JPH04163319A - Pitch-based carbon fiber having extremely high thermal conductivity and production thereof - Google Patents

Pitch-based carbon fiber having extremely high thermal conductivity and production thereof

Info

Publication number
JPH04163319A
JPH04163319A JP27943790A JP27943790A JPH04163319A JP H04163319 A JPH04163319 A JP H04163319A JP 27943790 A JP27943790 A JP 27943790A JP 27943790 A JP27943790 A JP 27943790A JP H04163319 A JPH04163319 A JP H04163319A
Authority
JP
Japan
Prior art keywords
pitch
fiber
fibers
thermal conductivity
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27943790A
Other languages
Japanese (ja)
Inventor
Takashi Hino
日野 隆
Kikuji Komine
小峰 喜久治
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP27943790A priority Critical patent/JPH04163319A/en
Priority to EP19910309540 priority patent/EP0481762A3/en
Priority to CA 2053669 priority patent/CA2053669A1/en
Publication of JPH04163319A publication Critical patent/JPH04163319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the title yarn having high thermal conductivity and compression strength without damaging tensile strength and modulus in tension by infusibilizing pitch fiber, drawing and heat-treating in an oxygen-containing atmosphere, drawing and preliminarily carbonizing and carbonizing in an inert gas atmosphere while drawing. CONSTITUTION:Pitch fiber obtained by spinning carbonaceous pitch is infusibilized, the infusibilized fiber is passed through an oxygen-containing atmosphere at 300-500 deg.C for 1-200 seconds and drawn by 5-100% and heat- treated. successively, the heat-treated fiber is passed through an oxygen containing atmosphere having 500-700 deg.C maximum temperature for 20-300 seconds, drawn by 5-100%, preliminarily carbonized and then carbonized in an inert gas atmosphere having 2,600-3,200 deg.C maximum temperature while being drawn by 1-30% to give the objective fiber having 500-1,500 w/m/k/ thermal conductivity in the direction of fiber axis, lamination thickness of fiber crystal structure (Lc002)/density (rho) of 120-500, 0-30% melt binding degree and 0.2-0.4 GPa compression strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、一般には、炭素繊維に関するものであり、特
に、熱伝導率か高く、圧縮強度が大であり、しかも糸扱
い性に優れ、例えば電子機器のプリント基板、IC基板
、ヒートシンクなどの炭素繊維強化複合材料として広く
使用することのできる超高熱伝導率ピッチ系炭素繊維及
びその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention generally relates to carbon fibers, and in particular, carbon fibers have high thermal conductivity, high compressive strength, and excellent yarn handling properties. The present invention relates to ultra-high thermal conductivity pitch-based carbon fibers that can be widely used as carbon fiber-reinforced composite materials for equipment printed circuit boards, IC boards, heat sinks, etc., and a method for producing the same.

従来の技術 近年、例えば電子機器のプリント基板、IC基板、ヒー
トシンクなとの材料として各種の繊維強化複合材料の使
用か提案されている。このような繊維強化複合材料に使
用される繊維は、特に、熱伝導率が高いことが必須であ
る。
BACKGROUND OF THE INVENTION In recent years, various fiber-reinforced composite materials have been proposed as materials for printed circuit boards, IC boards, and heat sinks of electronic devices, for example. It is essential that the fibers used in such fiber-reinforced composite materials have particularly high thermal conductivity.

従来、炭素繊維としては、PAN系及びピッチ系炭素繊
維が広く製造及び使用されているが、PAN系炭素繊維
は機械的特性は高いが熱伝導率が著しく低く、通常10
 W’/ m / K以下であり、75 W / m 
/ K以上のものは知られていない。又、熱伝導率の向
上をも期待し得す上記の繊維強化複合材料へのPAN系
炭素繊維の使用は不適である。
Conventionally, PAN-based and pitch-based carbon fibers have been widely produced and used as carbon fibers, but PAN-based carbon fibers have high mechanical properties but extremely low thermal conductivity, and are usually 10%
W'/m/K or less, 75 W/m
/ Nothing higher than K is known. Furthermore, it is inappropriate to use PAN-based carbon fibers in the above-mentioned fiber-reinforced composite materials, which can also be expected to improve thermal conductivity.

一方、ピッチ系炭素繊維は熱伝導率は高いものの、機械
的特性、特に圧縮強度や繊維強化複合材料を製造する際
の糸扱い性がバランスよく十分高いものは知られていな
い。
On the other hand, although pitch-based carbon fibers have high thermal conductivity, there are no known pitch-based carbon fibers that have well-balanced and sufficiently high mechanical properties, particularly compressive strength and yarn handling properties when producing fiber-reinforced composite materials.

一明が 決しようとする課題 上記プリント基板用炭素繊維強化複合材料などに使用さ
れる炭素繊維には、熱伝導率が高いことと同時に、機械
的特性、特に圧縮強度の増大が希求されている。
The problem that Kazuaki is trying to solve Carbon fibers used in carbon fiber-reinforced composite materials for printed circuit boards, etc., are required to have high thermal conductivity as well as increased mechanical properties, especially compressive strength. .

又、例えば、プリント基板の熱伝導部祠或はヒートシン
ク用としての炭素繊維強化複合材料を製造する場合には
、炭素繊維束に金属材料が含浸される場合もあり、特に
このような場合には金属材料の含浸性を増大するべく、
炭素繊維束の融膠着が少ないこと、即ち、糸扱い性が良
好であることが要求される。
Furthermore, for example, when manufacturing a carbon fiber reinforced composite material for a heat conduction part or heat sink of a printed circuit board, the carbon fiber bundle may be impregnated with a metal material. In order to increase the impregnability of metal materials,
It is required that the carbon fiber bundle has little melting and sticking, that is, good yarn handling properties.

本発明者らは、ピッチ系炭素繊維における結晶構造に対
する熱伝導率及び機械的強度との関係を研究する過程に
おいて、炭素繊維の結晶構造、特に積層厚み(L c 
002)を特定の範囲とすることで、更に詳しくいえば
、積層厚み(L c 002)’/密度(ρ)を特定の
範囲内にすることで、所定レベル以上の引張強度、引景
弾性率を具備し、しかも、熱伝導率及び圧縮強度が飛躍
的に増大した良好な超高熱伝導率ピッチ系炭素繊維を得
ることができ、又、このような炭素繊維は、融膠着度を
30%以下とすることにより、複合材料を製造する際の
糸扱い性に優れ、良好な炭素繊維強化複合材料を製造し
得ることが分かった。
In the process of researching the relationship between the crystal structure of pitch-based carbon fibers, thermal conductivity, and mechanical strength, the present inventors investigated the crystal structure of carbon fibers, particularly the lamination thickness (L c
002) within a specific range, more specifically, by setting the laminated thickness (L c 002)'/density (ρ) within a specific range, the tensile strength and tensile modulus of elasticity above a predetermined level can be achieved. In addition, it is possible to obtain pitch-based carbon fibers with excellent ultra-high thermal conductivity and dramatically increased thermal conductivity and compressive strength. It has been found that by doing so, it is possible to produce a carbon fiber-reinforced composite material that has excellent thread handling properties when producing a composite material.

本発明は、斯る新規な知見に基づきなされたものである
The present invention has been made based on this new knowledge.

従って、本発明の目的は、引張強度及び引張弾性率を損
なうことなく、熱伝導率が極めて高く、且つ圧縮強度が
大であり、しかも糸扱い性に優れた超高熱伝導率ピッチ
系炭素繊維及びその製造法を提供することである。
Therefore, the object of the present invention is to provide an ultra-high thermal conductivity pitch-based carbon fiber that has extremely high thermal conductivity and high compressive strength without impairing tensile strength and tensile modulus, and has excellent yarn handling properties. The purpose of the present invention is to provide a method for producing the same.

111笠火工A太支副」1 上記目的は本発明に係る超高熱伝導率ピッチ系炭素繊維
によって達成される。要約すれば、本発明は、繊維軸方
向の熱伝導率が500〜1500W / m / K、
積層厚み(L c 002)/密度(ρ)が120〜5
00、融膠着度か0〜30%、そして圧縮強度か0.2
〜0.40Paであることを特徴とする超高熱伝導率ピ
ッチ系炭素繊維である。
111 Kasa Fireworks A Taishu Sub” 1 The above object is achieved by the ultra-high thermal conductivity pitch-based carbon fiber according to the present invention. In summary, the present invention provides fiber axial thermal conductivity of 500 to 1500 W/m/K,
Lamination thickness (L c 002)/density (ρ) is 120 to 5
00, fusion adhesion 0-30%, and compressive strength 0.2
It is a pitch-based carbon fiber with an ultra-high thermal conductivity of ~0.40 Pa.

本発明者らは、上述のように、ピッチを原料として熱伝
導性の良好なピッチ系炭素繊維を得るべく研究開発する
過程にて、先ず、繊維軸方向に沿った熱伝導率を増大せ
しめるには、繊維の結晶化を進めるのが必要であるか、
余りにも結晶化が進んだ場合には繊維の機械的特性、特
に圧縮強度が著しく低下してしまうことが分かった。
As mentioned above, in the process of research and development to obtain pitch-based carbon fibers with good thermal conductivity using pitch as a raw material, the present inventors first attempted to increase the thermal conductivity along the fiber axis direction. Is it necessary to promote crystallization of the fibers?
It has been found that when crystallization progresses too much, the mechanical properties of the fibers, particularly the compressive strength, are significantly reduced.

つまり、本発明者らは、500 W / m / K以
上の、即ち500〜1500 W / m / Kの超
高熱伝導率を有し、しかも圧縮強度が0.2〜0.4G
Paとされ、且つ、引張強度が2.5〜4.5GPa、
引張弾性率が700〜95oGPaとされるバランスの
とれた機械的特性を有した超高熱伝導率のピッチ系炭素
繊維を得るには、炭素繊維の結晶構造、特に積層厚み(
L C002)を特定の範囲内にもたらすことが、つま
り、詳しく言えば、積層厚み(L c 002)/密度
(ρ)の値が、120以上、500以下とされる範囲内
に存在しなければならないことを見出した。もし、積層
厚み(La2O2)/密度(ρ)の値が120未満であ
る場合には熱伝導率が500W/m/Kに達せず、又、
この値が500を越えた場合には、圧縮強度が0゜2G
Paより小さくなり、引張強度及び引張弾性率とバラン
スのとれた機械的特性が得られない。
In other words, the present inventors have developed an ultrahigh thermal conductivity of 500 W/m/K or more, that is, 500 to 1500 W/m/K, and a compressive strength of 0.2 to 0.4 G.
Pa, and has a tensile strength of 2.5 to 4.5 GPa,
In order to obtain a pitch-based carbon fiber with ultra-high thermal conductivity and balanced mechanical properties with a tensile modulus of 700 to 95oGPa, it is necessary to carefully examine the crystal structure of the carbon fiber, especially the lamination thickness (
L C002) must be within a specific range, that is, more specifically, the value of laminated thickness (L C002)/density (ρ) must be within a range of 120 or more and 500 or less. I discovered that this is not the case. If the value of lamination thickness (La2O2)/density (ρ) is less than 120, the thermal conductivity will not reach 500W/m/K, and
If this value exceeds 500, the compressive strength is 0°2G.
Pa, and mechanical properties that are well balanced with tensile strength and tensile modulus cannot be obtained.

更に説明すると、本発明に従った高熱伝導率ピッチ系炭
素iハ維においては、上述のように結晶構造を決定する
ファクターの中でも持に、積層厚み(L c 002)
が重要であるか、通常本発明にて積層厚み(L c 0
02)(第260〜1000人とされ、又、結晶長さ(
La1.lO)は300〜1000人、そして層間隔(
d oo2)は3.36〜3.39人とされる。更に、
本発明の繊維の密度(ρ)は、−般に218〜2.24
g/cm”とされる。
To explain further, in the high thermal conductivity pitch-based carbon fiber according to the present invention, among the factors that determine the crystal structure as described above, the lamination thickness (L c 002)
Is the lamination thickness (L c 0
02) (260th to 1000th person, and the crystal length (
La1. lO) is 300 to 1000 people, and the interlayer spacing (
d oo2) is estimated to be 3.36 to 3.39 people. Furthermore,
The density (ρ) of the fibers of the present invention is generally between 218 and 2.24.
g/cm".

又、このような本発明に従ったピッチ系炭素繊維は、融
膠着度を30%以下とすることにより、複合材料を製造
する際の糸扱い性か増大し、良好な炭素繊維強化複合材
料を製造し得る。もし、融膠着度が30%を超えると、
糸扱い性か著しく低下し、例えば、アルミニウムなどの
金属を炭素繊に、11束に含浸させて炭素繊δ1#強化
複合材料を製造する場合に、通常100〜1. OOO
Oフィラメントからなる炭素繊維束中に溶融金属か一様
に含浸されず、所望の特性を有した炭素繊維強化複合材
料を製造し得ない。
Furthermore, by setting the degree of fusion and agglutination to 30% or less, the pitch-based carbon fiber according to the present invention increases the yarn handling property when manufacturing composite materials, and makes it possible to produce good carbon fiber reinforced composite materials. Can be manufactured. If the fusion degree exceeds 30%,
For example, when manufacturing carbon fiber δ1# reinforced composite material by impregnating carbon fibers with metal such as aluminum into 11 bundles, the yarn handling property is usually 100 to 1. OOO
The molten metal is not uniformly impregnated into the carbon fiber bundle made of O filaments, making it impossible to produce a carbon fiber reinforced composite material with desired properties.

上記本発明に係る超高熱伝導率ピッチ系炭素繊維は、炭
素質ピッチを紡糸し7て得たピッチ繊維を通常通りに不
融化し、該不融化した不融化繊Afl:を300〜50
0″C1好ましくは350〜480℃の酸素含有雰囲気
中に極く短詩間通して5〜100%の延伸熱処理を施し
、引続いて、最高温度が500〜700℃5好ましくは
550〜650 ’Cの酸素含有雰囲気中に短詩間通し
て5〜100%の延伸予備炭化処理し、その後、最高温
度が2600〜3200℃の不活性ガス雰囲気中にて1
〜30%の延伸処理を施しながら炭化を行なうことによ
り好適に製造し得ることが分かった。
The ultra-high thermal conductivity pitch-based carbon fiber according to the present invention is obtained by infusible pitch fiber obtained by spinning carbonaceous pitch in the usual manner, and the infusible infusible synthetic fiber Afl: 300 to 50.
0''C1 is preferably subjected to a 5-100% stretching heat treatment in an oxygen-containing atmosphere at 350-480°C for a very short time, followed by a maximum temperature of 500-700°C5, preferably 550-650'C. 5 to 100% stretching preliminary carbonization treatment in an oxygen-containing atmosphere of
It has been found that it can be suitably produced by performing carbonization while performing a stretching treatment of ~30%.

本発明の製造法によると、通常通りに酸化性雰囲気下に
て150〜350℃までに加熱して不融化された脆弱な
不融化繊維が、予備炭化する前に300〜500℃とい
った高温の酸素含有雰囲気中にて短時間処理されるので
、糸の表面か選択的に酸化され、他方、糸の内部は高温
の熱にて熱重合及び炭化か進展する。その結果、不融化
繊維は強くなり、該不融化繊維の予備炭化炉内での更に
延伸処理が可能とされ、予備炭化繊維の融膠着度か低減
するものと考えられる。
According to the production method of the present invention, brittle infusible fibers that have been made infusible by heating to 150 to 350°C in an oxidizing atmosphere are heated to 300 to 500°C before being pre-carbonized. Since the treatment is carried out for a short time in a containing atmosphere, the surface of the yarn is selectively oxidized, while the interior of the yarn undergoes thermal polymerization and carbonization due to high temperature heat. As a result, the infusible fibers become stronger, and the infusible fibers can be further stretched in the pre-carbonization furnace, which is thought to reduce the degree of fusion and agglutination of the pre-carbonized fibers.

更に、」二連のように、不融化処理後と、予備炭化処理
時と、更に炭化処理時の三段階にわたって延伸熱処理を
行なうことにより、繊維における配向性が改善され、特
に熱伝導率を著しく増大ぜしめ、超高熱伝導率の糸か得
られることが分かった。−段或は二段の延伸熱処理では
、本発明(こ係る上記構成の超高熱伝導率ピッチ系炭素
繊維は得られない。
Furthermore, by performing the stretching heat treatment in three stages: after the infusibility treatment, the pre-carbonization treatment, and the carbonization treatment, the orientation of the fibers is improved, and in particular, the thermal conductivity is significantly improved. It has been found that yarns with increased strength and ultra-high thermal conductivity can be obtained. The ultra-high thermal conductivity pitch-based carbon fiber of the present invention (the above-mentioned structure) cannot be obtained by -stage or two-stage stretching heat treatment.

又、不融化処理後の第1段目の延伸熱処理時の酸素含有
雰囲気中の酸素jliJ度は5〜80%とされ、炉内滞
留時間は1〜200秒(好ましくは10〜100秒)、
1フィラメント当りの張力は0.003〜0.1.7g
か好適であり、又、予備炭化処理時の第2段階目の延伸
熱処理時の酸素含有雰囲気中の酸累讃度は001〜30
%とされ、炉内滞留時間は20〜300秒(好ましくは
50〜200秒)、1フィラメント当りの張力は0.0
06−0.33gか好適である。更に又、炭化処理時の
第3段階目の延伸熱処理時の炉内滞留時間は1〜100
分(好ましくは2〜6゜分)、】フィラメント当りの張
力L!:0.05〜20gが好適である。
In addition, the oxygen degree in the oxygen-containing atmosphere during the first stage stretching heat treatment after the infusibility treatment is 5 to 80%, and the residence time in the furnace is 1 to 200 seconds (preferably 10 to 100 seconds).
Tension per filament is 0.003~0.1.7g
It is preferable that the acid concentration in the oxygen-containing atmosphere during the second stage stretching heat treatment during the preliminary carbonization treatment is 001 to 30.
%, the residence time in the furnace is 20 to 300 seconds (preferably 50 to 200 seconds), and the tension per filament is 0.0
06-0.33g is suitable. Furthermore, the residence time in the furnace during the third stage stretching heat treatment during carbonization is 1 to 100.
min (preferably 2-6° min), ] Tension L per filament! :0.05-20g is suitable.

次に、本発明に係る超高熱伝導率ピッチ系炭素繊維の製
造方法について更に詳しく説明する。
Next, the method for producing the ultra-high thermal conductivity pitch-based carbon fiber according to the present invention will be explained in more detail.

先ず、炭素質ピッチは当業者には周知の方法によって紡
糸できる。例えば、石油系ピッチ、石炭系ピッチ、芳香
族炭化水素邦を原料とするピッチ等の炭素繊維の製造に
適した炭素質ピッチを加熱ン容融して1〜2000本、
好ましくは50〜1000本のフィラメントを紡糸し、
各フィラメントには通常使用されているオイリングロー
ラを使用して集束剤を付与して、これら多数のフィラメ
ントを集束し、1本の糸条としてボビンに巻き取る。
First, carbonaceous pitch can be spun by methods well known to those skilled in the art. For example, 1 to 2,000 carbon pitches suitable for manufacturing carbon fiber, such as petroleum-based pitch, coal-based pitch, and pitch made from aromatic hydrocarbons, are heated and melted.
Preferably, 50 to 1000 filaments are spun,
A sizing agent is applied to each filament using a commonly used oiling roller, and the large number of filaments are bundled and wound around a bobbin as a single thread.

集束剤としては、i!illえば水、エチルアルコール
、イソプロピルアルコール、n−プロピルアルコール、
ブチルアルコール、等のアルコール類又は粘度5〜l 
000cst (25℃)のジメヂルボリシロキサン、
アルキルフェニルボリシロキケン等を、低沸点のシリコ
ーン油(ポリシロキザン)又はパラフィン油等の溶剤で
稀釈したもの、又は乳化剤を入れて水に分散させたもの
、同様にグラファイト又はポリエチレングリコールやヒ
ンダードエステル類を分散させたもの:界面活性剤を水
で稀釈したもの:その他通常の繊維、例えばポリエステ
ル繊維に使用される各種油剤の内ピッチ繊維を犯さない
ものを使用することができる。
As a sizing agent, i! For example, water, ethyl alcohol, isopropyl alcohol, n-propyl alcohol,
Alcohols such as butyl alcohol or viscosity 5 to 1
000 cst (25°C) dimedylbolysiloxane,
Alkylphenylbolysiloxenes etc. diluted with low boiling point silicone oil (polysiloxane) or paraffin oil or other solvents, or dispersed in water with an emulsifier added, as well as graphite, polyethylene glycol and hindered esters. Dispersed ones: Surfactants diluted with water: Other usual fibers, such as those that do not harm pitch fibers among the various oils used for polyester fibers, can be used.

集束剤のピッチ繊維への付与量は、通常001〜10重
量%とされるが、特に0.05〜5重量%が好ましい。
The amount of the sizing agent applied to the pitch fibers is usually 0.01 to 10% by weight, particularly preferably 0.05 to 5% by weight.

上述のようにして一旦ボビンに巻取られた多数のフィラ
メントから成る糸条は、複数個の、例えば2〜50個の
ボビンを同時に解舒することによって、又は複数回に分
けて、例えば1回目は2〜10本を、次いで残余分をと
いったように、解舒合糸を繰返し行なうことによって、
2〜50本の糸条を合束(合糸)し、100〜1000
00本、好ましくは500−10000本のフィラメン
トからピッチ繊維束(以後単に「ピッチ繊維」という。
The yarn consisting of a large number of filaments once wound onto bobbins as described above can be unwound by simultaneously unwinding a plurality of bobbins, for example, 2 to 50 bobbins, or by dividing it into multiple times, for example, the first time. By repeatedly unwinding and doubling 2 to 10 yarns, then the remaining yarn,
2 to 50 yarns are bundled (paired) and 100 to 1000
00 filaments, preferably 500-10000 filaments to form a pitch fiber bundle (hereinafter simply referred to as "pitch fibers").

)が製造され、他のボビンに巻取られる。) is produced and wound onto another bobbin.

斯る合糸時に、不融化時及び予備炭化時の処理を考慮し
てピッチ繊維に耐熱性の油剤が付与される。耐熱性の油
剤としては、アルキルフェニルポリシロキサンが好まし
く、フェニル基を5〜80%、好ましくは10〜50%
含み、又、アルキル基としてはメチル基、エチル基、プ
ロピル基が好ましく、同一分子に2種以上のアルキル基
を有していても良い。又、粘度は25℃にて10〜10
00cstのものが使用される。更に後述するような酸
化防止剤を添加することもできる。
During such doubling, a heat-resistant oil agent is applied to the pitch fibers in consideration of treatments during infusibility and preliminary carbonization. As the heat-resistant oil agent, alkylphenylpolysiloxane is preferable, and the phenyl group content is 5 to 80%, preferably 10 to 50%.
In addition, the alkyl group is preferably a methyl group, ethyl group, or propyl group, and the same molecule may contain two or more types of alkyl groups. Also, the viscosity is 10 to 10 at 25°C.
00cst is used. Furthermore, an antioxidant as described later can also be added.

他の好ましい油剤としては、ジメチルポリシロキサンに
酸化防止剤を入れたものが使用可能であり、粘度として
ば25℃で5〜1000cstのものが好ましい。酸化
防止剤としては、アミン類、有機セレン化合物、フェノ
ール類等、例えばフェニル−α−ナフチルアミン、ジラ
ウリルセレナイド、フェノチアジン、鉄オクトレート等
を挙げることができる。これらの酸化防止剤は、上述し
たように、更に耐熱性を高める目的で上記アルキルフェ
ニルポリシロキサンに添加することも可能である。
Another preferred oil agent that can be used is dimethylpolysiloxane containing an antioxidant, and preferably has a viscosity of 5 to 1000 cst at 25°C. Examples of the antioxidant include amines, organic selenium compounds, phenols, and the like, such as phenyl-α-naphthylamine, dilaurylselenide, phenothiazine, and iron octolate. As mentioned above, these antioxidants can also be added to the alkylphenylpolysiloxane for the purpose of further increasing heat resistance.

更に、好ましい油剤としては、上記各油剤を沸点が60
0℃以下の界面活性剤を用いて、乳化したものを使用す
ることもできる。このとき界面活性剤としては、ポリオ
キシエチレンアルキルエーテル、ポリオキシエチレンア
ルキルエステル、ポリオキシエチレン変性シリコーン、
ポリオキシアルキレン変性シリコーン等を使用し得る。
Further, as preferred oils, each of the above oils has a boiling point of 60.
It is also possible to use an emulsified product using a surfactant having a temperature of 0° C. or lower. At this time, as the surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene modified silicone,
Polyoxyalkylene-modified silicones and the like may be used.

これら油剤は、ローラ接触、スプレー塗布、泡沫塗布等
により、ピッチ繊維に0.01〜10重量%、好ましく
は0.05〜5重量%が付与される。
These oil agents are applied to the pitch fibers in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, by roller contact, spray coating, foam coating, or the like.

上述のように、合糸されたピッチ繊維に耐熱性油剤を付
与することにより、該ピッチ繊維は強度が著しく強くな
り糸扱い性が極めて向上する。
As mentioned above, by applying a heat-resistant oil agent to the pitch fibers that have been doubled, the strength of the pitch fibers becomes significantly stronger and the yarn handling properties are greatly improved.

以上の如くにして製造されたピッチ繊維をボビンより解
舒して、不融化炉へと送給する。
The pitch fibers produced as described above are unwound from a bobbin and sent to an infusibility furnace.

不融化炉内の温度は150〜350℃の範囲内の成る一
定温度とすることもできるが、炉入口より炉出口にかけ
て150℃から350℃へと次第に増大する温度勾配を
有するように設定することもできる。
The temperature inside the infusibility furnace can be set at a constant temperature within the range of 150 to 350°C, but it should be set so that it has a temperature gradient that gradually increases from 150°C to 350°C from the furnace inlet to the furnace outlet. You can also do it.

又、不融化炉内は酸化性雰囲気とされ、不融化炉内には
空気、酸素、空気と酸素又は空気と窒素の混合ガス等の
酸化性ガスが供給されるが、好ましいガスとして酸素濃
度30〜90%の富酸素ガスがイ吏用される。
In addition, the inside of the infusibility furnace is made into an oxidizing atmosphere, and oxidizing gas such as air, oxygen, a mixed gas of air and oxygen, or air and nitrogen is supplied into the infusibility furnace, and a preferable gas is an oxygen concentration of 30 ~90% oxygen rich gas is used.

本発明に従えば、不融化処理時に、繊維束には張力をか
けずに行なうこともできるが、不融化炉内での繊維束の
たるみによる炉底、炉壁をこすることにより生じる引き
ずり傷の発生防止、及び外観が良(且つ引張強度、引張
弾性率などの炭素織締の物性の向上のために、1フイラ
メント当たり0、、OO1〜0.2gの張力をかけなが
ら不融化を行なうことが好ましい。
According to the present invention, the infusibility treatment can be carried out without applying any tension to the fiber bundle, but the slackness of the fiber bundle in the infusibility furnace causes drag scratches caused by rubbing against the furnace bottom and furnace wall. Infusibility should be carried out while applying a tension of 0.0 to 0.2 g per filament in order to prevent the occurrence of carbon weave and to improve the appearance (and improve the physical properties of carbon weave such as tensile strength and tensile modulus). is preferred.

このようにして、不融化繊維の酸素濃度は7〜12重量
%になるように不融化される。
In this way, the infusible fibers are infusible so that the oxygen concentration is 7 to 12% by weight.

本発明によれば、上述のようにして不融化された酸素濃
度7〜12重量%の不融化繊維は、予備炭化炉にて予備
炭化処理を受ける前に、酸素含有雰囲気中て第1段目の
延伸熱処理か行なわわる。
According to the present invention, the infusible fibers having an oxygen concentration of 7 to 12% by weight, which have been infusible as described above, are placed in a first stage in an oxygen-containing atmosphere before being subjected to a preliminary carbonization treatment in a preliminary carbonization furnace. Stretching heat treatment is performed.

該延伸熱処理炉内の調度は、不融化温度より100〜2
00℃高い調度か好ましく、一般に、300〜500″
Cの範囲内の成る一定温度とされ、例えば450℃とす
ることもてきるか、炉入口より炉出口にかシって次第に
増大する温度勾配を有するように設定することもてき、
この場合の最高温度は300〜500 ’Cを超えない
ようにされる。
The temperature in the drawing heat treatment furnace is 100 to 2
00℃ higher temperature is preferable, generally 300~500''
The temperature may be set at a constant temperature within the range of C, for example, 450°C, or it may be set to have a temperature gradient that gradually increases from the furnace inlet to the furnace outlet.
The maximum temperature in this case should not exceed 300-500'C.

例えば、炉入口温度を350’Cとし、次第に増大し炉
出[」温度か500 ’Cとなるように設定し得る。も
し、該熱処理温度か500 ’Cを超えると、不融化繊
維の酸化か過大となり好ましくな(、又、300℃未満
だと熱処理時間か長くなるか、或は不融化繊維の表面酸
化か不1分となり、期待した効果を得るのか困難である
For example, the furnace inlet temperature may be set to 350'C, and the temperature may be set to gradually increase to reach the furnace outlet temperature of 500'C. If the heat treatment temperature exceeds 500'C, the oxidation of the infusible fibers will be excessive, which is undesirable. However, it is difficult to get the desired effect.

又、該熱処理炉内は酸素含有雰囲気とされ、炉内には空
気、空気ど酸素、空気と窒素、又は窒素と酸素の混合ガ
スか供給されるか、酸素濃度は5〜80%、好ましくは
10〜50%とされる。−般に、空気か好適に使用され
る。場合によっては、空気にNOy、SO,、、CI2
.2などを含ませた?捏合ガスを用いてもよい。
Further, the inside of the heat treatment furnace is set to have an oxygen-containing atmosphere, and the inside of the furnace is supplied with air, air/oxygen, air and nitrogen, or a mixed gas of nitrogen and oxygen, and the oxygen concentration is preferably 5 to 80%. It is said to be 10-50%. - Generally, air is preferably used. In some cases, the air contains NOy, SO,..., CI2
.. Did you include 2 etc? A mixing gas may also be used.

更に、本発明によれは、該熱処理炉内における不融化繊
維の滞留時間は1〜200秒とされ、好ましくは10〜
100秒である。滞留時間は上記熱処理温度との関係で
設定さ打、200秒を超えると熱処理温度を300℃と
したとしても不融化繊維の酸化か過大となり好ましくな
く、又、1秒未嵩だと熱処理温度を500″Cとしても
不融化繊維の表面酸化か不十分となり、期待した効果を
得るのか困難である。
Further, according to the present invention, the residence time of the infusible fibers in the heat treatment furnace is 1 to 200 seconds, preferably 10 to 200 seconds.
It is 100 seconds. The residence time is set in relation to the above heat treatment temperature.If the residence time exceeds 200 seconds, even if the heat treatment temperature is set to 300℃, the infusible fibers will be oxidized excessively, which is undesirable.If the residence time is less than 1 second, the heat treatment temperature may be Even at 500''C, the surface oxidation of the infusible fibers is insufficient, making it difficult to obtain the expected effect.

更に、本発明に従えば、上記熱処理と同時に不融化繊維
には張力を付与して5〜1. O0%の延伸処理か施さ
れる。従って、通常、不融化繊維に(=1勾される弓長
刀としては、10〜500g/3000フィラメント、
つまり、1フイラメント当たり0.003〜○ 1.7
 gとされる。
Furthermore, according to the present invention, tension is applied to the infusible fibers at the same time as the heat treatment. 0% stretching treatment is applied. Therefore, normally, for a long sword that is made of infusible fiber (=1), 10 to 500 g/3000 filament,
In other words, 0.003 to ○ 1.7 per filament
g.

延伸は張力の大きさを調節して設定してもよいし、2個
以上のロールの差動によって調節してもよい。
Stretching may be set by adjusting the magnitude of tension, or may be adjusted by differential movement of two or more rolls.

」二層構成によって、不融化繊維は糸表面のみか選択的
に酸化され、糸の内部は高温の熱による熱重合か更に進
展し、その結果、多数のフィラメントからなる不融化繊
S1tはその強度か増大する。そのために、本発明によ
れば不融化繊維か予備炭化前に酸化されるか、糸の表面
のみか酸化されるだけであるので、製品である炭素様1
′11の物性を低下させることはない。
” Due to the two-layer structure, only the surface of the infusible fiber is selectively oxidized, and the interior of the yarn undergoes thermal polymerization due to high-temperature heat. As a result, the infusible synthetic fiber S1t consisting of many filaments has a high strength. or increase. Therefore, according to the present invention, the infusible fibers are oxidized before preliminary carbonization, or only the surface of the yarn is oxidized, so that the carbon-like
The physical properties of '11 are not deteriorated.

更に、本発明によれば、不融化繊維の表面を酸化するこ
とにより、次いて行なわれる予備炭化炉内での不融化繊
維の糸表面での融膠着度か低減される。
Further, according to the present invention, by oxidizing the surface of the infusible fiber, the degree of fusion sticking on the yarn surface of the infusible fiber in the subsequent pre-carbonization furnace is reduced.

更に又、本発明によれは、不融化繊維の糸表面のみが選
択的に酸化され、糸の内部は熱重合か更に進展し、その
結果、不融化繊維の強度か増大することとなり、該不融
化繊維に対する延伸処理によって繊維の配向性か改善さ
れ、得られる炭素繊維の物性か向」ニする。
Furthermore, according to the present invention, only the thread surface of the infusible fiber is selectively oxidized, and the interior of the thread undergoes further thermal polymerization, resulting in an increase in the strength of the infusible fiber. The stretching treatment of the fused fibers improves the orientation of the fibers and improves the physical properties of the resulting carbon fibers.

次いで、このようにして熱処理及び延伸処理された不融
化繊維は、予備炭化炉へと送給され、予備炭化処理、即
ち、酸素含有雰囲気中で第2段目の延伸熱処理か施され
る。
Next, the infusible fibers heat-treated and drawn in this manner are sent to a pre-carbonization furnace and subjected to a pre-carbonization treatment, that is, a second-stage drawing heat treatment in an oxygen-containing atmosphere.

予備炭化炉内は、最高温度か500〜700 ’Cにな
るように設定される。例えば入り口部から出口部にかけ
て400’C,500″C0600℃というように、最
高温度か500〜700℃の間の成る温度にまで達する
よう(こ、段階的に昇温することができる。熱処理温度
か700℃を超えるど、予備炭化11j iMfIの酸
化か過大となり好ましくなく、又、最高温度か500℃
未満だとタヱ1処理時間か長くなるか、或は予備炭化繊
維の表面酸化が不十分となり、期待した効果を得るのか
困難である。
The interior of the preliminary carbonization furnace is set to a maximum temperature of 500 to 700'C. For example, the temperature can be raised stepwise to reach a maximum temperature of 500-700°C, such as 400'C, 500'C0600°C from the inlet to the outlet.Heat treatment temperature If the temperature exceeds 700°C, the oxidation of pre-carbonized 11j iMfI will be excessive, which is undesirable, and if the maximum temperature exceeds 500°C
If it is less than that, the TAE 1 treatment time will be longer or the surface oxidation of the pre-carbonized fibers will be insufficient, making it difficult to obtain the expected effect.

又、該熱処理炉内には不活性カスに少量の酸素又は空気
を混合して供給することにより、低濃度の酸素含有雰囲
気に維持される。酸素濃度は0゜01〜30%、好まし
くは0.05〜10%とされる。不活性ガスとしては窒
素ガス又はアルゴンガスか使用され、酸素又は空気の代
わりにNO。
Furthermore, a low concentration oxygen-containing atmosphere is maintained in the heat treatment furnace by supplying a mixture of inert scum and a small amount of oxygen or air. The oxygen concentration is 0.01 to 30%, preferably 0.05 to 10%. Nitrogen or argon gas is used as the inert gas, and NO instead of oxygen or air.

、SO,、水蒸気、炭酸ガス、ハロゲンガス、強酸の蒸
気を使用しても良い。
, SO, water vapor, carbon dioxide gas, halogen gas, or strong acid vapor may be used.

更に、本発明によれば、該予備炭化炉内における繊維の
滞留時間は20〜300秒とされ、好ましくは50〜2
00秒である。滞留時間は上記熱処理温度及び酸素濃度
との関係で設定される。
Furthermore, according to the present invention, the residence time of the fibers in the pre-carbonization furnace is 20 to 300 seconds, preferably 50 to 2 seconds.
00 seconds. The residence time is set in relation to the heat treatment temperature and oxygen concentration.

つまり、低濃度の酸素含有雰囲気の酸素含有量が0.0
1%未満であると少なすぎて、予備炭化時の短時間加熱
では不融化繊維の表面を有効に酸化させることができず
、逆に30%を超えると多すぎて、短時間の熱処理であ
っても不融化繊維の表面のみを選択的に酸化することが
できず、酸化が繊維の内部まで進み不都合を生じる。
In other words, the oxygen content of the low concentration oxygen-containing atmosphere is 0.0
If it is less than 1%, it is too small and the surface of the infusible fiber cannot be effectively oxidized by short-time heating during preliminary carbonization, and on the other hand, if it exceeds 30%, it is too large and a short-time heat treatment is not enough. However, it is not possible to selectively oxidize only the surface of the infusible fiber, and the oxidation progresses to the inside of the fiber, causing problems.

又、低濃度の酸素含有雰囲気下での不融化繊維の予備炭
化時の熱・処理時間は、20秒未満であると短かすぎて
、雰囲気の酸素含有量を多くしても不融化繊維の表面を
有効に酸化することができず、逆に300秒を超えると
長すぎて、雰囲気の酸素含有量を少なくしても不融化繊
維の内部まで酸化が起こるのを免れない。
In addition, the heat and treatment time during pre-carbonization of infusible fibers in an atmosphere containing low concentration of oxygen is too short if it is less than 20 seconds, so even if the oxygen content of the atmosphere is increased, the infusible fibers will not be The surface cannot be effectively oxidized, and conversely, if it exceeds 300 seconds, it is too long, and even if the oxygen content of the atmosphere is reduced, oxidation will inevitably occur to the inside of the infusible fiber.

更に、本発明に従えば、上記熱処理と同時に繊維には張
力を付与して5〜100%の延伸処理が施される。従っ
て、通常、不融化繊維に付与される張力としては、20
〜1000g/3000フィラメント、つまり、1フイ
ラメント当たり0゜006〜0.33gとされる。延伸
は張力の大きさを調節して設定してもよいし、2個以上
のロールの差動によって調節してもよい。
Furthermore, according to the present invention, at the same time as the above heat treatment, tension is applied to the fibers and a stretching process of 5 to 100% is performed. Therefore, the tension applied to the infusible fiber is usually 20
~1000g/3000 filaments, that is, 0°006~0.33g per filament. Stretching may be set by adjusting the magnitude of tension, or may be adjusted by differential movement of two or more rolls.

本拠明によれば、予備炭化炉内では不融化繊維は低濃度
の酸素含有雰囲気下で短時間加熱処理され、繊維の表面
を選択的に酸化して表面を強固にしながら繊維の予備炭
化が行なわれるので、不融化繊維の予備炭化炉内での更
に延伸処理が可能とされ、予備炭化繊維の融膠着度が低
減するものと考えられる。  ゛ 上述のように、不融化処理後と、予備炭化処理時の二段
階にわたって延伸熱処理を行なうことにより、炭素繊維
の融膠着度は30%以下にまで低減される。と同時に、
繊維における配向性が改善され、特に熱伝導率を増大せ
しめ、高熱伝導率の糸が得られる。
According to Motoaki, the infusible fibers are heat-treated for a short time in an atmosphere containing low concentration of oxygen in the pre-carbonization furnace, and the surface of the fibers is selectively oxidized to strengthen the surface while pre-carbonizing the fibers. Therefore, it is possible to further draw the infusible fibers in the pre-carbonization furnace, and it is thought that the degree of fusion stickiness of the pre-carbonized fibers is reduced. ``As described above, by carrying out the drawing heat treatment in two stages: after the infusibility treatment and during the preliminary carbonization treatment, the degree of fusion and stickiness of the carbon fibers is reduced to 30% or less. At the same time,
The orientation in the fibers is improved, which in particular increases the thermal conductivity, resulting in yarns with high thermal conductivity.

このようにして予備炭化された繊維は次いで、炭化炉へ
と送給され、最高温度が2600〜3200℃の不活性
ガス雰囲気中で1〜30%延伸処理しながら炭化処理が
行なわれる。
The fibers thus preliminarily carbonized are then fed to a carbonization furnace and carbonized while being stretched by 1 to 30% in an inert gas atmosphere with a maximum temperature of 2,600 to 3,200°C.

更に説明すると、炭化炉内における繊維の滞留時間は1
〜100分とされ、好ましくは2〜60分である。滞留
時間は上記熱処理温度との関係で設定される。
To explain further, the residence time of the fiber in the carbonization furnace is 1
~100 minutes, preferably 2 to 60 minutes. The residence time is set in relation to the heat treatment temperature.

又、本発明に従えば、炭化処理時には同時に繊維に張力
を付与して1〜30%の延伸処理が施される。従って、
通常、繊維に付与される張力としては、150〜600
00g/3′Oooフィラメント、つまり、1フイラメ
ント当たり0.05〜20gとされる。
Further, according to the present invention, at the time of carbonization treatment, tension is applied to the fiber at the same time, and stretching treatment is performed by 1 to 30%. Therefore,
Usually, the tension applied to the fiber is 150 to 600.
00g/3'Ooo filament, that is, 0.05 to 20g per filament.

本発明に従えば、不融化処理後と、予備炭化処理時の二
段階にわたって延伸熱処理を行なうと同時に、炭化処理
時においても延伸処理が施されるので、繊維における配
向性が更に著しく改善され、特に熱伝導率を著しく増大
せしめ、超高熱伝導率の糸が得られる。−段或は二段の
延伸熱処理では、本発明に係る上記構成の超高熱伝導率
ピッチ系炭素繊維は得られない。
According to the present invention, the stretching heat treatment is performed in two stages: after the infusibility treatment and the preliminary carbonization treatment, and at the same time, the stretching treatment is performed during the carbonization treatment, so that the orientation of the fibers is further significantly improved. In particular, the thermal conductivity is significantly increased, and a yarn with ultra-high thermal conductivity can be obtained. The ultra-high thermal conductivity pitch-based carbon fiber having the above structure according to the present invention cannot be obtained by the -stage or two-stage drawing heat treatment.

上記製造法にて、繊維軸方向の熱伝導率が500〜15
00W/m/に、繊維結晶構造の積層厚h (L c 
O’02)、/密度(ρ)が120〜5oo、融膠着度
が0〜30%、そして圧縮強度が0.2〜0.4GP’
aであり、又、引張強度は2.5〜4.5GPa、引張
弾性率は700〜950GPaとされる、本発明に従っ
た超高熱伝導率ピッチ系炭素繊維が好適に得られる。
With the above manufacturing method, the thermal conductivity in the fiber axis direction is 500 to 15.
00 W/m/, the lamination thickness h (L c
O'02), density (ρ) is 120-5oo, fusion degree is 0-30%, and compressive strength is 0.2-0.4GP'
The ultra-high thermal conductivity pitch-based carbon fiber according to the present invention, which has a tensile strength of 2.5 to 4.5 GPa and a tensile modulus of 700 to 950 GPa, can be suitably obtained.

尚、本明細書において、炭素繊維の特性は下記の如き測
定方法を採用した。
In this specification, the following measurement method was used to measure the characteristics of carbon fibers.

・熱伝導率 炭素繊維束をエポキシ樹脂に含浸したサンプルをレーザ
ーフラッシュ法で測定した。
・Thermal conductivity was measured using a laser flash method on a sample of carbon fiber bundles impregnated with epoxy resin.

・X線構造パラメータ 積層厚さ(L c 002’)、積層長さ(L a 1
10)、層間隔(doo2)はX線回折法により求めら
れる炭素繊維の微細構造を表わすパラメータである。
・X-ray structural parameters Lamination thickness (L c 002'), Lamination length (L a 1
10) Layer spacing (doo2) is a parameter representing the fine structure of carbon fibers determined by X-ray diffraction method.

積層厚さ(L c 002)は炭素結晶中+7)(0’
02)面の見掛けの積層の厚さを表わし、一般に積層厚
□さ(L c 002)か大きい程結晶性か良いと見な
される。積層長さ(L a 11.0)は炭素結晶中の
(110)面の積層の長さを表わし、一般に積層長さ(
r−allo)か大きい程結晶性か良いと見なさj″l
る。又、層間隔(doo2)は結晶の(002)面の層
間隔を表わし、層間隔(d oo2)か小さい程結晶性
か良いと見なされる。
Lamination thickness (L c 002) is +7) (0'
02) represents the apparent thickness of the laminated layers on the surface, and it is generally considered that the larger the laminated thickness (L c 002), the better the crystallinity. The stacking length (L a 11.0) represents the length of the stacking of (110) planes in the carbon crystal, and is generally referred to as the stacking length (L a 11.0).
It is assumed that the larger the value (r-allo), the better the crystallinity.
Ru. Further, the layer spacing (doo2) represents the layer spacing of the (002) plane of the crystal, and it is considered that the smaller the layer spacing (doo2), the better the crystallinity.

積層厚さ(L c 002)、積層長さ(L a 11
0)、層間隔(doo2)は炭素繊^、11を乳鉢で粉
末状にし、学派法「人造黒鉛の格子定数および結晶子の
大きさ7μ11定法」に県別してt量定・(Il!i!
析を行ない、以下の式から求めた。
Lamination thickness (L c 002), lamination length (L a 11
0), the interlayer spacing (doo2) is determined by powdering carbon fiber ^, 11 in a mortar and determining t by prefecture according to the school method "Lattice constant of artificial graphite and crystallite size 7μ11 method" (Il!i!
It was calculated using the following formula.

LcDO2=にλ/βcosO L a 11.0 = Kλ/13’cosθ゛doo
2 −ん/ 2 s i n eここで、K=1.0.
  走= 1.5418人O:(0[12)面の回折角
2θより求める。
LcDO2=toλ/βcosO L a 11.0 = Kλ/13'cosθ゛doo
2 -n/2 sin eHere, K=1.0.
Travel = 1.5418 person O: Obtained from the diffraction angle 2θ of the (0[12) plane.

0°  (1,10j面の回折角2θより求める。0° (determined from the diffraction angle 2θ of the 1,10j plane.

β ・補正により求めた(002)面の回折帯の半価幅
β - Half width of the diffraction band of the (002) plane determined by correction.

β′ 補正により求めた(110)面の回折帯の半価幅
Half width of diffraction band of (110) plane determined by β' correction.

・密度(ρ) 密度勾配管にて測定した。・Density (ρ) It was measured using a density gradient tube.

・融膠着度 3000フイラメントからなる炭素繊維束を1.5mm
中畠に切り取り、これをエタノール(こt受潰し、30
秒間エアーを吹き込み、その後顕微鏡下で20倍の倍率
で融膠着しているフィラメントの総、本数(N)を数え
ることしこより次の式にて求められる。
・1.5mm carbon fiber bundle made of filament with a fusion degree of 3000
Cut out the Nakabatake and add it to ethanol (crushed, 30 ml).
Air is blown for seconds, and then the total number (N) of fused and stuck filaments is counted under a microscope at a magnification of 20 times, and is determined by the following formula.

融膠着度= (N/3000:)X100 (%)・圧
縮強度 炭素繊維束をエポキシ崩脂に含浸したケンプルをAST
M  D341Dに従って渭j定した。
Melting adhesion degree = (N/3000:)X100 (%)・Compressive strength Kemple made by impregnating carbon fiber bundles with epoxy fat is AST
It was determined according to MD341D.

以下、本発明に係る超高熱伝導率ピッチ系炭素繊維の製
造方法を実施例について説明する。
EXAMPLES Hereinafter, the method for producing ultra-high thermal conductivity pitch-based carbon fiber according to the present invention will be described with reference to Examples.

実施例1 ピッチ繊維を製造するに当り、光学的異方性相を45%
含有し、軟化点か226℃である炭素質ピッチを前駆体
ピッチとして使用した。この前駆体ピッチを遠心分離に
より光学的異方性相の多いピッチと光学的等方性相の多
いピッチとを連続的に分離し、それぞれ抜き出した。
Example 1 In producing pitch fiber, optically anisotropic phase was reduced to 45%
A carbonaceous pitch having a softening point of 226° C. was used as a precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

得られた光学的異方・1(j、相を多く含もピッチは、
光学的異方性相を100%含み、軟化点は270℃、キ
ノリンネ7容分は28.0重量%であった。
The obtained optical anisotropy 1 (j, including many phases and the pitch is
It contained 100% of an optically anisotropic phase, had a softening point of 270°C, and 7 volumes of quinoline was 28.0% by weight.

該炭素繊維用ピッチを500孔の紡糸口金を有する溶融
紡糸機(ノズル孔径 直径0.3mm)に通し、335
 ’Cで紡糸した。
The carbon fiber pitch was passed through a melt spinning machine having a 500-hole spinneret (nozzle hole diameter: 0.3 mm), and 335
'C was spun.

紡糸した500本のフィラメン[・はエアーサッカーで
略集束してオイリングローラに導き、糸に対して約02
重量%の割合で集束用油剤な供給し、500フイラメン
トから成るピッチ繊維を形成した。油剤としては、25
℃における粘度か14cstのメヂルフゴニルボリシロ
キケンを使用した。
The 500 spun filaments [.
A focusing oil was supplied in a proportion of 500% by weight to form a pitch fiber consisting of 500 filaments. As an oil agent, 25
Medilphgonylbolysiloxene having a viscosity of 14 cst at °C was used.

該ピッチ繊維は、ノズル下部に設けた高速で回転する直
径210+nm、幅200mmのステンレス鋼製のボビ
ンに巻き取り、約500m/分の巻き取り速度で10分
間紡糸した。ボビン]回転当たりのトラバースのピッチ
は10 m m / 1回転であった。紡糸の間に糸切
A1は発生しなかった。
The pitch fibers were wound onto a stainless steel bobbin with a diameter of 210+ nm and a width of 200 mm that was installed at the bottom of the nozzle and rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min. bobbin] The pitch of the traverse per revolution was 10 mm/1 revolution. No thread breakage A1 occurred during spinning.

次いで、ピッチ繊毛((を巻いた前記ボビン6個を解舒
し、そしてオイリングローラを使用して耐熱性油剤を付
与しなから合糸し、3000フイラメントから成るピッ
チ繊維を形成し、他のステンレス製ボビンに巻貝yっだ
Next, the six bobbins wound with pitch cilia (() were unwound, and the threads were combined using an oiling roller without applying a heat-resistant oil to form a pitch fiber consisting of 3000 filaments. There's a conch shell on a made bobbin.

合糸時に油剤としては25℃で40cstのメヂルフェ
ニルボリシロキケン(フェニル基含有量45モル%)を
使用した。イ勺重量は糸に対し05%であった。
During yarn doubling, 40 cst medylphenylbolysiloxene (phenyl group content: 45 mol %) was used at 25°C as an oil agent. The weight of the fiber was 0.5% based on the yarn.

このようにして得た、ボビン巻のピッチ繊fill−を
ボビンから解舒しつつ、炉入口調度180℃1最高温度
295℃の温度勾配を持っ富酸素雰囲気(酸素/窒素二
60740)の連続不融化炉に線状で連続的に導入した
。昇温速度は6℃/分であリ、不融化時間は19分であ
った。繊維にかけた張力はlフィラメント当たり0.0
07g (3000フイラメントの繊維束に対して20
g)であった。不融化後の不融化繊維の酸素濃度は9.
5重量%であった。
While unwinding the thus obtained bobbin-wound pitch fiber fill- from the bobbin, an oxygen-rich atmosphere (oxygen/nitrogen 2 60,740) with a temperature gradient of 180°C at the furnace inlet and 295°C at the maximum temperature was maintained. It was introduced continuously in a linear manner into the melting furnace. The temperature increase rate was 6° C./min, and the infusibility time was 19 minutes. The tension applied to the fiber is 0.0 per liter filament.
07g (20 for a fiber bundle of 3000 filaments)
g). The oxygen concentration of the infusible fiber after infusibility is 9.
It was 5% by weight.

不融化中、ボビンからのピッチ繊維の解舒は円滑に行な
われ、不融化炉内での繊維束の断糸もなく円滑に不融化
処理ができた。
During the infusibility process, the pitch fibers were unraveled from the bobbin smoothly, and the infusibility treatment was carried out smoothly without any breakage of the fiber bundle in the infusibility furnace.

このようにして得られた不融化繊維は、予備炭化炉へと
通糸する前に、450 ’Cに保持された熱処理炉へと
供給した。繊維には張力が1フイラメント当たり0.0
07g付加された。炉内には空気が導入された。
The infusible fibers thus obtained were fed to a heat treatment furnace maintained at 450'C before being passed to a pre-carbonization furnace. The fiber has a tension of 0.0 per filament.
07g added. Air was introduced into the furnace.

上記構成にて、不融化繊維を熱処理するのに要した時間
は25秒であった。
With the above configuration, the time required to heat treat the infusible fibers was 25 seconds.

熱処理炉内での繊維の断糸もなく円滑に熱処理ができた
。この熱処理における糸の延伸率は20%であった。
The heat treatment was carried out smoothly without any fiber breakage in the heat treatment furnace. The stretching ratio of the yarn in this heat treatment was 20%.

この酸素含有雰囲気下で熱処理した繊維は、炉入口温度
400 ’C2最高温度600℃の温度勾配を有する酸
素含有雰囲気(酸素/窒素= 5/95)の予備炭化炉
に線状で連続的に導入した。繊維には、1フイラメント
当たり0.017gの張力が付与され延伸率は15%で
あった。予備炭化時間は25秒であった。24時間連続
に処理したが、この間、炉内での断糸、糸切れは全く生
じなかった。
The fibers heat-treated in this oxygen-containing atmosphere are continuously introduced in a linear manner into a pre-carbonization furnace in an oxygen-containing atmosphere (oxygen/nitrogen = 5/95) with a temperature gradient of 400°C at the furnace inlet and 600°C at the maximum temperature. did. A tension of 0.017 g per filament was applied to the fibers, and the stretching ratio was 15%. Preliminary carbonization time was 25 seconds. Although the treatment was continued for 24 hours, no yarn breakage or breakage occurred in the furnace during this period.

この予備炭化繊維は、最高温度が2800″Cとされる
アルゴンガス雰囲気の炭化炉に線状で連続的に導入した
。繊維には、1フイラメント当たり0.3gの張力が付
与され延伸率は9%であった。炭化時間は10分であっ
た。糸径は8.3μmであった。
The pre-carbonized fibers were continuously introduced in a linear manner into a carbonization furnace in an argon gas atmosphere with a maximum temperature of 2800"C. A tension of 0.3 g per filament was applied to the fibers, and the drawing rate was 9. %. Carbonization time was 10 minutes. Thread diameter was 8.3 μm.

この炭素繊維の特性は表1に示す。The properties of this carbon fiber are shown in Table 1.

実施例2 実施例1と同様の材料及び方法にて不融化繊維を製造し
、この不融化繊維を実施例1と同様に、予備炭化炉へと
通糸する前に、450’Cに保持された熱処理炉へと供
給した。繊維には張力が1フイラメント当たり0.00
7’g付加され、25秒間熱処理を行なった。炉内には
空気が導入された。
Example 2 An infusible fiber was produced using the same materials and method as in Example 1, and the same as in Example 1, the infusible fiber was held at 450'C before being threaded into a pre-carbonization furnace. It was then supplied to a heat treatment furnace. The fiber has a tension of 0.00 per filament.
7'g was added, and heat treatment was performed for 25 seconds. Air was introduced into the furnace.

熱処理炉内での繊維の断糸もなく円滑に熱処理ができた
。この熱処理における糸の延伸率は20%であった。
The heat treatment was carried out smoothly without any fiber breakage in the heat treatment furnace. The stretching ratio of the yarn in this heat treatment was 20%.

この酸素含有雰囲気下で熱処理した繊維は、実施例1と
同じ(炉入口温度4.’OO℃1最高温度60′0℃の
温度勾配を有する酸素含有雰囲気(酸素/窒素=5/9
5)の予備炭化炉に線状で連続的に導入した。このとき
繊維には、実施例1と異なり1フイラメント当たり0.
067gの張力が付与され延伸率は19%であった。予
備炭化時間は25秒であった。24時間連続に処理した
が、この間、炉内での断糸、糸切れは全(生じなかった
The fibers heat-treated in this oxygen-containing atmosphere were produced in the same manner as in Example 1 (furnace inlet temperature: 4.00°C; maximum temperature: 60°C; oxygen-containing atmosphere with a temperature gradient of 0°C (oxygen/nitrogen = 5/9
5) was continuously introduced in a linear manner into the preliminary carbonization furnace. At this time, unlike in Example 1, the fibers contained 0.00% per filament.
A tension of 0.067 g was applied and the stretching ratio was 19%. Preliminary carbonization time was 25 seconds. Although the treatment was continued for 24 hours, no yarn breakage or breakage occurred in the furnace during this period.

この予備炭化繊維は、最高温度3000 ℃とされるア
ルゴンガス雰囲気の炭化炉に線状で連続的に導入した。
This pre-carbonized fiber was continuously introduced in a linear manner into a carbonization furnace in an argon gas atmosphere with a maximum temperature of 3000°C.

繊維には、lフィラメント当たり0、.4gの張力が付
与され延伸率は10%であっ□た。炭化時間は12分で
あった。糸径は8−1ILLmであった。
The fibers contain 0, . A tension of 4 g was applied and the stretching ratio was 10%. Carbonization time was 12 minutes. The thread diameter was 8-1 ILLm.

この炭素繊維の特性は表1に示す。The properties of this carbon fiber are shown in Table 1.

比較例1 実施例2と同様の材料及び方法にて不融化繊維及び予備
炭化繊維を得、該予備炭化繊維を最高温度2800℃と
されるアルゴンガス雰囲気の炭化炉に線状で連続的に導
入して炭化した。炭化時間は10分であった。炭化処理
時に繊維に張力は付与しなかった。糸径は8.4μmで
あった。
Comparative Example 1 Infusible fibers and pre-carbonized fibers were obtained using the same materials and methods as in Example 2, and the pre-carbonized fibers were continuously introduced in a linear manner into a carbonization furnace in an argon gas atmosphere with a maximum temperature of 2800°C. and carbonized. Carbonization time was 10 minutes. No tension was applied to the fibers during the carbonization process. The thread diameter was 8.4 μm.

この炭素繊維の特性は表1に示す。The properties of this carbon fiber are shown in Table 1.

比較例2    一 実施例1と同様の材料及び方法にて不融化繊維を製造し
、この不融化繊維を、予備炭化の前の熱処理を行なわず
に、直接酸素含有雰囲気(酸素/窒素=5/95)、の
予備炭化炉内へと線状で連続的に導入し、予備炭化を行
なった。予備炭化炉は、炉入口温度が400℃、最高温
度が900℃の温度勾配を有しており、250秒間かけ
て予備炭化処理を行なった。繊維には、張力が1フイラ
メント当たり0.017g付与され、この時延伸率は1
5%であった。
Comparative Example 2 An infusible fiber was produced using the same materials and method as in Example 1, and the infusible fiber was directly exposed to an oxygen-containing atmosphere (oxygen/nitrogen = 5/ 95), was continuously introduced in a linear manner into a pre-carbonization furnace, and pre-carbonization was performed. The preliminary carbonization furnace had a temperature gradient with a furnace inlet temperature of 400°C and a maximum temperature of 900°C, and the preliminary carbonization treatment was performed for 250 seconds. A tension of 0.017 g per filament is applied to the fiber, and the stretching ratio is 1.
It was 5%.

この予備炭化繊維は、最高温度2800 ’Cとされる
アルゴンガス雰囲気の炭化炉に線状で連続的に導入した
。繊維には、1フイラメント当たり0.3gの張力が付
与され延伸率は8%であった。炭化時間は10分であっ
た。糸径は9.1μmであった。
This pre-carbonized fiber was continuously introduced in a linear manner into a carbonization furnace in an argon gas atmosphere with a maximum temperature of 2800'C. A tension of 0.3 g per filament was applied to the fibers, and the stretching ratio was 8%. Carbonization time was 10 minutes. The thread diameter was 9.1 μm.

この炭素i&維の特性は表1に示す。The properties of this carbon i & fiber are shown in Table 1.

比較例3 実施例1と同様の材料及び方法にて不融化繊維を製造し
、この不融化繊維を実施例1と同様に、450℃に保持
された熱処理炉へと供給した。繊維には張力が1フイラ
メント当たり0.007g付加され、25秒間熱処理を
行なった。炉内には空気が導入された。
Comparative Example 3 Infusible fibers were produced using the same materials and methods as in Example 1, and similarly to Example 1, the infusible fibers were supplied to a heat treatment furnace maintained at 450°C. A tension of 0.007 g per filament was applied to the fibers, and heat treatment was performed for 25 seconds. Air was introduced into the furnace.

このように熱処理して得られた不融化繊維を、予備炭化
延伸処理することな(、最高温度2800℃とされるア
ルゴンガス雰囲気の炭化炉に線状で連続的に導入した。
The infusible fibers obtained by heat treatment in this manner were continuously introduced in a linear manner into a carbonization furnace in an argon gas atmosphere with a maximum temperature of 2800° C. without being subjected to preliminary carbonization stretching treatment.

繊維には、lフィラメント当たりO’、 3’gの張力
が付与され延伸率は10%であった。炭化時間は15分
であった。糸径は8.9μmであった。
The fibers were subjected to a tension of O', 3'g per filament, and the draw ratio was 10%. Carbonization time was 15 minutes. The thread diameter was 8.9 μm.

この炭素繊維の特性は表1に示す。The properties of this carbon fiber are shown in Table 1.

免ユ坐方1 以上説明した如く本発明に係る超高熱伝導率ピッチ系炭
素繊維は、引張強度及び引張弾性率を損なうことなく、
熱伝導率が極めて高く、且つ圧縮強度が大であり、しか
も糸扱い性に優れているという特長を有している。  
Menu sitting position 1 As explained above, the ultra-high thermal conductivity pitch-based carbon fiber according to the present invention has
It has extremely high thermal conductivity, high compressive strength, and excellent yarn handling properties.

Claims (1)

【特許請求の範囲】 1)繊維軸方向の熱伝導率が500〜1500W/m/
K、繊維結晶構造の積層厚み(Lc002)/密度(p
)が120〜500、融膠着度が0〜30%、そして圧
縮強度が0.2〜0.4GPaであることを特徴とする
超高熱伝導率ピッチ系炭素繊維。 2)引張強度は2.5〜4.5GPa、引張弾性率は7
00〜950GPaである請求項1記載の超高熱伝導率
ピッチ系炭素繊維。 3)炭素質ピッチを紡糸して得たピッチ繊維を不融化し
、該不融化した不融化繊維を300〜500℃の酸素含
有雰囲気中に1〜200秒間通して5〜100%の延伸
熱処理を施し、引続いて、最高温度が500〜700℃
の酸素含有雰囲気中に20〜300秒間通して5〜10
0%の延伸予備炭化処理し、その後、最高温度が260
0〜3200℃の不活性ガス雰囲気中で1〜30%の延
伸処理を施しながら炭化を行なうことを特徴とする超高
熱伝導率ピッチ系炭素繊維の製造法。
[Claims] 1) Thermal conductivity in the fiber axis direction is 500 to 1500 W/m/
K, lamination thickness (Lc002)/density (p
) is 120 to 500, a fusion degree is 0 to 30%, and a compressive strength is 0.2 to 0.4 GPa. 2) Tensile strength is 2.5 to 4.5 GPa, tensile modulus is 7
The ultra-high thermal conductivity pitch-based carbon fiber according to claim 1, which has a thermal conductivity of 00 to 950 GPa. 3) Pitch fibers obtained by spinning carbonaceous pitch are made infusible, and the infusible infusible fibers are passed through an oxygen-containing atmosphere at 300 to 500°C for 1 to 200 seconds to undergo a stretching heat treatment of 5 to 100%. application, followed by a maximum temperature of 500-700℃
5 to 10 times for 20 to 300 seconds in an oxygen-containing atmosphere of
0% stretching preliminary carbonization treatment, then maximum temperature 260
A method for producing pitch-based carbon fibers with ultra-high thermal conductivity, characterized by carrying out carbonization while performing a stretching treatment of 1 to 30% in an inert gas atmosphere at 0 to 3,200°C.
JP27943790A 1990-10-19 1990-10-19 Pitch-based carbon fiber having extremely high thermal conductivity and production thereof Pending JPH04163319A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP27943790A JPH04163319A (en) 1990-10-19 1990-10-19 Pitch-based carbon fiber having extremely high thermal conductivity and production thereof
EP19910309540 EP0481762A3 (en) 1990-10-19 1991-10-16 Pitch-based carbon fiber
CA 2053669 CA2053669A1 (en) 1990-10-19 1991-10-17 High thermal conductivity pitch-based carbon fiber and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27943790A JPH04163319A (en) 1990-10-19 1990-10-19 Pitch-based carbon fiber having extremely high thermal conductivity and production thereof

Publications (1)

Publication Number Publication Date
JPH04163319A true JPH04163319A (en) 1992-06-08

Family

ID=17611058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27943790A Pending JPH04163319A (en) 1990-10-19 1990-10-19 Pitch-based carbon fiber having extremely high thermal conductivity and production thereof

Country Status (1)

Country Link
JP (1) JPH04163319A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331536A (en) * 1994-04-11 1995-12-19 Mitsubishi Chem Corp Pitch-based carbon fiber
JPH0813255A (en) * 1994-07-05 1996-01-16 Mitsubishi Chem Corp Carbon fiber having ultra-high modulus of elasticity and high strength and its production
WO1999011586A3 (en) * 1997-09-02 1999-08-05 Lockheed Martin Energy Res Cor Thermally conductive carbon foam
JP2009184510A (en) * 2008-02-06 2009-08-20 Bridgestone Corp Run flat tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331536A (en) * 1994-04-11 1995-12-19 Mitsubishi Chem Corp Pitch-based carbon fiber
JPH0813255A (en) * 1994-07-05 1996-01-16 Mitsubishi Chem Corp Carbon fiber having ultra-high modulus of elasticity and high strength and its production
WO1999011586A3 (en) * 1997-09-02 1999-08-05 Lockheed Martin Energy Res Cor Thermally conductive carbon foam
JP2009184510A (en) * 2008-02-06 2009-08-20 Bridgestone Corp Run flat tire

Similar Documents

Publication Publication Date Title
JPS62117820A (en) Production of carbon fiber chopped strand
JPH04163319A (en) Pitch-based carbon fiber having extremely high thermal conductivity and production thereof
JPS60173121A (en) Production of carbon yarn and graphite yarn
JPH0737689B2 (en) Method for producing carbon fiber and graphite fiber
JPH04163318A (en) Pitch-based carbon fiber having high thermal conductivity and production thereof
JPS6257932A (en) Production of carbon fiber and graphite fiber
EP0481762A2 (en) Pitch-based carbon fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPH0491228A (en) Production of pitch-based carbon fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPH05171518A (en) Pitch carbon fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPS62133120A (en) Production of carbon fiber and graphite fiber
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH04119126A (en) Production of pitch-based carbon fiber and graphite fiber
JPH05171519A (en) Production of pitch carbon fiber
JPS62184125A (en) Production of carbon yarn and graphite yarn
JPS62191516A (en) Production of carbon fiber and graphite fiber
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JPS62156316A (en) Production of carbon fiber and graphite fiber
JPS62191520A (en) Production of carbon fiber and graphite fiber
JP3644271B2 (en) Method for producing pitch-based carbon fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPS62191515A (en) Production of carbon fiber and graphite fiber