JPH0491229A - Production of pitch-based carbon fiber - Google Patents

Production of pitch-based carbon fiber

Info

Publication number
JPH0491229A
JPH0491229A JP20698690A JP20698690A JPH0491229A JP H0491229 A JPH0491229 A JP H0491229A JP 20698690 A JP20698690 A JP 20698690A JP 20698690 A JP20698690 A JP 20698690A JP H0491229 A JPH0491229 A JP H0491229A
Authority
JP
Japan
Prior art keywords
fiber
fibers
pitch
infusible
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20698690A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Kiyotoshi Mase
間瀬 清年
Takashi Hino
日野 隆
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP20698690A priority Critical patent/JPH0491229A/en
Publication of JPH0491229A publication Critical patent/JPH0491229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber by infusiblizing pitch fiber, stretching, the infusiblized fiber simultaneously with heat-treating under a specific condition, pre-carbonizing, carbonizing and graphitizing to prevent fiber break in a pre- carbonizing furnace and reduce degree of fusion and agglutination of pre- carbonized fiber. CONSTITUTION:Pitch fiber obtained by spinning of carbonaceous pitch is infusiblized and the infusiblized fiber is subjected to heat treatment by passing through an oxygen-containing atmosphere at 300-500 deg.C, preferably 350-480 deg.C for 1-200sec, preferably 10-100sec simultaneously with stretching at 50-100% by applying tension to the infusiblized fiber, then pre-carbonized, carbonized and graphitized to afford the aimed fiber.

Description

【発明の詳細な説明】 の1 本発明は、一般には炭素繊維(本明細書にて「炭素繊維
」とは特に明記しない場合には炭素繊維のみならず黒鉛
繊維をも含めて使用する。)の製造方法に関するもので
あり、特に種々の炭素質ピッチから炭素繊維を極めて効
率よく且つ多量に製造する方法に関するものである。
[Detailed Description of the Invention] No. 1 The present invention generally refers to carbon fibers (in this specification, unless otherwise specified, "carbon fibers" is used to include not only carbon fibers but also graphite fibers). The present invention relates to a method for producing carbon fibers from various carbonaceous pitches, and particularly to a method for producing carbon fibers from various carbonaceous pitches extremely efficiently and in large quantities.

【釆Ω且I 石油系ピッチ、石炭系ピッチ等の炭素質ピッチから製造
されるピッチ系炭素繊維は、現在量も多量に製造されて
いるレーヨン系やPAN系の炭素繊維に比較して炭化収
率が高く、弾性率等の物理的特性も優れており、更に低
コストにて製造し得るという利点を有しているために近
年注目を浴びている。
[釆Ω且I Pitch-based carbon fibers manufactured from carbonaceous pitches such as petroleum-based pitch and coal-based pitch have a lower carbonization rate than rayon-based and PAN-based carbon fibers, which are currently produced in large quantities. It has attracted attention in recent years because it has a high modulus, excellent physical properties such as elastic modulus, and can be manufactured at low cost.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチ等から炭素繊維に適
した炭素質ピッチを調製し、該炭素質ピッチを加熱溶融
して紡糸機にて紡糸し、集束してピッチ繊維を製造し、 (2)前記ピッチ繊維を不融化炉にて酸化性雰囲気下に
て150〜350℃までに加熱して不融化し、 (3)次いで、不融化された繊維を炭化炉にて不活性雰
囲気下にて3000℃以下にまで加熱して炭化或は黒鉛
化すること、 により製造されている。
Currently, pitch-based carbon fibers are produced by: (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, spinning it in a spinning machine, and converging it; (2) The pitch fibers are heated to 150 to 350°C in an oxidizing atmosphere in an infusible furnace to make them infusible. (3) The infusible fibers are then carbonized. It is manufactured by heating to 3000°C or less in a furnace under an inert atmosphere to carbonize or graphitize it.

しかしながら、従来の技術によっては、ピッチ繊維、不
融化繊維の引張強度が約0.01GPaと小さい上、脆
いためにその取扱いが難しく、高性能製品を得るのに必
要なロングフィラメント状の繊維を安定して多量に得る
ことが極めて困難であった。
However, depending on the conventional technology, pitch fibers and infusible fibers have a low tensile strength of approximately 0.01 GPa and are brittle, making them difficult to handle. It was extremely difficult to obtain it in large quantities.

これらの問題解決方法の一つとして、本発明者らは、炭
素質ピッチを紡糸して得たピッチ繊維を合糸してストレ
ート系油剤を付与することによって繊維束の強さを強く
した上で、酸素濃度が30%以上の冨駿素ガス中で、繊
維束を連続的に線状で通して不融化する方法を提案した
(特開昭63−264917号を参照せよ)。
As one method to solve these problems, the present inventors have developed a method of increasing the strength of fiber bundles by doubling pitch fibers obtained by spinning carbonaceous pitch and applying a straight oil. proposed a method of making the fiber bundle infusible by passing it continuously in a linear manner in a hydrogen chloride gas having an oxygen concentration of 30% or more (see JP-A-63-264917).

が       よ   と   る しかしながら、不融化繊維を、化学的に不活性なアルゴ
ン又は窒素ガスなどの雰囲気中で500〜1000℃ま
で昇温して初期の炭化を行なう予備炭化工程に、線状で
通した場合には、特開昭59−15517号に開示され
るように、繊維束の温度が700〜800℃の温度に達
するまでに、繊維束の強さが室温下の強さより大幅に減
少し、予備炭化処理中に炉内で繊維束が切断し、毛羽立
ち易いという大きな欠点があった。
However, the infusible fibers were linearly passed through a preliminary carbonization process in which the temperature was raised to 500 to 1000°C in an atmosphere of chemically inert argon or nitrogen gas to perform initial carbonization. In some cases, as disclosed in JP-A-59-15517, by the time the temperature of the fiber bundle reaches 700 to 800°C, the strength of the fiber bundle is significantly reduced from the strength at room temperature, A major drawback was that the fiber bundles were easily cut in the furnace during the preliminary carbonization process and became fluffy.

上記特開昭63−264917号に記載の発明も、この
問題点を根本的に解決し得るものではなく、予備炭化炉
において不融化繊維の炉内断糸が頻繁に発生し、通糸歩
留りが低下し、毛羽立ち易いという問題があった。
The invention described in JP-A No. 63-264917 cannot fundamentally solve this problem, and in the pre-carbonizing furnace, the infusible fibers frequently break in the furnace, and the yarn threading yield decreases. There was a problem in that it deteriorated and fuzzed easily.

更に、1本の不融化繊維は、100〜 100000本のフィラメントが集束されて構成された
繊維束Q形態とされており、従って、予備炭化に際して
、各フィラメントが融着したり、膠着したりする度合い
が大となり、製品である焼成処理後の炭素繊維の品質に
問題を生じるという大きな欠点が発生した。
Furthermore, one infusible fiber is in the form of a fiber bundle Q, which is made up of 100 to 100,000 filaments, and therefore, each filament may fuse or stick together during preliminary carbonization. This resulted in a major drawback in that the quality of the carbon fiber product after firing treatment was affected.

このような、予備炭化炉における炉内断糸の改善を行な
う一つの手段として、不融化炉内における不融化繊維の
不融化度を上げることが考えられるが、本発明者らの研
究実験の結果によると、この方法では、炭素繊維の物性
が低下することとなり、この方法は適当でないことが分
かった。
One way to improve the yarn breakage in the pre-carbonization furnace is to increase the degree of infusibility of the infusible fibers in the infusibility furnace, but as a result of research experiments conducted by the present inventors, According to this method, the physical properties of the carbon fiber deteriorated, and it was found that this method was not suitable.

本発明者らは、連続焼成プロセスにて炭素繊維を製造す
る方法を研究する過程において、通常通りに不融化した
不融化繊維を高温の酸素含有雰囲気中に極(短詩間通し
て熱処理し、その後、予備炭化することにより、不融化
繊維の予備炭化炉内での断糸が防止され、通糸歩留りが
向上すること、更には、予備炭化繊維の融膠着度が減少
し、高品質の炭素繊維を製造し得ることを見出した。
In the process of researching a method for producing carbon fibers using a continuous firing process, the present inventors heat-treated normally infusible fibers in a high-temperature oxygen-containing atmosphere, and then By pre-carbonizing, breakage of the infusible fibers in the pre-carbonization furnace is prevented and threading yield is improved, and furthermore, the degree of fusion and agglutination of the pre-carbonized fibers is reduced, resulting in high quality carbon fibers. It was discovered that it is possible to produce

更に、驚くべきことに、このような熱処理時において、
該不融化繊維を熱処理すると同時に該不融化繊維にテン
ションを付与し延伸処理することにより、得られる炭素
繊維の物性、即ち、引張強度及び引張弾性率が飛躍的に
向上し、圧縮強度も増大することを見出した。
Furthermore, surprisingly, during such heat treatment,
By heat-treating the infusible fibers and simultaneously applying tension to the infusible fibers and drawing them, the physical properties of the resulting carbon fibers, that is, the tensile strength and tensile modulus, are dramatically improved, and the compressive strength is also increased. I discovered that.

本発明は、斯る新規な知見に基づきなされたものである
The present invention has been made based on this new knowledge.

従って、本発明の目的は、不融化繊維の予備炭化炉内で
の断糸を防止し、通糸歩留りを向上せしめ、更には、予
備炭イし繊維の融膠着度を低減させ、高引張強度、高引
張弾性率及び高圧縮強度を有した高品質の炭素繊維を製
造するためのピッチ系炭素繊維の製造方法を提供するこ
とである。
Therefore, it is an object of the present invention to prevent yarn breakage of infusible fibers in a pre-carbonizing furnace, improve yarn threading yield, reduce the degree of fusion stickiness of pre-carbonized fibers, and achieve high tensile strength. An object of the present invention is to provide a method for producing pitch-based carbon fibers for producing high-quality carbon fibers having high tensile modulus and high compressive strength.

本発明の他の目的は、予備炭化時間を、従来の115〜
1/10程度にまで短縮し、効率よ(高引張強度、高引
張弾性率及び高圧縮強度を有した炭素繊維を製造するこ
とのできるピッチ系炭素繊維の製造方法を提供すること
である。
Another object of the present invention is to reduce the preliminary carbonization time from 115 to
It is an object of the present invention to provide a method for producing pitch-based carbon fibers that can be shortened to about 1/10 and efficiently produce carbon fibers having high tensile strength, high tensile modulus, and high compressive strength.

るた の 上記諸口的は、本発明に係るピッチ系炭素繊維の製造方
法によって達成される。要約すれば本発明は、炭素質ピ
ッチを紡糸して得たピッチ繊維を不融化し、該不融化し
た不融化繊維を300〜500℃の酸素含有雰囲気中に
1〜200秒間通して熱処理を行ないながら、同時に該
不融化繊維にテンションを付与して5〜100%の延伸
処理を施し、その後に予備炭化し、次いで炭化或は黒錯
化を行なうことを特徴とするピッチ系炭素繊維の製造方
法である。
The above-mentioned objectives are achieved by the method for producing pitch-based carbon fiber according to the present invention. In summary, the present invention involves infusible pitch fibers obtained by spinning carbonaceous pitch, and heat-treating the infusible infusible fibers by passing them through an oxygen-containing atmosphere at 300 to 500°C for 1 to 200 seconds. However, at the same time, tension is applied to the infusible fibers and a stretching treatment of 5 to 100% is performed, followed by preliminary carbonization, and then carbonization or black complexation. It is.

つまり、本発明に従えば、連続焼成プロセスにて炭素繊
維を製造する方法において、通常通りに不融化した不融
化繊維を高温の、即ち、300〜500℃の、好ましく
は350〜480℃の酸素含有雰囲気中に極く短時間、
即ち、1〜200秒間、好ましくは10〜100秒間通
して熱処理し、同時に該不融化繊維にテンションを付与
して5〜100%の延伸処理を施し、その後、予備炭化
が行なわれる。それによって不融化繊維の予備炭化炉内
での断糸が防止され、通糸歩留りが向上する。又、本発
明によれば、予備炭化処理後の予備炭化繊維の融膠着度
が減少し、従って、引続き行なわれる炭化或は黒鉛化処
理された後の炭素繊維の融膠着は低減し、極めて高品質
の炭素繊維を得ることができる。同時に、本発明によれ
ば、不融化繊維を熱処理すると同時に該不融化繊維にテ
ンションを付与し延伸処理がなされるために、得られる
炭素繊維の物性、即ち、引張強度及び引張弾性率が飛躍
的に増大するのみならず、圧縮強度も増大する。
That is, according to the present invention, in a method for producing carbon fibers by a continuous firing process, normally infusible fibers are exposed to oxygen at a high temperature, that is, from 300 to 500°C, preferably from 350 to 480°C. For a very short time in a containing atmosphere,
That is, heat treatment is performed for 1 to 200 seconds, preferably 10 to 100 seconds, and at the same time tension is applied to the infusible fibers to stretch them by 5 to 100%, followed by preliminary carbonization. This prevents the infusible fibers from breaking in the pre-carbonization furnace and improves the threading yield. Further, according to the present invention, the degree of fusing and agglutination of the pre-carbonized fibers after the pre-carbonization treatment is reduced, and therefore the degree of fusing and agglutination of the carbon fibers after the subsequent carbonization or graphitization treatment is reduced and extremely high. You can get quality carbon fiber. At the same time, according to the present invention, since the infusible fibers are heat-treated and stretched at the same time by applying tension to the infusible fibers, the physical properties of the obtained carbon fibers, that is, tensile strength and tensile modulus, are dramatically improved. Not only does the compressive strength increase.

本発明の製造方法が、上述のような作用効果を奏し得る
のは次の理由によるものと考えられる。
The reason why the manufacturing method of the present invention can achieve the above-mentioned effects is considered to be due to the following reasons.

つまり、不融化した不融化繊維を予備炭化する前に、3
00〜500℃の酸素含有雰囲気中に1〜200秒間通
して熱処理を行なうことにより、不融化繊維の糸表面の
みが選択的に酸化され、糸の内部は高温の熱による熱重
合が更に進展し、その結果、多数のフィラメントからな
る不融化繊維が強くなり、その後の予備炭化処理に際し
て、炉内での断糸が防止され、通糸歩留りが向上し、同
時に、糸表面での融膠着度が低減するものと考えられる
。又、本発明によれば不融化繊維が予備炭化前に酸化さ
れるが、糸の表面のみが酸化されるだけであるので、製
品である炭素繊維の物性を低下させることはない。
In other words, before pre-carbonizing the infusible fibers,
By performing heat treatment in an oxygen-containing atmosphere at 00 to 500°C for 1 to 200 seconds, only the thread surface of the infusible fiber is selectively oxidized, and the inside of the thread undergoes further thermal polymerization due to high temperature heat. As a result, the infusible fiber consisting of a large number of filaments becomes stronger, and during the subsequent preliminary carbonization treatment, yarn breakage in the furnace is prevented, the threading yield is improved, and at the same time, the degree of fusion and agglutination on the yarn surface is reduced. It is thought that this will reduce the Furthermore, according to the present invention, the infusible fiber is oxidized before preliminary carbonization, but only the surface of the thread is oxidized, so the physical properties of the carbon fiber product are not deteriorated.

更に、本発明によれば、不融化繊維の糸表面のみが選択
的に酸化され、糸の内部は熱重合が更に進展し、その結
果、不融化繊維の強度が増大することとなり、該不融化
繊維へのテンションの付与が、つまり延伸処理が可能と
され、それによって繊維の配向性が改善され、得られる
炭素繊維の物性が向上するものと考えられる。
Further, according to the present invention, only the yarn surface of the infusible fiber is selectively oxidized, and thermal polymerization further progresses inside the yarn, resulting in an increase in the strength of the infusible fiber. It is thought that applying tension to the fibers, that is, making it possible to perform a drawing process, improves the orientation of the fibers and improves the physical properties of the resulting carbon fibers.

次に、本発明に係るピッチ系炭素繊維の製造方法につい
て更に詳しく説明する。
Next, the method for producing pitch-based carbon fiber according to the present invention will be explained in more detail.

先ず、炭素質ピッチは当業者には周知の方法によって紡
糸できる。例えば、石油系ピッチ、石炭系ピッチ等の炭
素繊維の製造に適した炭素質ピッチを加熱溶融して1〜
2000本、好ましくは50〜1000本のフィラメン
トを紡糸し、各フィラメントには通常使用されているオ
イリングローラを使用して集束剤を付与して、これら多
数のフィラメントを集束し、1本の糸条としてボビンに
巻取られる。
First, carbonaceous pitch can be spun by methods well known to those skilled in the art. For example, by heating and melting carbonaceous pitch suitable for manufacturing carbon fiber such as petroleum-based pitch and coal-based pitch,
2000 filaments, preferably 50 to 1000 filaments are spun, and a sizing agent is applied to each filament using a commonly used oiling roller to bundle these many filaments into one yarn. It is wound onto a bobbin.

集束剤としては、例えば水、エチルアルコール、イソプ
ロピルアルコール、n−プロピルアルコール、ブチルア
ルコール、等のアルコール類又は粘度5〜1000cs
t (25℃)のジメチルボリシロキサーン、アルキル
フェニルポリシロキサン等を、低沸点のシリコーン油(
ポリシロキサン)又はパラフィン油等の溶剤で稀釈した
もの、又は乳化剤を入れて水に分散させたもの;同様に
グラファイト又はポリエチレングリコールやヒンダード
エステル類を分散させたもの;界面活性剤を水で稀釈し
たもの;その他通常の繊維、例えばポリエステル繊維に
使用される各種油剤の内ピッチ繊維を犯さないものを使
用することができる。
Examples of the sizing agent include water, alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, and butyl alcohol, or alcohols with a viscosity of 5 to 1000 cs.
Dimethylborisiloxane, alkylphenylpolysiloxane, etc. at 25℃ are mixed with low boiling point silicone oil (
Polysiloxane) or diluted with a solvent such as paraffin oil, or dispersed in water with an emulsifier added; Similarly, graphite or polyethylene glycol or hindered esters are dispersed; surfactants are diluted with water. It is also possible to use other ordinary fibers, such as those that do not harm pitch fibers among the various oils used for polyester fibers.

集束剤のピッチ繊維への付与量は、通常0゜01〜1重
量%とされるが、特に0.05〜5重量%が好ましい。
The amount of the sizing agent applied to the pitch fibers is usually 0.01 to 1% by weight, particularly preferably 0.05 to 5% by weight.

上述のようにして一旦ボビンに巻取られた多数のフィラ
メントから成る糸条は、複数個の、例えば2〜50個の
ボビンを同時に解舒することによって、又は複数回に分
けて、例えば1回目は2〜10本を、次いで残余分をと
いったように、解舒合糸を繰返し行なうことによって、
2〜50本の糸条を合束(合糸)し、100〜1ooo
oo本、好ましくは500〜10000本のフィラメン
トからピッチ繊維束(以後単に「ピッチ繊維」という、
)が製造され、他のボビンに巻取られる。
The yarn consisting of a large number of filaments once wound onto bobbins as described above can be unwound by simultaneously unwinding a plurality of bobbins, for example, 2 to 50 bobbins, or by dividing it into multiple times, for example, the first time. By repeatedly unwinding and doubling 2 to 10 yarns, then the remaining yarn,
2 to 50 yarns are bundled (paired) to make 100 to 1ooo
oo filaments, preferably 500 to 10,000 filaments to a pitch fiber bundle (hereinafter simply referred to as "pitch fiber")
) is produced and wound onto another bobbin.

斯る合糸時に、不融化時及び予備炭化時の処理を考慮し
てピッチ繊維に耐熱性の油剤が付与される。耐熱性の油
剤としては、アルキルフェニルポリシロキサンが好まし
く、フェニル基を5〜80%、好ましくは10〜50%
含み、又、アルキル基としてはメチル基、エチル基、プ
ロピル基が好ましく、同一分子に2種以上のアルキル基
を有していても良い。又、粘度は25℃にて10〜10
00cstのものが使用される。更に後述するような酸
化防止剤を添加することもできる。
During such doubling, a heat-resistant oil agent is applied to the pitch fibers in consideration of treatments during infusibility and preliminary carbonization. As the heat-resistant oil agent, alkylphenylpolysiloxane is preferable, and the phenyl group content is 5 to 80%, preferably 10 to 50%.
In addition, the alkyl group is preferably a methyl group, ethyl group, or propyl group, and the same molecule may contain two or more types of alkyl groups. Also, the viscosity is 10 to 10 at 25°C.
00cst is used. Furthermore, an antioxidant as described later can also be added.

他の好ましい油剤としては、ジメチルポリシロキサンに
酸化防止剤を入れたものが使用可能であり、粘度として
は25℃で5〜1ooocstのものが好ましい、酸化
防止剤としては、アミン類、有機セレン化合物、フェノ
ール類等、例えばフェニル−α−ナフチルアミン、ジラ
ウリルセレナイド、フェノチアジン、鉄オクトレート等
を挙げることができる。これらの酸化防止剤は、上述し
たように、更に耐熱性を高める目的で上記アルキルフェ
ニルポリシロキサンに添加することも可能である。
Other preferred oils include dimethylpolysiloxane containing an antioxidant, and a viscosity of 5 to 1 ooocst at 25°C is preferred.As the antioxidant, amines, organic selenium compounds, etc. , phenols, etc., such as phenyl-α-naphthylamine, dilaurylselenide, phenothiazine, iron octolate, and the like. As mentioned above, these antioxidants can also be added to the alkylphenylpolysiloxane for the purpose of further increasing heat resistance.

更に、好ましい油剤としては、上記各油剤を沸点が60
0℃以下の界面活性剤を用いて、乳化したものを使用す
ることもできる。このとき界面活性剤としては、ポリオ
キシエチレンアルキルエーテル、ポリオキシエチレンア
ルキルエステル、ポリオキシエチレン変性シリコーン、
ポリオキシアルキレン変性シリコーン等を使用し得る。
Further, as preferred oils, each of the above oils has a boiling point of 60.
It is also possible to use an emulsified product using a surfactant having a temperature of 0° C. or lower. At this time, as the surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene modified silicone,
Polyoxyalkylene-modified silicones and the like may be used.

これら油剤は、ローラ接触、スプレー塗布、泡沫塗布等
により、ピッチ繊維に0.01−10重量%、好ましく
は0.05〜5重量%が付与される。
These oil agents are applied to the pitch fibers in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, by roller contact, spray coating, foam coating, or the like.

上述のように、合糸されたピッチ繊維に耐熱性油剤を付
与することにより、該ピッチ繊維は強度が著しく強くな
り糸扱い性が極めて向上する。
As mentioned above, by applying a heat-resistant oil agent to the pitch fibers that have been doubled, the strength of the pitch fibers becomes significantly stronger and the yarn handling properties are greatly improved.

以上の如くにして製造されたピッチ繊維をボビンより解
舒して、不融化炉へと送結する。
The pitch fibers produced as described above are unwound from a bobbin and sent to an infusibility furnace.

不融化炉内の温度は150〜350℃の範囲内の成る一
定温度とすることもできるが、炉入口より炉出口にかけ
て150℃から350℃へと次第に増大する温度勾配を
有するように設定することもできる。
The temperature inside the infusibility furnace can be set at a constant temperature within the range of 150 to 350°C, but it should be set so that it has a temperature gradient that gradually increases from 150°C to 350°C from the furnace inlet to the furnace outlet. You can also do it.

又、不融化炉内は酸化性雰囲気とされ、不融化炉内には
空気、酸素、空気と酸素又は空気と窒素の混合ガス等の
酸化性ガスが供給されるが、好ましいガスとして酸素濃
度30〜90%の富酸素ガスが使用される。
In addition, the inside of the infusibility furnace is made into an oxidizing atmosphere, and oxidizing gas such as air, oxygen, a mixed gas of air and oxygen, or air and nitrogen is supplied into the infusibility furnace, and a preferable gas is an oxygen concentration of 30 ~90% oxygen rich gas is used.

本発明に従えば、不融化処理時に、繊維束には張力をか
けずに行なうこともできるが、不融化炉内での繊維束の
たるみによる炉底、炉壁なこすることにより生じる引き
ずり傷の発生防止、及び外観が良く且つ引張強度、引張
弾性率などの炭素繊維の物性の向上のために、1フイラ
メント当たり0.001〜0.2gの張力をかけながら
不融化を行なうことが好ましい。
According to the present invention, the infusibility treatment can be carried out without applying any tension to the fiber bundle, but the slackness of the fiber bundle in the infusibility furnace can cause drag scratches caused by rubbing the furnace bottom and furnace wall. In order to prevent carbon fibers from occurring, to have a good appearance, and to improve the physical properties of carbon fibers such as tensile strength and tensile modulus, it is preferable to carry out infusibility while applying a tension of 0.001 to 0.2 g per filament.

このようにして、不融化繊維の酸素濃度は7〜12重量
%になるように不融化される。
In this way, the infusible fibers are infusible so that the oxygen concentration is 7 to 12% by weight.

本発明によ−れば、上述のようにして不融化された酸素
濃度7〜12重量%の不融化繊維は、予備炭化炉へと送
給され予備炭化処理を受ける前に、熱処理が行なわれる
According to the present invention, the infusible fibers having an oxygen concentration of 7 to 12% by weight, which have been infusible as described above, are heat-treated before being sent to the pre-carbonization furnace and subjected to the pre-carbonization treatment. .

該熱処理炉内の温度は、不融化温度より100〜200
℃高い温度が好ましく、一般に、300〜500℃の範
囲内の成る一定温度とされ、例えば450℃とすること
もできるが、炉入口より炉出口にかけて次第に増大する
温度勾配を有するように設定することもでき、この場合
の最高温度は300〜500℃を超えないようにされる
。例えば、炉入口温度を350℃とし、次第に増大し炉
出口温度が500℃となるように設定し得る。もし、該
熱処理温度が500℃を超えると、不融化繊維の酸化が
過大となり好ましくなく、又、300℃未満だと熱処理
時間が長くなるか、或は不融化繊維の表面酸化が不十分
となり、期待した効果を得るのが困難である。
The temperature in the heat treatment furnace is 100 to 200 degrees lower than the infusibility temperature.
A higher temperature is preferable, and is generally set at a constant temperature within the range of 300 to 500°C, for example, it can be 450°C, but it should be set so that it has a temperature gradient that gradually increases from the furnace inlet to the furnace outlet. Also, the maximum temperature in this case should not exceed 300-500°C. For example, the temperature at the furnace inlet may be set to 350°C, and the temperature may be set to gradually increase to 500°C at the furnace outlet. If the heat treatment temperature exceeds 500°C, the oxidation of the infusible fibers will be excessive, which is undesirable. If the heat treatment temperature is less than 300°C, the heat treatment time will become longer or the surface oxidation of the infusible fibers will be insufficient. It is difficult to obtain the desired effect.

又、該熱処理炉内は酸素含有雰囲気とされ、炉内には空
気、空気と酸素、又は窒素と酸素の混合ガスが供給され
るが、酸素濃度は5〜80%、好ましくは10〜50%
とされる。一般に、空気が好適に使用される。場合によ
っては、空気にNo、、So、、C℃2などを含ませた
混合ガスを用いてもよい。
Further, the inside of the heat treatment furnace is set to have an oxygen-containing atmosphere, and air, a mixed gas of air and oxygen, or nitrogen and oxygen is supplied into the furnace, and the oxygen concentration is 5 to 80%, preferably 10 to 50%.
It is said that Generally, air is preferred. Depending on the case, a mixed gas containing air containing No, So, C°C2, etc. may be used.

更に、本発明によれば、該熱処理炉内における不融化繊
維の滞留時間は1〜200秒とされ、好ましくは10〜
100秒である。滞留時間は上記熱処理温度との関係で
設定され、200秒を超えると熱処理温度を300℃と
したとしても不融化繊維の酸化が過大となり好ましくな
く、又、1秒未満だと熱処理温度を500℃としても不
融化繊維の表面酸化が不十分となり、期待した効果を得
るのが困難である。
Further, according to the present invention, the residence time of the infusible fibers in the heat treatment furnace is 1 to 200 seconds, preferably 10 to 200 seconds.
It is 100 seconds. The residence time is set in relation to the above heat treatment temperature; if it exceeds 200 seconds, the oxidation of the infusible fibers will be excessive even if the heat treatment temperature is set to 300°C, which is undesirable, and if it is less than 1 second, the heat treatment temperature will not exceed 500°C. However, the surface oxidation of the infusible fibers becomes insufficient, making it difficult to obtain the expected effect.

更に、本発明に従えば、上記熱処理と同時に不融化繊維
にはテンションを付与して5〜100%の延伸処理が施
される。従って、通常、不融化繊維に付与される張力と
しては、10〜500g/3000フィラメント、つま
り、1フイラメント当たり0.003〜0.17gとさ
れる。
Furthermore, according to the present invention, at the same time as the above heat treatment, tension is applied to the infusible fibers and a stretching process of 5 to 100% is performed. Therefore, the tension applied to the infusible fibers is usually 10 to 500 g/3000 filaments, that is, 0.003 to 0.17 g per filament.

延伸は張力の大きさを調節して設定してもよいし、2個
以上のロールの差動によって調節してもよい。
Stretching may be set by adjusting the magnitude of tension, or may be adjusted by differential movement of two or more rolls.

上記構成によって、不融化繊維は糸表面のみが選択的に
酸化され、糸の内部は高温の熱による熱重合が更に進展
し、その結果、多数のフィラメントからなる不融化繊維
はその強度が増大する。そのために、本発明によれば不
融化繊維が予備炭化前に酸化されるが、糸の表面のみが
酸化されるだけであるので、製品である炭素繊維の物性
を低下させることはない。
With the above structure, only the yarn surface of the infusible fiber is selectively oxidized, and thermal polymerization due to high temperature heat further progresses inside the yarn, and as a result, the strength of the infusible fiber consisting of a large number of filaments increases. . Therefore, according to the present invention, the infusible fiber is oxidized before preliminary carbonization, but only the surface of the thread is oxidized, so the physical properties of the carbon fiber product are not deteriorated.

更に、本発明によれば、不融化繊維の表面を酸化するこ
とにより、次いで行なわれる予備炭化炉内での不融化繊
維の糸表面での融膠着度が低減し、炭素繊維の品質を向
上せしめると共に、予備炭化時間が、従来の115〜1
/10程度にまで短縮し得ることが分かった。
Further, according to the present invention, by oxidizing the surface of the infusible fiber, the degree of fusion adhesion on the yarn surface of the infusible fiber in the subsequent pre-carbonization furnace is reduced, and the quality of the carbon fiber is improved. At the same time, the preliminary carbonization time is 115 to 1
It was found that the time can be shortened to about /10.

更に又、本発明によれば、不融化繊維の糸表面のみが選
択的に酸化され、糸の内部は熱重合が更に進展し、その
結果、不融化繊維の強度が増大することとなり、該不融
化繊維に対する延伸処理によって繊維の配向性が改善さ
れ、得られる炭素繊維の物性が向上する。
Furthermore, according to the present invention, only the yarn surface of the infusible fiber is selectively oxidized, and thermal polymerization further progresses inside the yarn, resulting in an increase in the strength of the infusible fiber. By stretching the fused fibers, the orientation of the fibers is improved, and the physical properties of the resulting carbon fibers are improved.

次いで、このようにして熱処理及び延伸処理された不融
化繊維は、予備炭化炉へと送給され、予備炭化処理され
る。
Next, the infusible fibers that have been heat-treated and drawn in this way are sent to a pre-carbonization furnace and subjected to a pre-carbonization process.

予備炭化炉内は、最高温度500〜1100℃に加熱さ
れ、且つ炉内を不活性雰囲気とするために化学的に不活
性な窒素ガス又はアルゴンガスが供給される。
The inside of the preliminary carbonization furnace is heated to a maximum temperature of 500 to 1100° C., and chemically inert nitrogen gas or argon gas is supplied to create an inert atmosphere inside the furnace.

斯る予備炭化炉内を通糸された不融化繊維は予備炭化さ
れ、強度約0.2GPa以上、弾性率約4GPa以上の
予備炭化繊維が得られる。
The infusible fibers threaded through such a pre-carbonization furnace are pre-carbonized to obtain pre-carbonized fibers having a strength of about 0.2 GPa or more and an elastic modulus of about 4 GPa or more.

本発明によれば、上述したように、予備炭化時間が、従
来の製造方法による予備炭化処理時間に比較し、115
〜1/10程度にまで短縮し得ることが分かった。
According to the present invention, as described above, the preliminary carbonization time is 115% compared to the preliminary carbonization treatment time according to the conventional manufacturing method.
It was found that the time can be shortened to about 1/10.

該予備炭化された繊維は次いで、炭化炉へと送給される
。炭化炉は1000〜2000’Cに、又は1000〜
3000℃に加熱され、且つ炉内を不活性雰囲気−とす
るために化学的に不活性な窒素ガス又はアルゴンガスが
供給される。
The pre-carbonized fibers are then fed to a carbonization furnace. Carbonization furnace at 1000-2000'C or 1000-2000'C
The furnace is heated to 3000° C., and chemically inert nitrogen gas or argon gas is supplied to create an inert atmosphere inside the furnace.

温度が1500℃にまで上昇された炭化炉内を通糸され
た予備炭化繊維は炭化され、強度約2゜5GPa以上、
弾性率約200GPa以上の炭素繊維が得られ、温度が
3000℃にまで上昇された炭化炉内を通糸された予備
炭化繊維は黒鉛化され、強度約3.0GPa以上、弾性
率約500GPa以上の黒鉛繊維が得られる。
The pre-carbonized fibers passed through a carbonization furnace where the temperature was raised to 1500℃ are carbonized and have a strength of about 2℃ or more, 5GPa or more.
Carbon fibers with an elastic modulus of about 200 GPa or more are obtained, and the pre-carbonized fibers passed through a carbonization furnace where the temperature is raised to 3000°C are graphitized, and carbon fibers with a strength of about 3.0 GPa or more and an elastic modulus of about 500 GPa or more are obtained. Graphite fibers are obtained.

尚、不融化繊維は、ピッチ繊維を線状で連続的に不融化
するものとして説明したが、ケンス状(ピッチ繊維を金
網の容器の中に入れて堆積したもの、及びこれに類似の
もの)で不融化したもの、メツシュベルト上にピッチ繊
維を載せて不融化したもの、或はボビン巻のまま不融化
したものなどについても、本発明は同様に実施でき、且
つ同様の効果を奏し得る。
Incidentally, the infusible fibers have been explained as linear pitch fibers that are continuously infusible, but can-shaped fibers (pitch fibers placed in a wire mesh container and deposited, or similar) The present invention can be carried out in the same manner, and the same effects can be achieved with the following methods: those made infusible by placing pitch fibers on a mesh belt, or made infusible while still being wound on a bobbin.

以下、本発明に係るピッチ系炭素繊維の製造方法を実施
例について説明する。
Hereinafter, the method for producing pitch-based carbon fiber according to the present invention will be described with reference to Examples.

実施例1 ピッチ繊維を製造するに当り、光学的異方性相を約55
%含有し、軟化点が232℃である炭素質ピッチを前駆
体ピッチとして使用した。この前駆体ピッチを遠心分離
により光学的異方性相の多いピッチと光学的等方性相の
多いピッチとを連続的に分離し、それぞれ抜き出した。
Example 1 In producing pitch fiber, an optically anisotropic phase of about 55%
% and a softening point of 232° C. was used as the precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

得られた光学的異方性相を多(含むピッチは、光学的異
方性相を98%含み、軟化点は270℃、キノリンネ溶
分は30.0%であった。該炭素繊維用ピッチを500
孔の紡糸口金を有する溶融紡糸機(ノズル孔径:直径0
.3mm)に通し、355℃で200mmHgの窒素ガ
ス圧で押し出して紡糸した。
The resulting pitch contained 98% of the optically anisotropic phase, the softening point was 270°C, and the quinoline solubility was 30.0%. 500
Melt spinning machine with hole spinneret (nozzle hole diameter: diameter 0
.. 3 mm) and was extruded and spun at 355° C. under a nitrogen gas pressure of 200 mmHg.

紡糸した500本のフィラメントはエアーサッカーで略
集束してオイリングローラに導き、糸に対して約0.2
重量%の割合で集束用油剤な供給し、500フイラメン
トから成るピッチ繊維を形成した。油剤としては、25
℃における粘度が14cstのメチルフェニルポリシロ
キサンを使用した。
The 500 spun filaments are roughly converged by an air sucker and guided to an oiling roller, with a ratio of about 0.2 to the yarn.
A focusing oil was supplied in a proportion of 500% by weight to form a pitch fiber consisting of 500 filaments. As an oil agent, 25
A methylphenylpolysiloxane having a viscosity of 14 cst at °C was used.

該ピッチ繊維は、ノズル下部に設けた高速で回転する直
径210mm、幅200mmのステンレス鋼製のボビン
に巻き取り、約500m/分の巻き取り速度で10分間
紡糸した。ボビン1回転当たりのトラバースのピッチは
10mm/1回転であった。紡糸の間に糸切れは発生し
なかった。
The pitch fibers were wound onto a stainless steel bobbin with a diameter of 210 mm and a width of 200 mm that was provided at the bottom of the nozzle and rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min. The pitch of the traverse per revolution of the bobbin was 10 mm/rotation. No yarn breakage occurred during spinning.

次いで、ピッチ繊維を巻いた前記ボビン6個を解舒し、
そしてオイリングローラを使用して耐熱性油剤を付与し
ながら合糸し、3000フイラメントから成るピッチ繊
維(束)を形成し、他のステンレス製ボビンに巻取った
Next, the six bobbins wound with pitch fibers were unwound,
Then, the fibers were combined using an oiling roller while applying a heat-resistant oil to form a pitch fiber (bundle) consisting of 3,000 filaments, which was wound onto another stainless steel bobbin.

合糸時に油剤としては25℃で40cstのメチルフェ
ニルポリシロキサン(フェニル基含有量45モル%)を
使用した。付与量は糸に対し0゜5%であった。
Methylphenylpolysiloxane (phenyl group content: 45 mol %) of 40 cst at 25° C. was used as an oil agent during yarn doubling. The amount applied was 0.5% to the yarn.

このようにして得た、ボビン巻のピッチ繊維をボビンか
ら解舒しつつ、炉入口温度180℃、最高温度295℃
の温度勾配を持つ富酸素雰囲気(酸素/窒素=60/4
0)の連続不融化炉に線状で連続的に導入した。昇温速
度は6℃/分であり、不融化時間は19分であった。繊
維束にかけた張力はlフィラメント当たり0.007g
 (3000フイラメントの繊維束に対して20g)で
あった。不融化後の不融化繊維の酸素濃度は9゜5重量
%であった。
While unwinding the bobbin-wound pitch fiber thus obtained from the bobbin, the furnace inlet temperature was 180°C, and the maximum temperature was 295°C.
Oxygen-rich atmosphere with a temperature gradient of (oxygen/nitrogen = 60/4
0) was continuously introduced in a linear manner into the continuous infusibility furnace. The temperature increase rate was 6° C./min, and the infusibility time was 19 minutes. The tension applied to the fiber bundle is 0.007 g per 1 filament.
(20 g for a fiber bundle of 3000 filaments). The oxygen concentration of the infusible fiber after infusibility was 9.5% by weight.

不融化中、ボビンからのピッチ繊維の解舒は円滑に行な
われ、不融化炉内での繊維束の断糸もなく円滑に不融化
処理ができた。
During the infusibility process, the pitch fibers were unraveled from the bobbin smoothly, and the infusibility treatment was carried out smoothly without any breakage of the fiber bundle in the infusibility furnace.

このようにして得られた不融化繊維は、予備炭化炉へと
通糸する前に、450℃に保持された熱処理炉へと供給
した。繊維束には張力が1フイラメント当たり0.00
7g付加された。炉内には空気が導入された。
The thus obtained infusible fibers were supplied to a heat treatment furnace maintained at 450° C. before being threaded to a pre-carbonization furnace. The fiber bundle has a tension of 0.00 per filament.
7g added. Air was introduced into the furnace.

上記構成にて、不融化繊維を熱処理するのに要した時間
は25秒であった。
With the above configuration, the time required to heat treat the infusible fibers was 25 seconds.

熱処理炉内での繊維束の断糸もなく円滑に熱処理ができ
た。この熱処理における糸の延伸率は20%であった。
The heat treatment was carried out smoothly without any breakage of the fiber bundle in the heat treatment furnace. The stretching ratio of the yarn in this heat treatment was 20%.

この酸素含有雰囲気下で熱処理した繊維は、炉入口温度
600℃、最高温度900℃の温度勾配を有する予備炭
化炉に線状で連続的に導入した。
The fibers heat-treated in this oxygen-containing atmosphere were linearly and continuously introduced into a pre-carbonization furnace having a temperature gradient of 600° C. at the furnace entrance and 900° C. at the maximum temperature.

炉内の雰囲気は窒素雰囲気であった。繊維束には、1フ
イラメント当たり0.007gの張力が付与された。予
備炭化時間は25秒であった。
The atmosphere inside the furnace was a nitrogen atmosphere. A tension of 0.007 g per filament was applied to the fiber bundle. Preliminary carbonization time was 25 seconds.

24時間連続に処理したが、この間、炉内での断糸、糸
切れは全く生じなかった。
Although the treatment was continued for 24 hours, no yarn breakage or breakage occurred in the furnace during this period.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温して炭素繊維を得た。炭素繊維の糸径は8.8μm
であり、引張強度は3゜3GPa、引張弾性率は330
GPa、圧縮強度は1.2GPaであった。又、この炭
素繊維の融膠着度は6%であった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 8.8μm
The tensile strength is 3°3GPa and the tensile modulus is 330.
GPa, and the compressive strength was 1.2 GPa. Further, the degree of fusion and adhesion of this carbon fiber was 6%.

又、炭素繊維をアルゴンガス雰囲気中で2500℃まで
昇温して得た黒鉛炭素繊維は、糸径が8.7μmであり
、引張強度は3゜9GPa、引張弾性率は810GPa
、圧縮強度は0.5GPaであった。又、この黒鉛繊維
の融膠着度は10%であった。
In addition, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 8.7 μm, a tensile strength of 3°9 GPa, and a tensile modulus of 810 GPa.
, the compressive strength was 0.5 GPa. Further, the degree of fusion and adhesion of this graphite fiber was 10%.

本明細書にて、融膠着度(%)は、3000フイラメン
トからなる繊維束を3mm幅に切り取り、これをエタノ
ールに浸漬し、30秒間エアーを吹込み、その後顕微鏡
下で20倍の倍率で融膠着しているフィラメントの総本
数(N)を数えることにより次の式にて求められる。
In this specification, the degree of fusion adhesion (%) is determined by cutting a fiber bundle consisting of 3000 filaments to a width of 3 mm, immersing it in ethanol, blowing air for 30 seconds, and then melting it under a microscope at 20x magnification. It is determined by the following formula by counting the total number (N) of stuck filaments.

融膠着度= (N/3000)xlOO(%)比較例1 不融化繊維を予備炭化するに先立って、450℃の窒素
雰囲気とされる熱処理炉に線状で連続的に導入し、25
秒間の熱処理をした以外は、実施例1と同様に処理した
Melting adhesion degree = (N/3000)
The treatment was carried out in the same manner as in Example 1, except that the heat treatment was performed for seconds.

この場合には、熱処理時に繊維束が炉内断糸し、長繊維
を得ることができなかった。
In this case, the fiber bundle broke in the furnace during the heat treatment, making it impossible to obtain long fibers.

比較例2 実施例1にて、不融化繊維を、予備炭化の前の熱処理を
行なわずに、直接予備炭化炉内へと線状で連続的に導入
し、予備炭化を行なった。予備炭化炉は、炉入口温度が
400℃、最高温度が900℃の温度勾配を有しており
、・250秒間かけて予備炭化処理を行なった。繊維束
には、張力が1フイラメント当たり0.007g付与さ
れた。それ以外は実施例1と同様に処理した。
Comparative Example 2 In Example 1, the infusible fibers were directly and continuously introduced into the pre-carbonization furnace in a linear manner without being subjected to heat treatment prior to pre-carbonization to perform pre-carbonization. The preliminary carbonization furnace had a temperature gradient with a furnace inlet temperature of 400°C and a maximum temperature of 900°C, and the preliminary carbonization treatment was performed for 250 seconds. A tension of 0.007 g per filament was applied to the fiber bundle. Other than that, the process was the same as in Example 1.

二の場合、予備炭化炉内で断糸することはなく、1時間
の連続運転ができた。しかし、得られた予備炭化繊維は
毛羽立ちの多いものであった。
In case 2, there was no yarn breakage in the preliminary carbonization furnace, and continuous operation for one hour was possible. However, the obtained pre-carbonized fiber had a lot of fuzz.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温して炭素繊維を得た。炭素繊維の糸径は9.8μm
であり、引張強度は2゜6GPa、引張弾性率は270
GPa、圧縮強度は1.0GPaであった。又、この炭
素繊維の融膠着度は15%であった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 9.8μm
The tensile strength is 2°6 GPa and the tensile modulus is 270.
GPa, and the compressive strength was 1.0 GPa. Further, the degree of fusion and adhesion of this carbon fiber was 15%.

更に、炭素繊維をアルゴンガス雰囲気中で2500℃ま
で昇温しで得た黒鉛炭素繊維は、糸径が9.7μmであ
り、引張強度は3.3GPa、引張弾性率は690GP
a、圧縮強度は0.4GPaであった。又、この黒鉛繊
維の融膠着度は35%であった。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.7 μm, a tensile strength of 3.3 GPa, and a tensile modulus of 690 GPa.
a. The compressive strength was 0.4 GPa. Further, the degree of fusion and adhesion of this graphite fiber was 35%.

実施例2 実施例1において、不融化繊維を予備炭化するに先立っ
て行なう熱処理を、1フイラメント当たり0.033g
の張力を付与した以外は実施例1と同様に処理した。こ
のときの延伸率は40%であった。
Example 2 In Example 1, the heat treatment performed prior to pre-carbonizing the infusible fibers was carried out at a rate of 0.033 g per filament.
The process was carried out in the same manner as in Example 1, except that a tension of . The stretching ratio at this time was 40%.

この繊維を次の予備炭化処理にかけたところ、24時間
の連続運転中、予備炭化炉内で断糸することはなく、得
られた予備炭化繊維に毛羽立ちも殆どなかった。
When this fiber was subjected to the next pre-carbonization treatment, there was no yarn breakage in the pre-carbonization furnace during 24 hours of continuous operation, and the obtained pre-carbonized fiber had almost no fuzz.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温しで炭素繊維を得た。炭素繊維の糸径は8.4μm
であり、引張強度は3゜7GPa、引張弾性率は340
GPaであった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 8.4μm
The tensile strength is 3°7 GPa and the tensile modulus is 340.
It was GPa.

又、この炭素繊維の融膠着度は7%であった。Further, the degree of fusion and adhesion of this carbon fiber was 7%.

更に、炭素繊維をアルゴンガス雰囲気中で2500℃ま
で昇温して得た黒鉛炭素繊維は、糸径が8.3μmであ
り、引張強度は4 2GPa、引張弾性率は850GPaであった。
Further, graphite carbon fiber obtained by heating carbon fiber to 2500° C. in an argon gas atmosphere had a thread diameter of 8.3 μm, a tensile strength of 42 GPa, and a tensile modulus of 850 GPa.

又、この黒鉛繊維の融膠着度は12%であった。Further, the degree of fusion and adhesion of this graphite fiber was 12%.

1豆立皇1 以上説明した如く本発明に係るピッチ系炭素繊維の製造
方法は、不融化繊維を予備炭化する前に高温で短時間熱
処理し、且つ同時に延伸処理が施される構成と−される
ために、不融化繊維の予備炭化炉内での断糸を防止し、
通糸歩留りを向上せしめ、更には、予備炭化繊維の融膠
着度を低減させ、高引張強度、高引張弾性率及び高圧縮
強度を有した高品質の炭素繊維を製造することができ、
更に、予備炭化時間を、従来の115〜1/10程度に
まで短縮し、効率よく高引張強度、高引張弾性率及び高
圧縮強度を有した炭素繊維を製造することができる。
1. Mamerikou 1 As explained above, the method for producing pitch-based carbon fibers according to the present invention has a structure in which the infusible fibers are heat-treated at high temperature for a short period of time before being pre-carbonized, and at the same time, they are subjected to a drawing treatment. In order to prevent the infusible fibers from breaking in the pre-carbonization furnace,
It is possible to improve the threading yield, further reduce the degree of fusion and agglutination of pre-carbonized fibers, and produce high-quality carbon fibers with high tensile strength, high tensile modulus and high compressive strength,
Furthermore, the preliminary carbonization time can be shortened to about 115 to 1/10 of the conventional time, and carbon fibers having high tensile strength, high tensile modulus, and high compressive strength can be efficiently produced.

Claims (1)

【特許請求の範囲】[Claims] 1)炭素質ピッチを紡糸して得たピッチ繊維を不融化し
、該不融化した不融化繊維を300〜500℃の酸素含
有雰囲気中に1〜200秒間通して熱処理を行ないなが
ら、同時に該不融化繊維にテンションを付与して5〜1
00%の延伸処理を施し、その後に予備炭化し、次いで
炭化或は黒鉛化を行なうことを特徴とするピッチ系炭素
繊維の製造方法。
1) Infusible pitch fibers obtained by spinning carbonaceous pitch are heat-treated by passing the infusible fibers through an oxygen-containing atmosphere at 300 to 500°C for 1 to 200 seconds. 5-1 by applying tension to the melted fiber
1. A method for producing pitch-based carbon fiber, which comprises subjecting it to a 00% stretching treatment, followed by preliminary carbonization, and then carbonization or graphitization.
JP20698690A 1990-08-03 1990-08-03 Production of pitch-based carbon fiber Pending JPH0491229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20698690A JPH0491229A (en) 1990-08-03 1990-08-03 Production of pitch-based carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20698690A JPH0491229A (en) 1990-08-03 1990-08-03 Production of pitch-based carbon fiber

Publications (1)

Publication Number Publication Date
JPH0491229A true JPH0491229A (en) 1992-03-24

Family

ID=16532288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20698690A Pending JPH0491229A (en) 1990-08-03 1990-08-03 Production of pitch-based carbon fiber

Country Status (1)

Country Link
JP (1) JPH0491229A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595720A (en) * 1992-09-04 1997-01-21 Nippon Steel Corporation Method for producing carbon fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5595720A (en) * 1992-09-04 1997-01-21 Nippon Steel Corporation Method for producing carbon fiber

Similar Documents

Publication Publication Date Title
JPS60173121A (en) Production of carbon yarn and graphite yarn
JPS63264917A (en) Production of carbon fiber and graphite fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPH0491228A (en) Production of pitch-based carbon fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPH04119126A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04163319A (en) Pitch-based carbon fiber having extremely high thermal conductivity and production thereof
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPS60126324A (en) Method for producing carbon fiber bundle having high orientation of filament
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH04272235A (en) Production of pitch-base carbon fiber and graphite fiber
JPH043453B2 (en)
JPH04272232A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH04257322A (en) Production of pitch carbon fiber and graphite fiber
JPH0674528B2 (en) Method for producing carbon fiber and graphite fiber
JPH026619A (en) Production of carbon fiber and graphite fiber
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPH0291223A (en) Production of carbon fiber yarn and graphite yarn
JPH05171519A (en) Production of pitch carbon fiber
JPH04272233A (en) Production of pitch-base carbon fiber and graphite fiber
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production