JPH04245923A - Production of pitch-based carbon fiber and graphite fiber - Google Patents

Production of pitch-based carbon fiber and graphite fiber

Info

Publication number
JPH04245923A
JPH04245923A JP41654290A JP41654290A JPH04245923A JP H04245923 A JPH04245923 A JP H04245923A JP 41654290 A JP41654290 A JP 41654290A JP 41654290 A JP41654290 A JP 41654290A JP H04245923 A JPH04245923 A JP H04245923A
Authority
JP
Japan
Prior art keywords
fiber bundle
pitch
temperature
fiber
infusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41654290A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Takashi Hino
日野 隆
Kiyotoshi Mase
間瀬 清年
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP41654290A priority Critical patent/JPH04245923A/en
Publication of JPH04245923A publication Critical patent/JPH04245923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To suppress yarn breakage and fuzzing of a pitch fiber bundle in an infusibilization furnace and obtain carbon fiber improved in tensile strength, tensile elastic modulus and compressive strength. CONSTITUTION:Infusibilizing treatment of a pitch fiber bundle in an oxidizing gas atmosphere is carried out as follows. Temperature is increased at 100-5000 deg.C/min rate up to a lower temperature than the melt breaking temperature of the fiber bundle by 30-100 deg.C and drawing treatment is simultaneously performed at 5-100% draw ratio while heat-treating the fiber bundle in an ultrashort time of 1-200sec. Yarn breakage and fuzzing of the fiber bundle in the infusibilizing furnace are suppressed by the heat treatment in the short time and simultaneous drawing treatment to improve the yield in the infusibilization. Furthermore, the tensile strength, tensile elastic modulus and compressive strength of the finally obtained carbon fiber are improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、一般には炭素繊維(本
明細書にて「炭素繊維」とは特に明記しない場合には炭
素繊維のみならず黒鉛繊維をも含めて使用する。)の製
造方法に関するものであり、特に種々の炭素質ピッチか
ら炭素繊維を極めて効率よく且つ多量に製造する方法に
関するものである。
[Industrial Application Field] The present invention generally relates to the production of carbon fibers (in this specification, unless otherwise specified, "carbon fibers" is used to include not only carbon fibers but also graphite fibers). The present invention relates to a method for producing carbon fibers from various carbonaceous pitches in a highly efficient manner and in large quantities.

【0002】0002

【従来の技術】石油系ピッチ、石炭系ピッチ等の炭素質
ピッチから製造されるピッチ系炭素繊維は、現在最も多
量に製造されているレ−ヨン系やPAN系の炭素繊維に
比較して炭化収率が高く、弾性率等の物理的特性も優れ
ており、更に低コストにて製造し得るという利点を有し
ているために近年注目を浴びている。
[Prior Art] Pitch-based carbon fibers manufactured from carbonaceous pitches such as petroleum-based pitch and coal-based pitch are more carbonized than rayon-based and PAN-based carbon fibers, which are currently produced in large quantities. It has attracted attention in recent years because it has the advantages of high yield, excellent physical properties such as elastic modulus, and can be manufactured at low cost.

【0003】現在、ピッチ系炭素繊維は、(1)石油系
ピッチ、石炭系ピッチ等から炭素繊維に適した炭素質ピ
ッチを調製し、該炭素質ピッチを加熱溶融して紡糸機に
て紡糸し、集束してピッチ繊維束を製造し、(2)前記
ピッチ繊維束を不融化炉にて酸化性雰囲気下にて150
〜350℃までに加熱して不融化し、(3)次いで、不
融化された繊維束を炭化炉にて不活性雰囲気下にて30
00℃以下にまで加熱して炭化或は黒鉛化すること、に
より製造されている。
[0003]Currently, pitch-based carbon fibers are produced by (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, and spinning it with a spinning machine. (2) The pitch fiber bundle is heated in an infusible furnace under an oxidizing atmosphere for 150 min.
(3) Then, the infusible fiber bundle was heated to ~350°C in an inert atmosphere for 30 minutes.
It is manufactured by heating to below 00°C to carbonize or graphitize.

【0004】しかしながら、従来の技術によっては、ピ
ッチ繊維、不融化繊維の引張強度が約0.01GPaと
小さい上、脆いためにその取扱いが難しく、高性能製品
を得るのに必要なロングフィラメント状の繊維を安定し
て多量に得ることが極めて困難であった。
However, with conventional techniques, pitch fibers and infusible fibers have a low tensile strength of about 0.01 GPa and are brittle, making them difficult to handle. It has been extremely difficult to stably obtain fibers in large quantities.

【0005】これらの問題解決方法の一つとして、本発
明者等は、炭素質ピッチを紡糸して得たピッチ繊維を合
糸してストレート系油剤を付与することによって繊維束
の強さを強くした上で、酸素濃度が30%以上の富酸素
ガス中で、繊維束を連続的に線状で通して不融化する方
法を提案した(特開昭63−264917号を参照せよ
)。
[0005] As one method for solving these problems, the present inventors have strengthened the strength of the fiber bundle by doubling pitch fibers obtained by spinning carbonaceous pitch and applying a straight oil. Then, they proposed a method of infusible fiber bundles by passing them continuously in a line in an oxygen-rich gas having an oxygen concentration of 30% or more (see JP-A No. 63-264917).

【0006】[0006]

【発明が解決しようとする課題】ところで、ピッチ繊維
束の不融化の工程でピッチ繊維束を延伸できれば、これ
を炭素繊維にしたときに、引張強度、引張弾性率及び圧
縮強度を向上できる可能性があるが、通糸するピッチ繊
維束が約0.01GPaと脆弱であるため、従来、ピッ
チ繊維束の延伸処理は困難であった。
[Problem to be solved by the invention] By the way, if pitch fiber bundles can be drawn in the process of making them infusible, it is possible to improve the tensile strength, tensile modulus, and compressive strength when they are made into carbon fibers. However, since the pitch fiber bundle to be threaded is weak at about 0.01 GPa, it has been difficult to draw the pitch fiber bundle in the past.

【0007】上記特開昭63−264917号に記載の
発明も、この問題点を根本的に解決し得るものではなく
、不融化炉において不融化繊維束の炉内断糸が頻繁に発
生し、通糸歩留りが低下し、毛羽立ち易いという問題が
あった。
The invention described in JP-A No. 63-264917 cannot fundamentally solve this problem, and breaks of the infusible fiber bundle frequently occur in the infusible furnace. There were problems in that the yarn threading yield was low and the yarn was easily fluffed.

【0008】更に、1本のピッチ繊維束は、100〜1
00000本のフィラメントが集束されて構成された繊
維束の形態とされており、従って、不融化に際して、各
フィラメントが融着したり、膠着したりする度合いが大
となり、製品である焼成処理後の炭素繊維の品質に問題
を生じるという大きな欠点が発生した。
Furthermore, one pitch fiber bundle has 100 to 1
It is in the form of a fiber bundle made up of 00,000 filaments, and therefore, during infusibility, each filament tends to fuse or stick to a large extent, resulting in a loss of quality after firing as a product. A major drawback occurred in that the quality of the carbon fiber was compromised.

【0009】本発明者等は、連続焼成プロセスにおいて
炭素繊維を製造する方法を研究する過程で、酸化性ガス
雰囲気下での不融化を、ピッチ繊維束の溶融破断温度よ
り30〜100℃低い温度まで急速に昇温して、繊維束
を短時間の熱処理しながら同時に延伸処理することで行
なえば、得られる炭素繊維の物性、即ち引張強及び引張
弾性率が飛躍的に向上し、又圧縮強度も増大することを
見出した。
[0009] In the process of researching a method for manufacturing carbon fibers using a continuous firing process, the present inventors determined that infusibility in an oxidizing gas atmosphere was achieved at a temperature 30 to 100°C lower than the melting and breaking temperature of pitch fiber bundles. By heating the fiber bundle rapidly to a temperature of It was also found that the

【0010】更に驚いたことには、上記のような条件の
熱処理及びこれと同時の延伸処理(以下、必要に応じて
延伸熱処理という)を行なった場合には、繊維束の融膠
着の増加も抑制でき、処理時の繊維束の炉内での断糸も
回避することができ、不融化の際の歩留りも向上できる
ことが分かった。
[0010] Furthermore, it is surprising that when heat treatment under the above conditions and simultaneous stretching treatment (hereinafter referred to as stretching heat treatment as necessary) are carried out, there is also an increase in fusion and agglomeration of the fiber bundle. It was found that it was possible to suppress the breakage of fiber bundles in the furnace during processing, and to improve the yield during infusibility.

【0011】本発明は、斯る新規な知見に基づきなされ
たものである。
The present invention has been made based on this new finding.

【0012】従って、本発明の目的は、ピッチ繊維束の
不融化炉内での断糸を防止し、繊維束を効果的に延伸処
理を加えた不融化処理することにより、高引張強度、高
引張弾性率及び高圧縮強度を有した高品質の炭素繊維を
製造するためのピッチ系炭素繊維の製造方法を提供する
ことである。
Therefore, an object of the present invention is to prevent yarn breakage of pitch fiber bundles in an infusibility furnace, and to effectively infusify the fiber bundles by adding stretching treatment, thereby achieving high tensile strength and high strength. An object of the present invention is to provide a method for producing pitch-based carbon fiber for producing high-quality carbon fiber having a tensile modulus and high compressive strength.

【0013】[0013]

【課題を解決するための手段】上記目的は本発明に係る
ピッチ系炭素繊維及び黒鉛繊維の製造方法にて達成され
る。要約すれば本発明は、紡糸、集束されたピッチ繊維
束を不融化し、前記不融化された不融化繊維束を予備炭
化し、然る後に炭化し、必要に応じて更に黒鉛化するこ
とからなるピッチ系炭素繊維及び黒鉛繊維の製造方法に
おいて、前記ピッチ繊維束を酸化性ガス雰囲気中で、繊
維束の溶融破断温度よりも30〜100℃低い温度まで
100〜5000℃/分の速度で昇温して、繊維束を1
〜200秒の極く短時間で熱処理しながら同時に延伸率
5〜100%の延伸処理することにより、繊維束の不融
化を行なう特徴とするピッチ系炭素繊維及び黒鉛繊維の
製造方法である。
[Means for Solving the Problems] The above objects are achieved by a method for producing pitch-based carbon fibers and graphite fibers according to the present invention. In summary, the present invention includes infusible spinning and bundled pitch fiber bundles, pre-carbonizing the infusible infusible fiber bundles, then carbonizing them, and further graphitizing them as necessary. In the method for producing pitch-based carbon fibers and graphite fibers, the pitch fiber bundle is raised in an oxidizing gas atmosphere at a rate of 100 to 5000°C/min to a temperature 30 to 100°C lower than the melting and breaking temperature of the fiber bundle. Warm it up and cut the fiber bundle into 1
This method for producing pitch-based carbon fibers and graphite fibers is characterized in that fiber bundles are made infusible by heat treatment for a very short time of ~200 seconds and simultaneous stretching treatment at a stretching rate of 5 to 100%.

【0014】尚、繊維束の溶融破断温度とは、窒素雰囲
気の一定温度(例えば400℃)に保持された加熱部長
さ2mの炉に繊維束を10m/分で通糸して(繊維束の
昇温速度5000℃/分に相当)、繊維の溶融により繊
維束が切断する温度をいう。繊維束の溶融破断温度は、
切断した繊維束を目視により観察して繊維に溶融が認め
られたときの温度として得ることができるが、正確には
走査型電子顕微鏡による観察で繊維の溶融を認めたとき
の温度として求められる。
[0014] The melting and breaking temperature of the fiber bundle is determined by passing the fiber bundle through a furnace with a heating section length of 2 m maintained at a constant temperature (for example, 400°C) in a nitrogen atmosphere at a rate of 10 m/min. (equivalent to a heating rate of 5000°C/min), which is the temperature at which the fiber bundle is cut by melting the fibers. The melting and breaking temperature of the fiber bundle is
It can be obtained as the temperature at which melting of the fibers is observed by visually observing a cut fiber bundle, but more precisely, it is determined as the temperature at which melting of the fibers is observed by observation with a scanning electron microscope.

【0015】又昇温速度とは、炉の外部温度(通常、室
温)から炉の均熱部の温度にピッチ繊維束が到達する時
間から求めた値をいう。
[0015] The temperature increase rate is a value determined from the time it takes for the pitch fiber bundle to reach the temperature of the soaking section of the furnace from the outside temperature of the furnace (usually room temperature).

【0016】本発明においては、ピッチ繊維束の溶融破
断温度よりも30〜100℃低い温度まで急速に昇温し
て、熱処理及びこれと同時の延伸処理からなる短時間の
延伸熱処理をするが、好ましくは溶融破断温度よりも4
0〜80℃低い温度までの昇温とすることがよい。又昇
温速度は100〜5000℃/分の速度が用いられるが
、好ましくは500〜4000℃/分である。
In the present invention, the temperature is rapidly raised to a temperature 30 to 100° C. lower than the melt breakage temperature of the pitch fiber bundle, and a short-time stretching heat treatment is performed, which consists of heat treatment and simultaneous stretching treatment. Preferably 4
It is preferable to raise the temperature to a temperature lower than 0 to 80°C. As for the temperature increase rate, a rate of 100 to 5000°C/min is used, preferably 500 to 4000°C/min.

【0017】本発明によれば、上記のように、酸化性ガ
ス雰囲気下でピッチ繊維束の溶融破断温度よりも30〜
100℃低い温度まで急速に昇温して、短時間の熱処理
及び延伸処理することによる不融化処理をするので、得
られる炭素繊維の物性は、引張強度及び引張弾性率が飛
躍的に向上し、又圧縮強度も増大したものになる。
According to the present invention, as described above, the temperature is 30 to
Since the temperature is rapidly raised to a temperature 100 degrees Celsius lower, and the infusibility treatment is performed by short-term heat treatment and stretching treatment, the physical properties of the resulting carbon fiber are dramatically improved in tensile strength and tensile modulus, Moreover, the compressive strength is also increased.

【0018】[0018]

【実施例】以下、本発明の実施例について詳細に説明す
る。
[Examples] Examples of the present invention will be described in detail below.

【0019】先ず、炭素質ピッチは当業者には周知の方
法によって紡糸できる。例えば、石油系ピッチ、石炭系
ピッチ、芳香族炭化水素類を原料とするピッチ等の炭素
繊維の製造に適した炭素質ピッチを加熱溶融して1〜2
000本、好ましくは50〜1000本のフィラメント
を紡糸し、各フィラメントには通常使用されているオイ
リングローラを使用して集束剤を付与して、これら多数
のフィラメントを集束し、1本の糸条としてボビンに巻
取られる。
First, carbonaceous pitch can be spun by methods well known to those skilled in the art. For example, by heating and melting carbonaceous pitch suitable for manufacturing carbon fiber, such as petroleum pitch, coal pitch, pitch made from aromatic hydrocarbons, etc.
000 filaments, preferably 50 to 1000 filaments are spun, and a sizing agent is applied to each filament using a commonly used oiling roller to bundle these many filaments into a single yarn. It is wound onto a bobbin.

【0020】集束剤としては、例えば水、エチルアルコ
ール、イソプロピルアルコール、n−プロピルアルコー
ル、ブチルアルコール、等のアルコール類又は粘度5〜
1000cst(25℃)のジメチルポリシロキサン、
アルキルフェニルポリシロキサン等を、低沸点のシリコ
ーン油(ポリシロキサン)又はパラフィン油等の溶剤で
稀釈したもの、又は乳化剤を入れて水に分散させたもの
;同様にグラファイト又はポリエチレングリコールやヒ
ンダードエステル類を分散させたもの;界面活性剤を水
で稀釈したもの;その他通常の繊維、例えばポリエステ
ル繊維に使用される各種油剤の内ピッチ繊維を犯さない
ものを使用することができる。
Examples of the sizing agent include water, alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, or sizing agents with a viscosity of 5 to 5.
1000cst (25°C) dimethylpolysiloxane,
Alkylphenylpolysiloxane etc. diluted with a low boiling point silicone oil (polysiloxane) or a solvent such as paraffin oil, or dispersed in water with an emulsifier added; Similarly, graphite, polyethylene glycol or hindered esters Dispersions of surfactants; surfactants diluted with water; and other oils that do not harm pitch fibers among the various oils used for ordinary fibers, such as polyester fibers, can be used.

【0021】集束剤のピッチ繊維への付与量は、通常0
.01〜10重量%とされるが、特に0.05〜5重量
%が好ましい。
[0021] The amount of sizing agent applied to the pitch fibers is usually 0.
.. 0.01 to 10% by weight, particularly preferably 0.05 to 5% by weight.

【0022】上述のようにして一旦ボビンに巻取られた
多数のフィラメントから成る糸条は、複数個の、例えば
2〜50個のボビンを同時に解舒することによって、又
は複数回に分けて、例えば1回目は2〜10本を、次い
で残余分をといつたように、解舒合糸を繰返し行なうこ
とによつて、2〜50本の糸条を合束(合糸)し、10
0〜100000本、好ましくは500〜10000本
のフィラメントからピッチ繊維束(以後単に「ピッチ繊
維」という。)が製造され、他のボビンに巻取られる。
[0022] The yarn consisting of a large number of filaments once wound onto a bobbin as described above can be unwound by simultaneously unwinding a plurality of bobbins, for example, 2 to 50 bobbins, or by dividing it into multiple times. For example, by unwinding and doubling 2 to 10 yarns the first time and then combing the remaining yarn, 2 to 50 yarns are bundled (paired), and 10
A pitch fiber bundle (hereinafter simply referred to as "pitch fiber") is produced from 0 to 100,000 filaments, preferably 500 to 10,000 filaments, and wound onto another bobbin.

【0023】斯る合糸時に、不融化時及び予備炭化時の
処理を考慮してピッチ繊維に耐熱性の油剤が付与される
。耐熱性の油剤としては、アルキルフェニルポリシロキ
サンが好ましく、フェニル基を5〜80%、好ましくは
10〜50%含み、又、アルキル基としてはメチル基、
エチル基、プロピル基が好ましく、同一分子に2種以上
のアルキル基を有していても良い。又、粘度は25℃に
て10〜1000cstのものが使用される。更に後述
するような酸化防止剤を添加することもできる。
[0023] At the time of such yarn doubling, a heat-resistant oil agent is applied to the pitch fibers in consideration of treatments during infusibility and preliminary carbonization. As the heat-resistant oil agent, alkylphenylpolysiloxane is preferable, containing 5 to 80%, preferably 10 to 50%, of phenyl groups, and the alkyl groups include methyl groups,
Ethyl groups and propyl groups are preferred, and the same molecule may contain two or more types of alkyl groups. Further, the viscosity used is 10 to 1000 cst at 25°C. Furthermore, an antioxidant as described later can also be added.

【0024】他の好ましい油剤としては、ジメチルポリ
シロキサンに酸化防止剤を入れたものが使用可能であり
、粘度としては25℃で5〜1000cstのものが好
ましい。酸化防止剤としては、アミン類、有機セレン化
合物、フェノール類等、例えばフェニル−α−ナフチル
アミン、ジラウリルセレナイド、フェノチアジン、鉄オ
クトレート等を挙げることができる。これらの酸化防止
剤は、上述したように、更に耐熱性を高める目的で上記
アルキルフェニルポリシロキサンに添加することも可能
である。
Another preferred oil agent that can be used is dimethylpolysiloxane containing an antioxidant, and preferably has a viscosity of 5 to 1000 cst at 25°C. Examples of the antioxidant include amines, organic selenium compounds, phenols, and the like, such as phenyl-α-naphthylamine, dilauryl selenide, phenothiazine, and iron octolate. As mentioned above, these antioxidants can also be added to the alkylphenylpolysiloxane for the purpose of further increasing heat resistance.

【0025】更に、好ましい油剤としては、上記各油剤
を沸点が600℃以下の界面活性剤を用いて、乳化した
ものを使用することもできる。このとき界面活性剤とし
ては、ポリオキシエチレンアルキルエーテル、ポリオキ
シエチレンアルキルエステル、ポリオキシエチレン変性
シリコーン、ポリオキシアルキレン変性シリコーン等を
使用し得る。
[0025] Further, as a preferred oil agent, it is also possible to use one obtained by emulsifying the above-mentioned oil agents using a surfactant having a boiling point of 600°C or less. At this time, as the surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene-modified silicone, polyoxyalkylene-modified silicone, etc. can be used.

【0026】これら油剤は、ローラ接触、スプレー塗布
、泡沫塗布等により、ピッチ繊維に0.01〜10重量
%、好ましくは0.05〜5重量%が付与される。
These oils are applied to the pitch fibers in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, by roller contact, spray coating, foam coating, or the like.

【0027】上述のように、合糸されたピッチ繊維に耐
熱性油剤を付与することにより、該ピッチ繊維は強度が
著しく強くなり糸扱い性が極めて向上する。
As mentioned above, by applying a heat-resistant oil agent to the pitch fibers which have been doubled, the strength of the pitch fibers becomes significantly stronger and the yarn handling properties are greatly improved.

【0028】以上の如くにして製造されたピッチ繊維を
ボビンより解舒して、不融化炉へと送給する。
The pitch fibers produced as described above are unwound from a bobbin and sent to an infusibility furnace.

【0029】不融化炉内は酸化性ガス雰囲気とされ、不
融化炉内には空気、酸素、空気と酸素又は空気と窒素の
混合ガス等の酸化性ガスが供給されるが、好ましいガス
としては酸素濃度30〜90%の富酸素ガスが使用され
る。場合によっては、上記のガスにNOx、SOx、C
l2 などを含有させた混合ガスを用いてもよい。
The interior of the infusibility furnace is an oxidizing gas atmosphere, and an oxidizing gas such as air, oxygen, a mixed gas of air and oxygen, or air and nitrogen is supplied into the infusibility furnace. Oxygen-rich gas with an oxygen concentration of 30-90% is used. In some cases, the above gases include NOx, SOx, C
A mixed gas containing l2 or the like may also be used.

【0030】不融化は150〜350℃の温度で行なわ
れるが、本発明では、その不融化を、ピッチ繊維束の溶
融破断温度より30〜100℃低い温度まで100〜5
000℃/分の速度で昇温して、繊維束を1〜200秒
の極く短時間の延伸熱処理することにより行なう。
[0030] Infusibility is carried out at a temperature of 150 to 350°C, but in the present invention, the infusibility is carried out at a temperature of 100 to 50°C to a temperature 30 to 100°C lower than the melt breakage temperature of the pitch fiber bundle.
This is carried out by heating the fiber bundle at a rate of 1,000° C./min and subjecting the fiber bundle to a very short stretching heat treatment of 1 to 200 seconds.

【0031】上記の延伸熱処理は、例えば250℃とい
うような定温炉で行なってもよく、炉入り口部から出口
部にかけて180℃、220℃、250℃、280℃、
310℃というように、段階的に高くした温度が保持さ
れた温度傾斜炉で行なってもよい。
[0031] The above-mentioned stretching heat treatment may be carried out in a constant temperature furnace, for example, at 250°C, and the temperatures from the furnace entrance to the exit are 180°C, 220°C, 250°C, 280°C,
It may be carried out in a temperature gradient furnace in which the temperature is maintained at a stepwise increase, such as 310°C.

【0032】本発明においては、繊維束の溶融破断温度
よりも30〜100℃低い温度まで急速に昇温して延伸
熱処理するが、好ましくは溶融破断温度より40〜80
℃低い温度がよい。上記の昇温が溶融破断温度より30
℃低い温度を超える高い温度まで行なわれると、繊維束
に融膠着が起こって繊維束が破断するので、好ましくな
い。又上記の昇温が溶融破断温度よりも100℃低い温
度未満の低い温度までであると、繊維束の延伸が困難に
なるので、同様に好ましくない。
In the present invention, the drawing heat treatment is carried out by rapidly raising the temperature to a temperature 30 to 100° C. lower than the melt breaking temperature of the fiber bundle, preferably 40 to 80° C. lower than the melt breaking temperature of the fiber bundle.
A lower temperature is better. The above temperature increase is 30° above the melting rupture temperature.
If the temperature is higher than a low temperature of .degree. C., it is not preferable because the fiber bundles will fuse and stick together, causing the fiber bundles to break. Furthermore, if the temperature is increased to a low temperature that is less than 100° C. lower than the melt breakage temperature, it becomes difficult to draw the fiber bundle, which is similarly undesirable.

【0033】上記の溶融破断温度よりも30〜100℃
低い温度までの繊維束の昇温速度は、100〜5000
℃/分の速度が用いられるが、好ましくは500〜40
00℃/分である。昇温速度が100℃/分未満の場合
、不融化が進み十分な延伸ができにくくなり、逆に50
00℃/分を超える場合、昇温が速すぎて繊維束の通糸
速度を速めなければならず、操作上の問題が出て来、や
はり好ましくない。
[0033] 30 to 100°C higher than the above melt rupture temperature
The heating rate of the fiber bundle to a low temperature is 100 to 5000
A rate of 500 to 40 °C/min is used, preferably 500 to 40 °C/min.
00°C/min. If the temperature increase rate is less than 100°C/min, infusibility progresses and sufficient stretching becomes difficult;
If it exceeds 00° C./min, the temperature rises too quickly and the threading speed of the fiber bundle must be increased, resulting in operational problems, which is also undesirable.

【0034】延伸熱処理の時間は、1〜200秒が用い
られるが、好ましくは5〜100秒℃の極く短時間であ
るのがよい。
[0034] The time for the stretching heat treatment is 1 to 200 seconds, preferably a very short time of 5 to 100 seconds.

【0035】延伸熱処理における延伸処理は、繊維束に
テンションを付与するか、2つのローラの差動により行
なわれ、いずれの方法によっても達成される。延伸時の
テンションは1フィラメント当たり0.001〜0.2
0gが付与される。
[0035] The stretching process in the stretching heat treatment is carried out by applying tension to the fiber bundle or by differentially moving two rollers, and can be achieved by either method. The tension during stretching is 0.001 to 0.2 per filament.
0g is given.

【0036】繊維束の延伸率は5〜100%、好ましく
は10〜80%とするのがよい。延伸率が5%未満では
十分な延伸効果が得られず、又100%を超えると、延
伸による繊維のダメージが多くなるので好ましくない。
The stretching ratio of the fiber bundle is preferably 5 to 100%, preferably 10 to 80%. If the stretching ratio is less than 5%, a sufficient stretching effect cannot be obtained, and if it exceeds 100%, the fibers will be damaged by stretching, which is not preferable.

【0037】延熱伸処理は1回で行なってもよいが、例
えば250℃で1度延伸し、引き続き300℃で延伸す
るというように複数回に分けて実施することもできる。 複数回に分けた場合には繊維のダメージが少なく、延伸
が容易にできるようになるので好ましい。
[0037] The heat-stretching treatment may be carried out once, but it can also be carried out in multiple steps, for example, stretching once at 250°C and then stretching at 300°C. It is preferable to divide the process into multiple times because the fibers are less damaged and can be drawn easily.

【0038】このようにして、不融化繊維束の酸素濃度
が7〜12重量%になるように不融化される。
[0038] In this way, the infusible fiber bundle is infusible so that the oxygen concentration becomes 7 to 12% by weight.

【0039】このような延伸熱処理による不融化の結果
、繊維束の配向性が改善され、得られる炭素繊維の物性
が向上する。延伸熱処理による不融化は1回又は複数回
繰り返して不融化を終了としてもよいが、その後に延伸
処理のない通常の不融化を実施してもよい。
As a result of the infusibility caused by such drawing heat treatment, the orientation of the fiber bundles is improved, and the physical properties of the resulting carbon fibers are improved. The infusibility by stretching heat treatment may be repeated once or multiple times to complete the infusibility, but after that, normal infusibility without stretching treatment may be performed.

【0040】不融化炉で不融化された不融化繊維束は、
連続的に予備炭化炉内に導入され、予備炭化される。
The infusible fiber bundle made infusible in the infusible furnace is
It is continuously introduced into a pre-carbonization furnace and pre-carbonized.

【0041】予備炭化炉内は、最高温度500〜110
0℃に加熱され、且つ炉内を不活性雰囲気とするために
化学的に不活性な窒素ガス又はアルゴンガスが供給され
る。
[0041] The maximum temperature inside the preliminary carbonization furnace is 500 to 110
The furnace is heated to 0° C., and chemically inert nitrogen gas or argon gas is supplied to create an inert atmosphere inside the furnace.

【0042】斯る予備炭化炉内を通糸された不融化繊維
束は予備炭化され、強度約0.2GPa以上、弾性率約
4GPa以上の予備炭化繊維束が得られる。
The infusible fiber bundle threaded through the pre-carbonization furnace is pre-carbonized to obtain a pre-carbonized fiber bundle having a strength of about 0.2 GPa or more and an elastic modulus of about 4 GPa or more.

【0043】以上のようにして不融化繊維束の予備炭化
を行なったら、得られた予備炭化繊維束を続いて炭化炉
で不活性ガス雰囲気下にて温度1500〜2000℃ま
で加熱して炭化し、必要に応じて3000℃まで加熱し
て黒鉛化すればよい。これにより繊維の切断や毛羽立ち
がなく、且つ引張強度、引張弾性率及び圧縮強度が向上
した炭素繊維を得ることができる。
After pre-carbonizing the infusible fiber bundle as described above, the obtained pre-carbonized fiber bundle is then heated to a temperature of 1500 to 2000°C in an inert gas atmosphere in a carbonization furnace to carbonize it. , if necessary, it may be graphitized by heating up to 3000°C. This makes it possible to obtain carbon fibers that are free from fiber breakage and fluffing and have improved tensile strength, tensile modulus, and compressive strength.

【0044】本発明で用いる原料炭素質ピッチは、公知
の原料、例えば石油系の各種重質油、熱分解タール、接
触分解タール、石炭の乾留によって得られる重質油、タ
ールなどを出発原料として、その熱分解重縮合によって
得られるメソフェースピッチ(光学的異方性ピッチ)、
芳香族炭化水素類を原料とするメソフェースピッチ、光
学的異方性相と光学的等方性相を含有するピッチ或いは
光学的等方性ピッチであってもよい。例えば、超高強度
の高性能炭素繊維を、熱分解重縮合によって得られたメ
ソフェースピッチから製造する場合、メソフェース含有
量70〜100%のメソフェースピッチが好ましく、特
に実質的に100%のメソフェースを含有するメソフェ
ースピッチが最も好ましい。
The raw material carbonaceous pitch used in the present invention is prepared from known raw materials such as various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, heavy oil and tar obtained by carbonization of coal, etc. , mesophase pitch (optically anisotropic pitch) obtained by its thermal decomposition polycondensation,
It may be a mesoface pitch made from aromatic hydrocarbons, a pitch containing an optically anisotropic phase and an optically isotropic phase, or an optically isotropic pitch. For example, when ultra-high-strength, high-performance carbon fibers are produced from mesoface pitch obtained by pyrolysis polycondensation, mesoface pitch with a mesoface content of 70 to 100% is preferred, particularly substantially 100% mesoface pitch. Most preferred is a mesoface pitch containing.

【0045】次に、本発明に係る炭素繊維の製造方法を
具体的な実施例に即して更に説明する。
Next, the method for producing carbon fiber according to the present invention will be further explained with reference to specific examples.

【0046】実施例1 光学的異方性相98%からなる炭素繊維用ピッチを、5
00孔の紡糸口金を有する溶融紡糸機(ノズル孔径:直
径0.3mm)に通し、355℃で200mmHgの窒
素ガス圧で押し出して紡糸した。
Example 1 Carbon fiber pitch consisting of 98% optically anisotropic phase was
It was passed through a melt spinning machine (nozzle hole diameter: 0.3 mm in diameter) having a spinneret with 00 holes, and extruded and spun at 355° C. under a nitrogen gas pressure of 200 mmHg.

【0047】紡糸した500本のフィラメントはエアー
サッカーで略集束してオイリングローラに導き、糸に対
して約0.2重量%の割合で集束用油剤を供給し、50
0フィラメントから成るピッチ繊維を形成した。油剤と
しては、25℃における粘度が14cstのメチルフェ
ニルポリシロキサンを使用した。
The 500 spun filaments were approximately converged by an air sucker and guided to an oiling roller, and a convergence oil was supplied at a ratio of about 0.2% by weight to the yarn.
A pitch fiber consisting of 0 filaments was formed. As the oil agent, methylphenylpolysiloxane having a viscosity of 14 cst at 25° C. was used.

【0048】該ピッチ繊維は、ノズル下部に設けた高速
で回転する直径210mm、幅200mmのステンレス
鋼製のボビンに巻き取り、約500m/分の巻き取り速
度で10分間紡糸した。
The pitch fibers were wound up on a stainless steel bobbin with a diameter of 210 mm and a width of 200 mm that was installed at the bottom of the nozzle and rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min.

【0049】次いで、ピッチ繊維を巻いた前記ボビン6
個を解舒し、そしてオイリングローラを使用して耐熱性
油剤を付与しながら合糸し、3000フィラメントから
成るピッチ繊維(束)を形成し、他のステンレス製ボビ
ンに巻取つた。
Next, the bobbin 6 wound with pitch fibers is
The fibers were unwound, and the fibers were combined using an oiling roller while applying a heat-resistant oil to form a pitch fiber (bundle) consisting of 3,000 filaments, which was wound onto another stainless steel bobbin.

【0050】合糸時に油剤としては25℃で40cst
のメチルフェニルポリシロキサン(フェニル基含有量4
5モル%)を使用した。付与量は糸に対し0.5%であ
つた。
[0050] As an oil agent at the time of yarn doubling, use 40cst at 25°C.
of methylphenylpolysiloxane (phenyl group content 4
5 mol%) was used. The amount applied was 0.5% based on the yarn.

【0051】このようにして得た、ボビン巻のピッチ繊
維をボビンから解舒しつつ、炉入口温度180℃、最高
温度220℃の温度勾配を持つ富酸素雰囲気(酸素/窒
素=60/40)の連続不融化炉に線状で連続的に導入
した。180から220℃への昇温速度は6℃/分であ
った。
While unwinding the bobbin-wound pitch fiber thus obtained from the bobbin, an oxygen-rich atmosphere (oxygen/nitrogen = 60/40) having a temperature gradient of a furnace inlet temperature of 180°C and a maximum temperature of 220°C is prepared. It was introduced continuously in a linear manner into a continuous infusibility furnace. The temperature increase rate from 180 to 220°C was 6°C/min.

【0052】この220℃まで不融化をした繊維束の溶
融破断温度は300℃であった。この不融化繊維束を、
250℃(不融化繊維束の溶融破断温度よりも50℃低
い温度)の富酸素雰囲気(酸素/窒素=60/40)の
不融化炉に3000℃/分の昇温速度で通糸して、延伸
熱処理による不融化処理を施した。
[0052] The melt-rupture temperature of the fiber bundle infusible to 220°C was 300°C. This infusible fiber bundle
The fibers were threaded through an infusible furnace in an oxygen-rich atmosphere (oxygen/nitrogen = 60/40) at 250°C (a temperature 50°C lower than the melting failure temperature of the infusible fiber bundle) at a heating rate of 3000°C/min. Infusible treatment was performed by stretching heat treatment.

【0053】この不融化処理時間は25秒であった。繊
維束には1フィラメント当たり0.007gのテンショ
ンが付与された。延伸率は17%であった。
[0053] The time for this infusibility treatment was 25 seconds. A tension of 0.007 g per filament was applied to the fiber bundle. The stretching ratio was 17%.

【0054】その後、引き続き6℃/分で昇温して29
5℃まで富酸素雰囲気(酸素/窒素=60/40)の炉
で延伸のない通常の不融化を行なった。1時間の連続処
理を行なったが、その間炉内での繊維束の断糸は生じな
かった。
[0054] Thereafter, the temperature was raised at a rate of 6°C/min to 29°C.
Conventional infusibility without stretching was performed in a furnace in an oxygen-rich atmosphere (oxygen/nitrogen = 60/40) up to 5°C. Although the continuous treatment was carried out for one hour, no breakage of the fiber bundle occurred in the furnace during that time.

【0055】次いで上記の不融化繊維束を予備炭化炉に
導入し、1000℃まで昇温して予備炭化をした。
Next, the above-mentioned infusible fiber bundle was introduced into a pre-carbonization furnace, and the temperature was raised to 1000° C. for pre-carbonization.

【0056】このようにして得られた予備炭化繊維束を
窒素ガス雰囲気中で1500℃まで昇温して炭素繊維を
得た。炭素繊維の糸径は9.0μmであり、引張強度は
3.2GPa、引張弾性率は320GPa、圧縮強度は
1.2GPaであった。
The pre-carbonized fiber bundle thus obtained was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fibers. The carbon fiber yarn diameter was 9.0 μm, the tensile strength was 3.2 GPa, the tensile modulus was 320 GPa, and the compressive strength was 1.2 GPa.

【0057】又、炭素繊維をアルゴンガス雰囲気中で2
500℃まで昇温して得た黒鉛炭素繊維は、糸径が8.
9μmであり、引張強度は3.9GPa、引張弾性率は
800GPa、圧縮強度は0.5GPaであった。
[0057] Also, the carbon fibers were heated in an argon gas atmosphere for 2
The graphite carbon fiber obtained by raising the temperature to 500°C has a thread diameter of 8.
The tensile strength was 3.9 GPa, the tensile modulus was 800 GPa, and the compressive strength was 0.5 GPa.

【0058】実施例2 実施例1において、250℃で一度延伸熱処理をした不
融化繊維束の溶融破断温度は310℃であった。この繊
維束を用いこれを260℃(該繊維束の溶融破断温度よ
りも50℃低い温度)の富酸素雰囲気の不融化炉に30
00℃/分の昇温速度で通糸し、再度延伸熱処理による
不融化処理を施した。
Example 2 In Example 1, the melt-rupture temperature of the infusible fiber bundle that had been subjected to the drawing heat treatment once at 250°C was 310°C. Using this fiber bundle, it was placed in an infusible furnace in an oxygen-rich atmosphere at 260°C (a temperature 50°C lower than the melting and breaking temperature of the fiber bundle) for 30 minutes.
Threading was carried out at a temperature increase rate of 00° C./min, and the infusibility treatment by drawing heat treatment was performed again.

【0059】処理時間は25秒で、繊維束には1フィラ
メント当たり20gのテンションが付与された。このと
きの延伸率は21%であった。250℃のときの延伸と
260℃のときの延伸の合計の延伸率は38%であった
The treatment time was 25 seconds, and a tension of 20 g per filament was applied to the fiber bundle. The stretching ratio at this time was 21%. The total stretching ratio of stretching at 250°C and stretching at 260°C was 38%.

【0060】上記以外は実施例1と同様に処理した。1
時間の連続処理をしたが、その間炉内での断糸はなかっ
た。
[0060] Except for the above, the process was carried out in the same manner as in Example 1. 1
Although the process was carried out continuously for several hours, there was no yarn breakage in the furnace during that time.

【0061】予備炭化後得られた予備炭化繊維束を窒素
ガス雰囲気中で1500℃まで昇温して炭素繊維を得た
。炭素繊維の糸径は8.5μmであり、引張強度は3.
6GPa、引張弾性率は340GPaであった。
[0061] The pre-carbonized fiber bundle obtained after pre-carbonization was heated to 1500°C in a nitrogen gas atmosphere to obtain carbon fibers. The carbon fiber thread diameter is 8.5 μm, and the tensile strength is 3.
6 GPa, and the tensile modulus was 340 GPa.

【0062】更に、炭素繊維をアルゴンガス雰囲気中で
2500℃まで昇温して得た黒鉛炭素繊維は、糸径が8
.4μmであり、引張強度は4.0GPa、引張弾性率
は840GPaであった。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 8.
.. 4 μm, tensile strength was 4.0 GPa, and tensile modulus was 840 GPa.

【0063】実施例1〜2に示されるように、ピッチ繊
維束の不融化を、本発明の範囲の繊維束の溶融破断温度
よりも30〜100℃低い温度まで急速に昇温して、短
時間の延伸熱処理により行なったので、不融化炉内での
ピッチ繊維束の断糸を生じることなく不融化することが
でき、その結果、得られた炭素繊維及び黒鉛繊維は繊維
の毛羽立ちが少ないことは勿論、断糸もわずかであった
。又上記の延伸熱処理により不融化繊維束に5〜100
%の延伸処理を加えたので、得られた炭素繊維及び黒鉛
繊維は引張強度、引張弾性率及び圧縮強度が共に向上し
たものになった。
As shown in Examples 1 and 2, the pitch fiber bundle was made infusible by rapidly increasing the temperature to a temperature 30 to 100° C. lower than the melting failure temperature of the fiber bundle within the range of the present invention. Since this was carried out by drawing heat treatment for several hours, the pitch fiber bundles could be infusible without breaking in the infusibility furnace, and as a result, the obtained carbon fibers and graphite fibers had little fiber fluff. Of course, there were only a few thread breaks. In addition, the above-mentioned drawing heat treatment gives an infusible fiber bundle of 5 to 100%
% of the stretching treatment, the resulting carbon fibers and graphite fibers had improved tensile strength, tensile modulus, and compressive strength.

【0064】比較例1 実施例1において、不融化炉の温度を280℃(繊維束
の溶融破断温度より20℃低い温度)とした以外は、実
施例1と同様に処理した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the temperature of the infusibility furnace was 280° C. (20° C. lower than the melting and breaking temperature of the fiber bundle).

【0065】その結果、繊維束は炉内で断糸し、連続運
転することができなかった。
As a result, the fiber bundles were broken in the furnace, making it impossible to operate continuously.

【0066】比較例2 実施例1において、不融化炉の温度を180℃(繊維束
の溶融破断温度よりも120℃低い温度)とした以外は
、実施例1と同様に処理した。この場合は、繊維束の延
伸は起こらなかった。
Comparative Example 2 The same process as in Example 1 was carried out except that the temperature of the infusibility furnace was 180° C. (120° C. lower than the melting and breaking temperature of the fiber bundle). In this case, no drawing of the fiber bundle occurred.

【0067】予備炭化後得られた予備炭化繊維束を窒素
ガス雰囲気中で15000℃まで昇温して得た炭素繊維
の糸径は9.8μmであり、引張強度は2.5GPa、
引張弾性率は270GPa、圧縮強度は1.0GPaで
あった。
[0067] The pre-carbonized fiber bundle obtained after pre-carbonization was heated to 15,000°C in a nitrogen gas atmosphere, and the yarn diameter of the carbon fiber obtained was 9.8 μm, and the tensile strength was 2.5 GPa.
The tensile modulus was 270 GPa, and the compressive strength was 1.0 GPa.

【0068】更に、炭素繊維をアルゴンガス雰囲気中で
2500℃まで昇温して得た黒鉛炭素繊維は、糸径が9
.8μmであり、引張強度は3.2GPa、引張弾性率
は690GPa、圧縮強度は0.4GPaであった。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.
.. 8 μm, tensile strength was 3.2 GPa, tensile modulus was 690 GPa, and compressive strength was 0.4 GPa.

【0069】比較例3 実施例1において、昇温速度を50℃/分とした以外は
、実施例1と同様に処理した。この場合は、繊維束の延
伸は起こらなかった。
Comparative Example 3 The same procedure as in Example 1 was carried out except that the temperature increase rate was 50° C./min. In this case, no drawing of the fiber bundle occurred.

【0070】この場合に得られた炭素繊維の物性は、比
較例2と同様に、延伸したもの比べ低いものであった。
As in Comparative Example 2, the physical properties of the carbon fiber obtained in this case were lower than those of the stretched carbon fiber.

【0071】[0071]

【発明の効果】以上説明したように、本発明の製造方法
では、ピッチ繊維束の不融化処理を、酸化性ガス雰囲気
中で繊維束の溶融破断温度よりも30〜100℃低い温
度まで100〜5000℃/分の速度で昇温して、繊維
束を1〜200秒の極く短時間の熱処理しながら同時に
延伸率5〜100%の延伸処理することにより行なうの
で、不融化炉内でのピッチ繊維束の断糸や毛羽立ちを押
さえて、不融化の際の歩留りを向上するだけでなく、繊
維の引張強度、引張弾性率及び圧縮強度を向上した炭素
繊維を得ることができる。
As explained above, in the manufacturing method of the present invention, the pitch fiber bundle is infusible at a temperature of 100 to 100°C lower than the melting and breaking temperature of the fiber bundle in an oxidizing gas atmosphere. This is done by heating the fiber bundle at a rate of 5,000°C/min, heat-treating the fiber bundle for a very short time of 1-200 seconds, and simultaneously stretching it at a stretching rate of 5-100%. Not only can the yield during infusibility be improved by suppressing breakage and fluffing of the pitch fiber bundle, but also carbon fibers with improved tensile strength, tensile modulus, and compressive strength can be obtained.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  紡糸、集束されたピッチ繊維束を不融
化し、前記不融化された不融化繊維束を予備炭化し、然
る後に炭化し、必要に応じて更に黒鉛化することからな
るピッチ系炭素繊維及び黒鉛繊維の製造方法において、
前記ピッチ繊維束を酸化性ガス雰囲気中で、繊維束の溶
融破断温度よりも30〜100℃低い温度まで100〜
5000℃/分の速度で昇温して、繊維束を1〜200
秒の極く短時間で熱処理しながら同時に延伸率5〜10
0%の延伸処理することにより、繊維束の不融化を行な
うことを特徴とするピッチ系炭素繊維及び黒鉛繊維の製
造方法。
1. Pitch, which is made by infusibleizing a spun and bundled pitch fiber bundle, pre-carbonizing the infusible infusible fiber bundle, followed by carbonization, and further graphitization if necessary. In the method for producing carbon fiber and graphite fiber,
The pitch fiber bundle is heated in an oxidizing gas atmosphere to a temperature 30 to 100°C lower than the melting and breaking temperature of the fiber bundle.
The fiber bundle is heated at a rate of 5000℃/min to
Stretching rate 5-10 at the same time while heat treating in a very short time of seconds
A method for producing pitch-based carbon fibers and graphite fibers, characterized in that a fiber bundle is rendered infusible by 0% stretching treatment.
【請求項2】  前記熱処理及び延伸処理によるピッチ
繊維束の不融化を複数回に分けて行なう請求項1の製造
方法。
2. The manufacturing method according to claim 1, wherein the heat treatment and stretching treatment to infusible the pitch fiber bundle are performed in multiple steps.
JP41654290A 1990-12-28 1990-12-28 Production of pitch-based carbon fiber and graphite fiber Pending JPH04245923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41654290A JPH04245923A (en) 1990-12-28 1990-12-28 Production of pitch-based carbon fiber and graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41654290A JPH04245923A (en) 1990-12-28 1990-12-28 Production of pitch-based carbon fiber and graphite fiber

Publications (1)

Publication Number Publication Date
JPH04245923A true JPH04245923A (en) 1992-09-02

Family

ID=18524763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41654290A Pending JPH04245923A (en) 1990-12-28 1990-12-28 Production of pitch-based carbon fiber and graphite fiber

Country Status (1)

Country Link
JP (1) JPH04245923A (en)

Similar Documents

Publication Publication Date Title
JP2000345435A (en) Pitch fiber bundle, pitch-based carbon fiber bundle and its production
JPS63264917A (en) Production of carbon fiber and graphite fiber
EP0148560A2 (en) Process for producing pitch-based graphite fibres
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH04257322A (en) Production of pitch carbon fiber and graphite fiber
JPH04272235A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04272233A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04272232A (en) Production of pitch-base carbon fiber and graphite fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPH05171519A (en) Production of pitch carbon fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JP2582848B2 (en) Method for producing pitch-based carbon fiber
JPH04119126A (en) Production of pitch-based carbon fiber and graphite fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPH05171518A (en) Pitch carbon fiber
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH0617319A (en) Production of pitch-based carbon fiber
JP3321913B2 (en) Method for producing pitch-based carbon fiber
JPH05295620A (en) Production of pitch-based carbon fiber
JPS6278220A (en) Production of ribbon-like carbon fiber
JPS60126324A (en) Method for producing carbon fiber bundle having high orientation of filament
JPH0491228A (en) Production of pitch-based carbon fiber