbon fiber having extremely high thermal conductivity and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532822B2 (en) 2015-06-18 2022-12-20 Teijin Limited Fibrous carbon, method for manufacturing same, electrode mixture layer for non-aqueous-electrolyte secondary cell, electrode for non-aqueous-electrolyte secondary cell, and non-aqueous-electrolyte secondary cell

Also Published As

Publication number Publication date
JPH07331536A (en) 1995-12-19

Similar Documents

Publication Publication Date Title
JP3031197B2 (en) Pitch-based carbon fiber
US4975261A (en) Process for producing high strength carbon-carbon composite
US5217657A (en) Method of making carbon-carbon composites
US4849200A (en) Process for fabricating carbon/carbon composite
US5721308A (en) Pitch based carbon fiber and process for producing the same
GB2055776A (en) Friction material production thereof and friction element comprising said material
Mochida et al. Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains
US6303096B1 (en) Pitch based carbon fibers
Ting et al. Vapor-grown carbon-fiber reinforced carbon composites
EP0245035B1 (en) High modulus pitch-based carbon fiber and method for preparing same
Klett et al. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites
US5556608A (en) Carbon thread and process for producing it
EP0892099A1 (en) Carbon fiber woven fabric
CA2004370C (en) Continuous, ultrahigh modulus carbon fiber
Marković Use of coal tar pitch in carboncarbon composites
JP4343312B2 (en) Pitch-based carbon fiber
JP3648865B2 (en) Carbon fiber manufacturing method
JP2985455B2 (en) Carbon fiber and method for producing the same
JP2023511515A (en) Insulation suitable for use at high temperatures and method of making said material
JP3807106B2 (en) Carbon fiber reinforced resin
JPH11117143A (en) Woven fabric of carbon fiber
JPH07187833A (en) Carbon fiber reinforced carbon composite material
JP3861899B2 (en) Carbon fiber
Mohammad et al. The effect of modification of matrix on densification efficiency of pitch based carbon composites
JPH05330915A (en) Production of carbon/carbon composite material

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term