JPH04119126A - Production of pitch-based carbon fiber and graphite fiber - Google Patents

Production of pitch-based carbon fiber and graphite fiber

Info

Publication number
JPH04119126A
JPH04119126A JP23300490A JP23300490A JPH04119126A JP H04119126 A JPH04119126 A JP H04119126A JP 23300490 A JP23300490 A JP 23300490A JP 23300490 A JP23300490 A JP 23300490A JP H04119126 A JPH04119126 A JP H04119126A
Authority
JP
Japan
Prior art keywords
fibers
fiber
infusible
pitch
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23300490A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Kiyotoshi Mase
間瀬 清年
Takashi Hino
日野 隆
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP23300490A priority Critical patent/JPH04119126A/en
Publication of JPH04119126A publication Critical patent/JPH04119126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To prevent yarn breakage in a precarbonization furnace, reduce the fusing and sticking degree of precarbonized fiber, etc., and efficiently obtain the subject fiber having a high tensile strength, tensile elongation and compressive strength by precarbonizing an infusibilized fiber bundle according to a specific method. CONSTITUTION:A spun and collected pitch fiber bundle is initially infusibilized. The resultant infusibilized fiber bundle is then heat-treated in an oxidizing gas-containing atmosphere at 500-700 deg.C, preferably 550-650 deg.C maximum temperature in a short time, preferably 50-200sec while being subjected to drawing treatment at 5-100% draw ratio and precarbonized. The aforementioned precarbonized fiber is carbonized and, as necessary, then graphitized. Furthermore, oxygen is preferred as the above-mentioned oxidizing gas and the oxygen content in the oxidizing gas-containing atmosphere is preferably 0.01-30%.

Description

【発明の詳細な説明】 【l上皮■皿11 本発明は、一般には炭素繊維(本明細書にて「炭素繊維
」とは特に明記しない場合には炭素繊維のみならず黒鉛
繊維をも含めて使用する。)の製造方法に関するもので
あり、特に種々の炭素質ピッチから炭素繊維を極めて効
率よく且つ多量に製造する方法に関するものである。
Detailed Description of the Invention [l Epithelium ■ Dish 11 The present invention generally refers to carbon fibers (unless specified herein, "carbon fibers" include not only carbon fibers but also graphite fibers). The present invention relates to a method for producing carbon fibers (used in the present invention), and particularly to a method for producing carbon fibers from various carbon pitches very efficiently and in large quantities.

1米旦且I 石油系ピッチ、石炭系ピッチ等の炭素質ピッチから製造
されるピッチ系炭素繊維は、現在量も多量に製造されて
いるレーヨン系やPAN系の炭素繊維に比較して炭化収
率が高く、弾性率等の物理的特性も優れており、更に低
コストにて製造し得るという利点を有しているために近
年注目を浴びている。
Pitch-based carbon fibers manufactured from carbonaceous pitches such as petroleum-based pitch and coal-based pitch have a lower carbonization yield than rayon-based and PAN-based carbon fibers, which are currently produced in large quantities. It has attracted attention in recent years because it has a high modulus, excellent physical properties such as elastic modulus, and can be manufactured at low cost.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチ等がら炭素繊維に適
した炭素質ピッチを調製し、該炭素質ピッチを加熱溶融
して紡糸機にて紡糸し、集束してピッチ繊維を製造し、 (2)前記ピッチ繊維を不融化炉にて酸化性雰囲気下に
て150〜350℃までに加熱して不融化し、 (3)次いで、不融化された繊維を炭化炉にて不活性雰
囲気下にて3000℃以下にまで加熱して炭化或は黒鉛
化すること、 により製造されている。
Currently, pitch-based carbon fibers are produced by: (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, spinning it in a spinning machine, and converging it; (2) The pitch fibers are heated to 150 to 350°C in an oxidizing atmosphere in an infusible furnace to make them infusible. (3) The infusible fibers are then carbonized. It is manufactured by heating to 3000°C or less in a furnace under an inert atmosphere to carbonize or graphitize it.

しかしながら、従来の技術によっては、ピッチ繊維、不
融化繊維の引張強度が約0.0IGPaと小さい上、脆
いためにその取扱いが難しく、高性能製品を得るのに必
要なロングフィラメント状の繊維を安定して多量に得る
ことが極めて困難であった。
However, depending on the conventional technology, pitch fibers and infusible fibers have a low tensile strength of about 0.0 IGPa, and are brittle, making them difficult to handle. It was extremely difficult to obtain it in large quantities.

これらの問題解決方法の一つとして、本発明者らは、炭
素質ピッチを紡糸して得たピッチ繊維を合糸してストレ
ート系油剤を付与することによって繊維束の強さを強く
した上で、酸素濃度が30%以上の富酸素ガス中で、繊
維束を連続的に線状で通して不融化する方法を提案した
(特開昭63=264917号を参照せよ)。
As one method to solve these problems, the present inventors have developed a method of increasing the strength of fiber bundles by doubling pitch fibers obtained by spinning carbonaceous pitch and applying a straight oil. proposed a method of infusible fiber bundles by passing them continuously in a line in an oxygen-rich gas with an oxygen concentration of 30% or more (see Japanese Patent Application Laid-open No. 264917/1983).

が ゛ しよ とする しかしながら、不融化繊維を、化学的に不活性なアルゴ
ン又は窒素ガスなどの雰囲気中で500〜1000℃ま
で昇温して初期の炭化を行なう予備炭化工程に、線状で
通した場合には、特開昭59−15517号に開示され
るように、繊維束の温度が700〜800℃の温度に達
するまでに、繊維束の強さが室温下の強さより大幅に減
少し、予備炭化処理中に炉内で繊維束が切断し、毛羽立
ち易いという大きな欠点があった。
However, in the preliminary carbonization process in which the temperature of the infusible fibers is raised to 500 to 1000°C in an atmosphere of chemically inert argon or nitrogen gas to carry out initial carbonization, linear When passing through the fiber bundle, as disclosed in JP-A-59-15517, by the time the temperature of the fiber bundle reaches 700 to 800°C, the strength of the fiber bundle is significantly reduced from the strength at room temperature. However, there was a major drawback in that the fiber bundles were easily cut in the furnace during the preliminary carbonization process and became fluffy.

上記特開昭63−264917号に記載の発明も、この
問題点を根本的に解決し得るものではなく、予備炭化炉
において不融化繊維の炉内断糸が頻繁に発生し、通糸歩
留りが低下し、毛羽立ち易いという問題があった。
The invention described in JP-A No. 63-264917 cannot fundamentally solve this problem, and in the pre-carbonizing furnace, the infusible fibers frequently break in the furnace, and the yarn threading yield decreases. There was a problem in that it deteriorated and fuzzed easily.

更に、1本の不融化繊維は、100〜100000本の
フィラメントが集束されて構成された繊維束の形態とさ
れており、従って、予備炭化に際して、各フィラメント
が融着したり、膠着したりする度合いが大となり、製品
である焼成処理後の炭素繊維の品質に問題を生じるとい
う大きな欠点が発生した。
Furthermore, one infusible fiber is in the form of a fiber bundle composed of 100 to 100,000 filaments, and therefore, during preliminary carbonization, each filament may fuse or stick together. This resulted in a major drawback in that the quality of the carbon fiber product after firing treatment was affected.

このような、予備炭化炉における炉内断糸の改善を行な
う一つの手段として、不融化炉内における不融化繊維の
不融化度を上げることが考えられるが、本発明者らの研
究実験の結果によると、この方法では、炭素繊維の物性
が低下することとなり、この方法は適当でないことが分
かった。
One way to improve the yarn breakage in the pre-carbonization furnace is to increase the degree of infusibility of the infusible fibers in the infusibility furnace, but as a result of research experiments conducted by the present inventors, According to this method, the physical properties of the carbon fiber deteriorated, and it was found that this method was not suitable.

本発明者らは、連続焼成プロセスにて炭素繊維を製造す
る方法を研究する過程において、通常通りに不融化した
不融化繊維を高温の酸化性ガス含有雰囲気中に短詩間通
して熱処理し、予備炭化することにより、不融化繊維の
予備炭化炉内での断糸が防止され、通糸歩留りが向上す
ること、更には、予備炭化繊維の融膠着度が減少し、高
品質の炭素繊維を製造し得ることを見出した。
In the process of researching a method for producing carbon fibers using a continuous firing process, the present inventors heat-treated normally infusible infusible fibers in a high-temperature oxidizing gas-containing atmosphere for a short period of time. Carbonization prevents the infusible fibers from breaking in the pre-carbonization furnace, improving threading yield, and also reduces the degree of fusion and stickiness of the pre-carbonized fibers, producing high-quality carbon fibers. I found out what can be done.

更に、驚くべきことに、このような熱処理時において、
該不融化繊維を熱処理すると同時に該不融化繊維にテン
ションを付与し延伸処理することにより、得られる炭素
繊維の物性、即ち、引張強度及び引張弾性率が飛躍的に
向上し、圧縮強度も増大することを見出した。
Furthermore, surprisingly, during such heat treatment,
By heat-treating the infusible fibers and simultaneously applying tension to the infusible fibers and drawing them, the physical properties of the resulting carbon fibers, that is, the tensile strength and tensile modulus, are dramatically improved, and the compressive strength is also increased. I discovered that.

本発明は、斯る新規な知見に基づきなされたものである
The present invention has been made based on this new knowledge.

従って、本発明の目的は、不融化繊維の予備炭化炉内で
の断糸を防止し、通糸歩留りを向上せしめ、更には、予
備炭化繊維の融膠着度を低減させ、高引張強度、高引張
弾性率及び高圧縮強度を有した高品質の炭素繊維を製造
するためのピッチ系炭素繊維の製造方法を提供すること
である。
Therefore, an object of the present invention is to prevent yarn breakage of infusible fibers in a pre-carbonization furnace, improve yarn threading yield, and further reduce the degree of fusing and agglutination of pre-carbonized fibers to achieve high tensile strength and high An object of the present invention is to provide a method for producing pitch-based carbon fiber for producing high-quality carbon fiber having a tensile modulus and high compressive strength.

本発明の他の目的は、予備炭化時間を、従来の172〜
1/10程度にまで短縮し、効率よく高引張強度、高引
張弾性率及び高圧縮強度を有した炭素繊維を製造するこ
とのできるピッチ系炭素繊維の製造方法を提供すること
である。
Another object of the present invention is to reduce the pre-carbonization time from 172 to
It is an object of the present invention to provide a method for producing pitch-based carbon fibers that can be shortened to about 1/10 and efficiently produce carbon fibers having high tensile strength, high tensile modulus, and high compressive strength.

を ′ るための 上記目的は本発明に係るピッチ系炭素繊維及び黒鉛繊維
の製造方法にて達成される。要約すれば本発明は、紡糸
、集束されたピッチ繊維束を不融化し、前記不融化され
た不融化繊維束を予備炭化し、然る後に炭化し、必要に
応じて更に黒鉛化することからなるピッチ系炭素繊維及
び黒船繊維の製造方法において、前記不融化繊維束の予
備炭化を、最高温度が500〜700℃の酸化性ガス含
有雰囲気中で、前記不融化繊維束に5〜100%の延伸
処理を加えながら、短時間熱処理することにより行なう
ことを特徴とするピッチ系炭素繊維及び黒鉛繊維の製造
方法である。好ましくは、前記雰囲気中の酸化性ガスが
酸素であって、その雰囲気の酸素含有量が0.01〜3
0%とされ、又前記加熱時間が20〜300秒とされる
The above object is achieved by the method for producing pitch-based carbon fibers and graphite fibers according to the present invention. In summary, the present invention comprises infusibleizing a spun and bundled pitch fiber bundle, pre-carbonizing the infusible infusible fiber bundle, then carbonizing it, and further graphitizing it if necessary. In the method for producing pitch-based carbon fibers and Kurofune fibers, the infusible fiber bundle is pre-carbonized in an oxidizing gas-containing atmosphere with a maximum temperature of 500 to 700°C. This is a method for producing pitch-based carbon fibers and graphite fibers, which is characterized by carrying out a short-time heat treatment while adding a stretching treatment. Preferably, the oxidizing gas in the atmosphere is oxygen, and the oxygen content of the atmosphere is 0.01 to 3.
0%, and the heating time is 20 to 300 seconds.

本発明に従えば、連続焼成プロセスにて炭素繊維を製造
する方法において、通常通りに不融化した不融化繊維を
最高温度が500〜700℃の、好ましくは550〜6
50℃の酸化性ガス含有雰囲気中に掻く短時間、即ち、
20〜300秒間、好ましくは50〜200秒間通して
、同時に該不融化繊維に張力を付与して5〜100%の
延伸処理を施し、予備炭化(熱処理)が行なわれる。そ
れによって不融化繊維の予備炭化炉内での断糸が防止さ
れ、通糸歩留りが向上する。又、本発明によれば、予備
炭化処理後の予備炭化繊維の融膠着度が減少し、従って
、引続き行なわれる炭化或は黒鉛化処理された後の炭素
繊維の融膠着は低減し、極めて高品質の炭素繊維を得る
ことができる。同時に、本発明によれば、不融化繊維を
熱処理すると同時に該不融化繊維に張力を付与し延伸処
理がなされるために、得られる炭素繊維の物性、即ち、
引張強度及び引張弾性率が飛躍的に増大するのみならず
、圧縮強度も増大する。
According to the present invention, in the method of producing carbon fibers by a continuous firing process, the infusible fibers which have been infusible in a conventional manner are heated at a maximum temperature of 500 to 700°C, preferably 550 to 60°C.
A short period of time in an atmosphere containing oxidizing gas at 50°C, i.e.
For 20 to 300 seconds, preferably 50 to 200 seconds, tension is applied to the infusible fibers at the same time, and a stretching process of 5 to 100% is performed to perform preliminary carbonization (heat treatment). This prevents the infusible fibers from breaking in the pre-carbonization furnace and improves the threading yield. Further, according to the present invention, the degree of fusing and agglutination of the pre-carbonized fibers after the pre-carbonization treatment is reduced, and therefore the degree of fusing and agglutination of the carbon fibers after the subsequent carbonization or graphitization treatment is reduced and extremely high. You can get quality carbon fiber. At the same time, according to the present invention, since the infusible fibers are heat-treated and stretched at the same time by applying tension to the infusible fibers, the physical properties of the obtained carbon fibers are as follows:
Not only the tensile strength and tensile modulus are dramatically increased, but also the compressive strength is increased.

更に予備炭化時間を従来の1/2〜I/10に短縮する
ことができる。
Furthermore, the preliminary carbonization time can be shortened to 1/2 to 1/10 of the conventional time.

及丘l 以下、本発明の実施例について詳細に説明する。Oioka l Examples of the present invention will be described in detail below.

本発明者等は、予備炭化炉内での不融化繊維束の繊維の
切断や毛羽立ちを押さえて、予備炭化の際の歩留りを向
上するだけでな(、予備炭化の段階で積極的に張力を掛
けて延伸処理を施すことにより、繊維の引張強度、圧縮
強度、弾性率を向上した炭素繊維を得ることができるピ
ッチ系炭素繊維の製造方法を得るべく、鋭意研究を重ね
た。
The present inventors not only improved the yield during pre-carbonization by suppressing the cutting and fluffing of the fibers of the infusible fiber bundle in the pre-carbonization furnace (they also actively applied tension during the pre-carbonization stage). We have conducted extensive research to develop a method for producing pitch-based carbon fibers that can be stretched and stretched to produce carbon fibers with improved tensile strength, compressive strength, and elastic modulus.

その結果、ピッチ繊維束を不融化した不融化繊維束の予
備炭化を、高温の酸化性ガス含有雰囲気下で短時間で行
なえば、繊維の表層を選択的に酸化して表層を強固にし
ながら、繊維内部の炭化を進めて繊維を予備炭化するこ
とができ、このため予備炭化炉内で不融化繊維束に繊維
の切断や毛羽立ちが生じることがないばかりか、不融化
繊維束に張力を積極的に掛けて延伸処理を施すことがで
き、従って予備炭化の際の歩留りを向上するだけでなく
、繊維の引張強度、圧縮強度、弾性率を向上した炭素繊
維を得ることができることを見出した。
As a result, if pre-carbonization of the infusible pitch fiber bundle is carried out in a short time in an atmosphere containing high temperature oxidizing gas, the surface layer of the fibers will be selectively oxidized and the surface layer will be strengthened. It is possible to advance the carbonization inside the fibers and pre-carbonize the fibers, which not only prevents the fibers from being cut or fluffed in the infusible fiber bundles in the pre-carbonization furnace, but also allows the tension to be actively applied to the infusible fiber bundles. It has been found that it is possible to carry out the stretching treatment over a period of 20 minutes, thereby not only improving the yield during preliminary carbonization but also obtaining carbon fibers with improved tensile strength, compressive strength, and elastic modulus.

本発明は、上記知見に基づきなされたものである。The present invention has been made based on the above findings.

第1図は、本発明の炭素繊維の製造方法の一実施例を示
す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the method for producing carbon fibers of the present invention.

第1図において、30は予備炭化炉で、ピッチ繊維を紡
糸し、合糸して得られたピッチ繊維束が、図示しない不
融化炉で不融化され、これにより得られた不融化繊維束
が連続して予備炭化炉30で予備炭化され、その後図示
しない炭化炉で炭化され、必要に応じて黒鉛化されて、
炭素繊維とされる。
In FIG. 1, reference numeral 30 denotes a preliminary carbonization furnace, in which the pitch fiber bundles obtained by spinning and doubling pitch fibers are infusible in an infusibility furnace (not shown), and the infusible fiber bundles thus obtained are Continuously, it is pre-carbonized in a pre-carbonization furnace 30, then carbonized in a carbonization furnace (not shown), graphitized if necessary,
Considered to be carbon fiber.

先ず、炭素質ピッチは当業者には周知の方法によって紡
糸できる。例えば、石油系ピッチ、石炭系ピッチ、芳香
族炭化水素類を原料とするピッチ等の炭素繊維の製造に
適した炭素質ピッチを加熱溶融して1〜2000本、好
ましくは50〜1000本のフィラメントを紡糸し、各
フィラメントには通常使用されているオイリングローラ
を使用して集束剤を付与して、これら多数のフィラメン
トを集束し、1本の糸条としてボビンに巻取られる。
First, carbonaceous pitch can be spun by methods well known to those skilled in the art. For example, 1 to 2,000, preferably 50 to 1,000 filaments are produced by heating and melting carbonaceous pitch suitable for manufacturing carbon fiber, such as petroleum-based pitch, coal-based pitch, pitch made from aromatic hydrocarbons, etc. A sizing agent is applied to each filament using a commonly used oiling roller, and the large number of filaments are bundled and wound around a bobbin as a single thread.

集束剤としては、例えば水、エチルアルコール、イソプ
ロピルアルコール、n−プロビルアルコール、ブチルア
ルコール、等のアルコール類又は粘度5〜1000cs
t (25℃)のジメチルポリシロキサン、アルキルフ
ェニルポリシロキサン等を、低沸点のシリコーン油(ポ
リシロキサン)又はパラフィン油等の溶剤で稀釈したも
の、又は乳化剤を入れて水に分散させたもの;同様にグ
ラファイト又はポリエチレングリコールやヒンダードエ
ステル類を分散させたもの;界面活性剤を水で稀釈した
もの;その他通常の繊維、例えばポリエステル繊維に使
用される各種油剤の内ピッチ繊維を犯さないものを使用
することができる。
Examples of the sizing agent include water, alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, and butyl alcohol, or alcohols with a viscosity of 5 to 1000 cs.
Dimethylpolysiloxane, alkylphenylpolysiloxane, etc. at t (25°C) diluted with a solvent such as low-boiling silicone oil (polysiloxane) or paraffin oil, or dispersed in water with an emulsifier added; the same Dispersed with graphite, polyethylene glycol, or hindered esters; surfactants diluted with water; and other oils used for ordinary fibers, such as polyester fibers, which do not harm pitch fibers. can do.

集束剤のピッチ繊維への付与量は、通常0.01〜1重
量%とされるが、特に0.05〜5重量%が好ましい。
The amount of the sizing agent applied to the pitch fibers is usually 0.01 to 1% by weight, particularly preferably 0.05 to 5% by weight.

上述のようにして一旦ボビンに巻取られた多数のフィラ
メントから成る糸条は、複数個の、例えば2〜50個の
ボビンを同時に解舒することによって、又は複数回に分
けて、例えば1回目は2〜10本を、次いで残余分をと
いったように、解舒合糸を繰返し行なうことによって、
2〜50本の糸条を合束(合糸)し、100〜1000
00本、好ましくは500〜10000本のフィラメン
トからピッチ繊維束(以後単に「ピッチ繊維」という。
The yarn consisting of a large number of filaments once wound onto bobbins as described above can be unwound by simultaneously unwinding a plurality of bobbins, for example, 2 to 50 bobbins, or by dividing it into multiple times, for example, the first time. By repeatedly unwinding and doubling 2 to 10 yarns, then the remaining yarn,
2 to 50 yarns are bundled (paired) and 100 to 1000
00, preferably 500 to 10,000 filaments to form a pitch fiber bundle (hereinafter simply referred to as "pitch fiber").

)が製造され、他のボビンに巻取られる。) is produced and wound onto another bobbin.

斯る合糸時に、不融化時及び予備炭化時の処理を考慮し
てピッチ繊維に耐熱性の油剤が付与される。耐熱性の油
剤としては、アルキルフェニルポリシロキサンが好まし
く、フェニル基を5〜80%、好ましくは10〜50%
含み、又、アルキル基としてはメチル基、エチル基、プ
ロピル基が好ましく、同一分子に2種以上のアルキル基
を有していても良い。又、粘度は25℃にて10〜10
00cstのものが使用される。更に後述するような酸
化防止剤を添加することもできる。
During such doubling, a heat-resistant oil agent is applied to the pitch fibers in consideration of treatments during infusibility and preliminary carbonization. As the heat-resistant oil agent, alkylphenylpolysiloxane is preferable, and the phenyl group content is 5 to 80%, preferably 10 to 50%.
In addition, the alkyl group is preferably a methyl group, ethyl group, or propyl group, and the same molecule may contain two or more types of alkyl groups. Also, the viscosity is 10 to 10 at 25°C.
00cst is used. Furthermore, an antioxidant as described later can also be added.

他の好ましい油剤としては、ジメチルポリシロキサンに
酸化防止剤を入れたものが使用可能であり、粘度として
は25℃で5〜1000cstのものが好ましい。酸化
防止剤としては、アミン類、有機セレン化合物、フェノ
ール類等、例えばフェニル−α−ナフチルアミン、ジラ
ウリルセレナイド、フェノチアジン、鉄オクトレート等
を挙げることができる。これらの酸化防止剤は、上述し
たように、更に耐熱性を高める目的で上記アルキルフェ
ニルポリシロキサンに添加することも可能である。
Another preferred oil agent that can be used is dimethylpolysiloxane containing an antioxidant, and preferably has a viscosity of 5 to 1000 cst at 25°C. Examples of the antioxidant include amines, organic selenium compounds, phenols, and the like, such as phenyl-α-naphthylamine, dilauryl selenide, phenothiazine, and iron octolate. As mentioned above, these antioxidants can also be added to the alkylphenylpolysiloxane for the purpose of further increasing heat resistance.

更に、好ましい油剤としては、上記各油剤を沸点が60
0℃以下の界面活性剤を用いて、乳化したものを使用す
ることもできる。このとき界面活性剤としては、ポリオ
キシエチレンアルキルエーテル、ポリオキシエチレンア
ルキルエステル、ポリオキシエチレン変性シリコーン、
ポリオキシアルキレン変性シリコーン等を使用し得る。
Further, as preferred oils, each of the above oils has a boiling point of 60.
It is also possible to use an emulsified product using a surfactant having a temperature of 0° C. or lower. At this time, as the surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene modified silicone,
Polyoxyalkylene-modified silicones and the like may be used.

これら油剤は、ローラ接触、スプレー塗布、泡沫塗布等
により、ピッチ繊維に0.01〜10重量%、好ましく
は0.05〜5重量%が付与される。
These oil agents are applied to the pitch fibers in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, by roller contact, spray coating, foam coating, or the like.

上述のように、合糸されたピッチ繊維に耐熱性油剤を付
与することにより、該ピッチ繊維は強度が著しく強(な
り糸扱い性が極めて向上する。
As mentioned above, by applying a heat-resistant oil to the doubled pitch fibers, the strength of the pitch fibers becomes extremely high (and the yarn handling properties are greatly improved).

以上の如くにして製造されたピッチ繊維をボビンより解
舒して、不融化炉へと送給する。
The pitch fibers produced as described above are unwound from a bobbin and sent to an infusibility furnace.

不融化炉内の温度は150〜350℃の範囲内の成る一
定温度とすることもできるが、炉入口より炉出口にかけ
て150℃から350℃へと次第に増大する温度勾配を
有するように設定することもできる。
The temperature inside the infusibility furnace can be set at a constant temperature within the range of 150 to 350°C, but it should be set so that it has a temperature gradient that gradually increases from 150°C to 350°C from the furnace inlet to the furnace outlet. You can also do it.

又、不融化炉内は酸化性雰囲気とされ、不融化炉内には
空気、酸素、空気と酸素又は空気と窒素の混合ガス等の
酸化性ガスが供給されるが、好ましいガスとして酸素濃
度30〜90%の富酸素ガスが使用される。
In addition, the inside of the infusibility furnace is made into an oxidizing atmosphere, and oxidizing gas such as air, oxygen, a mixed gas of air and oxygen, or air and nitrogen is supplied into the infusibility furnace, and a preferable gas is an oxygen concentration of 30 ~90% oxygen rich gas is used.

本発明に従えば、不融化処理時に、繊維束には張力をか
けずに行なうこともできるが、不融化炉内での繊維束の
たるみによる炉底、炉壁をこすることにより生じる引き
ずり傷の発生防止、及び外観が良く且つ引張強度、引張
弾性率などの炭素繊維の物性の向上のために、1フイラ
メント当たりo、ooi〜0.2gの張力をかけながら
不融化を行なうことが好ましい。
According to the present invention, the infusibility treatment can be carried out without applying any tension to the fiber bundle, but the slackness of the fiber bundle in the infusibility furnace causes drag scratches caused by rubbing against the furnace bottom and furnace wall. In order to prevent the occurrence of carbon fibers, improve appearance, and improve the physical properties of carbon fibers such as tensile strength and tensile modulus, it is preferable to carry out the infusibility while applying a tension of 0.00 to 0.2 g per filament.

このようにして、不融化繊維の酸素濃度Cま7〜12重
量%になるように不融化される。
In this way, the infusible fibers are infusible so that the oxygen concentration C becomes 7 to 12% by weight.

不融化炉で不融化された不融化繊維束Fは、上述したよ
うに、連続的に予備炭化炉30内に導入され、予備炭化
される。
The infusible fiber bundle F that has been infusible in the infusible furnace is continuously introduced into the pre-carbonization furnace 30 and pre-carbonized, as described above.

予備炭化炉30は、最高温度が500〜700℃になる
ように設定される。例えば入り口部から出口部にかけて
400℃、500℃。600℃というように、最高温度
500〜700℃の間で段階的に温度が上昇するように
加熱保持される。
The preliminary carbonization furnace 30 is set so that the maximum temperature is 500 to 700°C. For example, the temperature is 400°C and 500°C from the inlet to the outlet. The temperature is maintained at a maximum temperature of 500 to 700°C, increasing stepwise to 600°C.

本発明よれば、最高温度が500〜700℃での短時間
の加熱により繊維の表層を選択的に酸化させながら不融
化繊維束Fの予備炭化を行なわせるために、予備炭化炉
30は、これに不活性ガスに少量の酸化性ガスを混合し
て供給することにより、低濃度の酸化性ガス含有雰囲気
に維持されている。
According to the present invention, in order to pre-carbonize the infusible fiber bundle F while selectively oxidizing the surface layer of the fibers by short-time heating at a maximum temperature of 500 to 700°C, the pre-carbonization furnace 30 By supplying an inert gas mixed with a small amount of oxidizing gas, an atmosphere containing a low concentration of oxidizing gas is maintained.

不活性ガスとしては窒素ガス又はアルゴンガスが使用さ
れる。
Nitrogen gas or argon gas is used as the inert gas.

不活性ガス中に含有される酸化性ガスとじては、酸素、
空気、空気と酸素を混合したもの、NOX、SOx、水
蒸気、炭酸ガス、ハロゲンガス、強酸の蒸気など酸化性
のあるガス或いはこれのらのガスの2種以上の混合物が
使用されるが、好ましくは酸素又は空気が使用される。
Oxidizing gases contained in inert gas include oxygen,
Oxidizing gases such as air, a mixture of air and oxygen, NOx, SOx, water vapor, carbon dioxide gas, halogen gas, strong acid vapor, or a mixture of two or more of these gases are used, but are preferably used. oxygen or air is used.

上記の低濃度の酸素含有雰囲気の場合の酸素含有量は、
0.01〜30%とされる。低濃度の酸素含有雰囲気の
酸素含有量が0.01%未満であると少なすぎて、予備
炭化時の短時間加熱では不融化繊維の表層を有効に酸化
させることができず、逆に30%を超えると多すぎて、
短時間の熱処理であっても不融化繊維の表層のみを選択
的に酸化することができず、酸化が繊維の内部まで進む
不都合を生じる。従って低濃度の酸素含有雰囲気の酸素
含有量はo、oi〜30%とされ、より好ましくは0.
05〜10%とされる。
The oxygen content in the above low concentration oxygen-containing atmosphere is
It is set at 0.01 to 30%. If the oxygen content of the low-concentration oxygen-containing atmosphere is less than 0.01%, it is too small and the surface layer of the infusible fiber cannot be effectively oxidized by short-time heating during preliminary carbonization, and on the contrary, the oxygen content is less than 30%. It's too much if it exceeds
Even with short-time heat treatment, only the surface layer of the infusible fiber cannot be selectively oxidized, causing the disadvantage that oxidation progresses to the inside of the fiber. Therefore, the oxygen content of the low-concentration oxygen-containing atmosphere is set to o.oi to 30%, more preferably 0.0%.
05-10%.

低濃度の酸化性ガス含有雰囲気下での不融化繊維の予備
炭化時の熱処理時間は、20秒未満であると短すぎて、
雰囲気の酸化性ガス含有量を多くしても不融化繊維の表
層を有効に酸化することができず、逆に300秒を超え
ると長すぎて、雰囲気の酸化性ガス含有量を少なくして
も不融化繊維の内部まで酸化が起こるのを免れない。従
って予備炭化時の加熱時間は20〜300秒とされ、よ
り好ましくは50〜200秒とされる。
The heat treatment time during preliminary carbonization of the infusible fiber in an atmosphere containing a low concentration of oxidizing gas is too short if it is less than 20 seconds.
Even if the oxidizing gas content of the atmosphere is increased, the surface layer of the infusible fiber cannot be effectively oxidized, and conversely, if it exceeds 300 seconds, it is too long, so even if the oxidizing gas content of the atmosphere is decreased, the surface layer of the infusible fiber cannot be effectively oxidized. Oxidation inevitably occurs inside the infusible fibers. Therefore, the heating time during preliminary carbonization is 20 to 300 seconds, more preferably 50 to 200 seconds.

更に本発明によれば、予備炭化炉30手前に緊張手段3
2が設けられ、予備炭化炉30内に通糸された不融化繊
維束Fに緊張手段32で張力を掛けることにより、不融
化繊維の予備炭化時に延伸処理を施すようになっている
Furthermore, according to the present invention, the tensioning means 3 is provided before the preliminary carbonization furnace 30.
2 is provided, and tension means 32 applies tension to the infusible fiber bundle F threaded into the pre-carbonization furnace 30, thereby performing a stretching process during pre-carbonization of the infusible fibers.

通常、不融化繊維に付与される張力としては、1フイラ
メント当たり0.006〜0.33gとされる。延伸は
張力の大きさを調節して設定してもよいし、2個以上の
ロールの差動によって調節してもよい。
Usually, the tension applied to the infusible fiber is 0.006 to 0.33 g per filament. Stretching may be set by adjusting the magnitude of tension, or may be adjusted by differential movement of two or more rolls.

従来であると、不融化繊維は脆弱で、不融化繊維の予備
炭化で繊維の切断や毛羽立ちが発生するのを避けようと
すれば、予備炭化工程だけは繊維に張力を掛けないか或
いは掛けても取扱性が悪化しない最小限の張力として行
なわざるを得ない状態で、まして予備炭化の段階で積極
的に張力掛けて繊維の延伸処理を加えることにより、繊
維の弓張強度、圧縮強度、弾性率の向上を図ることは不
可能であった。
Conventionally, infusible fibers are fragile, and in order to avoid cutting or fuzzing of the fibers during pre-carbonization of the infusible fibers, it is necessary to apply no or no tension to the fibers during the pre-carbonization process. However, it is necessary to use the minimum tension that does not deteriorate handling properties, and by actively applying tension during the pre-carbonization stage to draw the fibers, the bow tensile strength, compressive strength, and elastic modulus of the fibers can be improved. It was impossible to improve this.

これが、本発明では、不融化繊維を低濃度の酸素含有雰
囲気下で短時間加熱することにより、繊維の表層を選択
的に酸化して表層を強固にしながら繊維を予備炭化する
ので、不融化繊維の切断や毛羽立ちの発生を防止するだ
けでなく、同時に張力を掛けて延伸処理をしながら予備
炭化することができる。
In the present invention, by heating the infusible fiber for a short time in an atmosphere containing low concentration of oxygen, the surface layer of the fiber is selectively oxidized to strengthen the surface layer and pre-carbonize the fiber, so the infusible fiber In addition to preventing cutting and fuzzing, it is also possible to perform preliminary carbonization while applying tension and stretching at the same time.

上記の不融化繊維の予備炭化時の延伸処理は、不融化繊
維を5〜100%程度延伸することが好ましい。不融化
繊維の延伸量が5%未満であると少なすぎて、繊維組織
の配列性を高めることができず、最終的に得られる炭素
繊維の繊維の引張強度、圧縮強度及び弾性率を有効に向
上することができない。一方、延伸量が100%を超え
ると多すぎて、予備炭化時に繊維の切断等の不都合が生
じる。
In the above-mentioned stretching treatment during preliminary carbonization of the infusible fibers, it is preferable to stretch the infusible fibers by about 5 to 100%. If the amount of stretching of the infusible fibers is less than 5%, it is too small and the alignment of the fiber structure cannot be improved, making it difficult to effectively improve the tensile strength, compressive strength, and elastic modulus of the carbon fibers finally obtained. cannot improve. On the other hand, if the amount of stretching exceeds 100%, it is too large and causes problems such as fiber cutting during preliminary carbonization.

本発明では、不融化繊維束Fに対して予備炭化炉30内
で以上のような条件で予備炭化が行なわれる。これによ
れば、不融化繊維束Fの予備炭化を所定の温度で酸化性
ガス含有雰囲気で短時間加熱することにより行なってい
るので、繊維の表層を選択的に酸化して表層を固くする
と共に、繊維内部の炭化を進めて繊維を予備炭化するこ
とができ、このため予備炭化炉内で不融化繊維束に繊維
の切断や毛羽立ちが生じることがない。そしてその予備
炭化の際、不融化繊維束Fに積極的に張力を掛けて延伸
処理しているので、繊維組織の配列性が高まり、最終的
に得られる炭素繊維の繊維の引張強度、圧縮強度及び弾
性率を有効に向上することが可能となる。
In the present invention, preliminary carbonization is performed on the infusible fiber bundle F in the preliminary carbonization furnace 30 under the above conditions. According to this, preliminary carbonization of the infusible fiber bundle F is carried out by heating the infusible fiber bundle F for a short time in an atmosphere containing oxidizing gas at a predetermined temperature, so that the surface layer of the fibers is selectively oxidized to harden the surface layer and , the fibers can be pre-carbonized by advancing the carbonization inside the fibers, and therefore the infusible fiber bundle will not be cut or fluffed in the pre-carbonization furnace. During the preliminary carbonization, the infusible fiber bundle F is stretched by actively applying tension, so the arrangement of the fiber structure is improved, and the tensile strength and compressive strength of the final carbon fibers are increased. And it becomes possible to effectively improve the elastic modulus.

本発明によれば、上述したように、予備炭化時間が、従
来の製造方法による予備炭化時間に比較し、1/2〜1
/10程度にまで短縮し得ることが分かった。
According to the present invention, as described above, the preliminary carbonization time is 1/2 to 1/2 compared to the preliminary carbonization time according to the conventional manufacturing method.
It was found that the time can be shortened to about /10.

以上のようにして不融化繊維束Fの予備炭化を行なった
ら、得られた予備炭化繊維束Fを続いて図示しない炭化
炉で不活性ガス雰囲気下にて温度1500〜2000℃
まで加熱して炭化し、必要に応じて3000℃まで加熱
して黒鉛化すればよい。これにより繊維の切断や毛羽立
ちがなく、且つ引張強度、圧縮強度及び弾性率が向上し
た炭素繊維を得ることができる。
After pre-carbonizing the infusible fiber bundle F as described above, the obtained pre-carbonized fiber bundle F is then heated in a carbonization furnace (not shown) at a temperature of 1500 to 2000°C under an inert gas atmosphere.
What is necessary is just to heat it to 3000 degreeC and carbonize it, and to graphitize it by heating it to 3000 degreeC as needed. This makes it possible to obtain carbon fibers that are free from fiber breakage and fluffing and have improved tensile strength, compressive strength, and elastic modulus.

本発明で用いる原料炭素質ピッチは、公知の原料、例え
ば石油系の各種重質油、熱分解タール、接触分解タール
、石炭の乾留によって得られる重質油、タールなどを出
発原料として、その熱分解重縮合によって得られるメン
フェースピッチ(光学的異方性ピッチ)、芳香族炭化水
素類を原料とするメンフェースピッチ、光学的異方性相
と光学的等方性相を含有するピッチ或いは光学的等方性
ピッチであってもよい。例えば、超高強度の高性能炭素
繊維を、熱分解重縮合によって得られたメソフェースピ
ッチから製造する場合、メンフェース含有量70〜10
0%のメソフェースピッチが好ましく、特に実質的に1
00%のメンフェースを含有するメンフェースピッチが
最も好ましい。
The raw material carbonaceous pitch used in the present invention is made from known raw materials such as various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, heavy oil and tar obtained by carbonization of coal, etc. Menface pitch (optically anisotropic pitch) obtained by decomposition polycondensation, menface pitch made from aromatic hydrocarbons, pitch or optical pitch containing an optically anisotropic phase and an optically isotropic phase It may be an isotropic pitch. For example, when producing ultra-high-strength, high-performance carbon fiber from mesoface pitch obtained by pyrolysis polycondensation, the mesoface content is 70 to 10
A mesoface pitch of 0% is preferred, especially substantially 1
Most preferred is a membrane pitch containing 0.00% membrane.

尚、不融化繊維は、ピッチ繊維を線状で連続的に不融化
するものとして説明したが、ケンス状(ピッチ繊維を金
網の容器の中に入れて堆積したもの、及びこれに類似の
もの)で不融化したもの、メツシュベルト上にピッチ繊
維を載せて不融化したもの、或はボビン巻のまま不融化
したものなどについても、本発明は同様に実施でき、且
つ同様の効果を奏し得る。
Incidentally, the infusible fibers have been explained as linear pitch fibers that are continuously infusible, but can-shaped fibers (pitch fibers placed in a wire mesh container and deposited, or similar) The present invention can be carried out in the same manner, and the same effects can be achieved with the following methods: those made infusible by placing pitch fibers on a mesh belt, or made infusible while still being wound on a bobbin.

次に、本発明に係る炭素繊維の製造方法を具体的な実施
例に即して更に説明する。
Next, the method for manufacturing carbon fiber according to the present invention will be further explained based on specific examples.

実施例1 ピッチ繊維を製造するに当り、光学的異方性相を約55
%含有し、軟化点が232℃である炭素質ピッチを前駆
体ピッチとして使用した。この前駆体ピッチを遠心分離
により光学的異方性相の多いピッチと光学的等方性相の
多いピッチとを連続的に分離し、それぞれ抜き出した。
Example 1 In producing pitch fiber, an optically anisotropic phase of about 55%
% and a softening point of 232° C. was used as the precursor pitch. This precursor pitch was centrifuged to successively separate pitches containing many optically anisotropic phases and pitches containing many optically isotropic phases, and each was extracted.

得られた光学的異方性相を多く含むピッチは、光学的異
方性相を98%含み、軟化点は270℃、キノリンネ溶
分は30.0%であった。該炭素繊維用ピッチを500
孔の紡糸口金を有する溶融紡糸機(ノズル孔径:直径0
.3mm)に通し、355℃で200mmHgの窒素ガ
ス圧で押し出して紡糸した。
The obtained pitch containing a large amount of optically anisotropic phase contained 98% of the optically anisotropic phase, had a softening point of 270° C., and had a quinoline solubility of 30.0%. The pitch for carbon fiber is 500
Melt spinning machine with hole spinneret (nozzle hole diameter: diameter 0
.. 3 mm) and was extruded and spun at 355° C. under a nitrogen gas pressure of 200 mmHg.

紡糸した500本のフィラメントはエアーサッカーで略
集束してオイリングローラに導き、糸に対して約0.2
重量%の割合で集束用油剤を供給し、500フイラメン
トから成るピッチ繊維を形成した。油剤としては、25
℃における粘度が14cstのメチルフェニルポリシロ
キサンを使用した。
The 500 spun filaments are roughly converged by an air sucker and guided to an oiling roller, with a ratio of about 0.2 to the yarn.
A focusing oil was supplied in a proportion of 500% by weight to form a pitch fiber consisting of 500 filaments. As an oil agent, 25
A methylphenylpolysiloxane having a viscosity of 14 cst at °C was used.

該ピッチ繊維は、ノズル下部に設けた高速で回転する直
径210mm、幅200mmのステンレス鋼製のボビン
に巻き取り、約500m/分の巻き取り速度で10分間
紡糸した。ボビン1回転当たりのトラバースのピッチは
10mm/1回転であった。紡糸の間に糸切れは発生し
なかった。
The pitch fibers were wound onto a stainless steel bobbin with a diameter of 210 mm and a width of 200 mm that was provided at the bottom of the nozzle and rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min. The pitch of the traverse per revolution of the bobbin was 10 mm/rotation. No yarn breakage occurred during spinning.

次いで、ピッチ繊維を巻いた前記ボビン6個を解舒し、
そしてオイリングローラを使用して耐熱性油剤を付与し
ながら合糸し、3000フィラメントから成るピッチ繊
維(束)を形成し、他のステンレス製ボビンに巻取った
Next, the six bobbins wound with pitch fibers were unwound,
Then, the fibers were combined using an oiling roller while applying a heat-resistant oil to form a pitch fiber (bundle) consisting of 3,000 filaments, which was wound around another stainless steel bobbin.

合糸時に油剤としては25℃で40cstのメチルフェ
ニルポリシロキサン(フェニル基含有量45モル%)を
使用した。付与量は糸に対し015%であった。
Methylphenylpolysiloxane (phenyl group content: 45 mol %) of 40 cst at 25° C. was used as an oil agent during yarn doubling. The amount applied was 0.15% to the yarn.

このようにして得た、ボビン巻のピッチ繊維をボビンか
ら解舒しつつ、炉入口温度180℃、最高温度295℃
の温度勾配を持つ富酸素雰囲気(酸素/窒素=60/4
0)の連続不融化炉に線状で連続的に導入した。昇温速
度は6℃/分であり、不融化時間は19分であった。繊
維束にかけた張力は1フイラメント当たり0.007g
 (3000フイラメントの繊維束に対して20g)で
あった。不融化後の不融化繊維の酸素濃度は9゜5重量
%であった。
While unwinding the bobbin-wound pitch fiber thus obtained from the bobbin, the furnace inlet temperature was 180°C, and the maximum temperature was 295°C.
Oxygen-rich atmosphere with a temperature gradient of (oxygen/nitrogen = 60/4
0) was continuously introduced in a linear manner into the continuous infusibility furnace. The temperature increase rate was 6° C./min, and the infusibility time was 19 minutes. The tension applied to the fiber bundle is 0.007g per filament.
(20 g for a fiber bundle of 3000 filaments). The oxygen concentration of the infusible fiber after infusibility was 9.5% by weight.

不融化中、ボビンからのピッチ繊維の解舒は円滑に行な
われ、不融化炉内での繊維束の断糸もなく円滑に不融化
処理ができた。
During the infusibility process, the pitch fibers were unraveled from the bobbin smoothly, and the infusibility treatment was carried out smoothly without any breakage of the fiber bundle in the infusibility furnace.

このようにして不融化された不融化繊維束Fは、連続し
て予備炭化炉30へ送給した。
The infusible fiber bundle F thus infusible was continuously fed to the preliminary carbonization furnace 30.

本実施例によれば、予備炭化炉30は内部が入り口部か
ら出口部に向けて温度が400℃、500℃、600℃
に段階的に上昇するように加熱保持された。
According to this embodiment, the temperature inside the preliminary carbonization furnace 30 is 400°C, 500°C, and 600°C from the inlet to the outlet.
Heating was maintained so that the temperature rose in stages.

本発明に従い、予備炭化炉30内に窒素ガスと少量の酸
素ガスを供給して、予備炭化炉内30を酸素濃度5%の
酸化性ガス含有雰囲気として、不融化繊維束Fを短時間
熱処理することにより予備炭化した。
According to the present invention, nitrogen gas and a small amount of oxygen gas are supplied into the pre-carbonization furnace 30 to create an oxidizing gas-containing atmosphere with an oxygen concentration of 5%, and the infusible fiber bundle F is heat-treated for a short time. Preliminary carbonization was carried out.

酸化性ガス雰囲気中の酸素濃度は、5%であった。The oxygen concentration in the oxidizing gas atmosphere was 5%.

繊維束には、1フイラメント当たり0.017gの張力
が付与された。予備炭化時間は100秒であった。この
予備炭化処理における糸の延伸率は19%であった。
A tension of 0.017 g per filament was applied to the fiber bundle. Preliminary carbonization time was 100 seconds. The stretching ratio of the yarn in this preliminary carbonization treatment was 19%.

24時間連続に予備炭化処理したが、この間、類30内
での断糸、糸切れは全く生じなかった。
Preliminary carbonization treatment was carried out continuously for 24 hours, but during this period, no yarn breakage or yarn breakage occurred at all in Class 30.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温して炭素繊維を得た。炭素繊維の糸径は8.9μm
であり、引張強度は3.2GPa1引張弾性率は330
GPa、圧縮強度はl。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 8.9μm
The tensile strength is 3.2GPa1 and the tensile modulus is 330
GPa, compressive strength is l.

2GPaであった。又、この炭素繊維の融膠着度は8%
であった。
It was 2GPa. Also, the degree of fusion and adhesion of this carbon fiber is 8%.
Met.

又、炭素繊維をアルゴンガス雰囲気中で2500℃まで
昇温して得た黒鉛炭素繊維は、糸径が8.8μmであり
、引張強度は3.9GPa、弓張弾性率は810GPa
、圧縮強度は0.5GPaであった。又、この黒鉛繊維
の融膠着度は12%であった。
In addition, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 8.8 μm, a tensile strength of 3.9 GPa, and a bowing modulus of 810 GPa.
, the compressive strength was 0.5 GPa. Further, the degree of fusion and adhesion of this graphite fiber was 12%.

本明細書にて、融膠着度(%)は、3000フイラメン
トからなる繊維束を3mm幅に切り取り、これをエタノ
ールに浸漬し、30秒間エアーを吹込み、その後顕微鏡
下で20倍の倍率で融膠着しているフィラメントの総本
数(N)を数えることにより次の式にて求められる。
In this specification, the degree of fusion adhesion (%) is determined by cutting a fiber bundle consisting of 3000 filaments to a width of 3 mm, immersing it in ethanol, blowing air for 30 seconds, and then melting it under a microscope at 20x magnification. It is determined by the following formula by counting the total number (N) of stuck filaments.

融膠着度: (N/3000)X100 (%)実施例
2 実施例1において、不融化繊維を予備炭化するに際し、
1フイラメント当たり0.04gの張力を付与した以外
は実施例1と同様に処理した。このときの延伸率は39
%であった。
Fusion degree: (N/3000)X100 (%) Example 2 In Example 1, when pre-carbonizing the infusible fibers,
The process was carried out in the same manner as in Example 1, except that a tension of 0.04 g was applied per filament. The stretching ratio at this time was 39
%Met.

この繊維を次の予備炭化処理にかけたところ、24時間
の連続運転中、予備炭化炉内で断糸することはなく、得
られた予備炭化繊維に毛羽立ちも殆どなかった。
When this fiber was subjected to the next pre-carbonization treatment, there was no yarn breakage in the pre-carbonization furnace during 24 hours of continuous operation, and the obtained pre-carbonized fiber had almost no fuzz.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温しで炭素繊維を得た。炭素繊維の糸径は8.4μm
であり、引張強度は3.6GPa、引張弾性率は340
GPaであった。又、この炭素繊維の融膠着度は9%で
あった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 8.4μm
The tensile strength is 3.6 GPa and the tensile modulus is 340.
It was GPa. Further, the degree of fusion and adhesion of this carbon fiber was 9%.

更に、炭素繊維をアルゴンガス雰囲気中で2500℃ま
で昇温しで得た黒鉛炭素繊維は、糸径が8.3μmであ
り、引張強度は4.0GPa、弓張弾性率は850GP
aであった。又、この黒鉛繊維の融膠着度は15%であ
った。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 8.3 μm, a tensile strength of 4.0 GPa, and a bow tensile modulus of 850 GPa.
It was a. Further, the degree of fusion and adhesion of this graphite fiber was 15%.

実施例1〜2に示される様に、予備炭化時の雰囲気を本
発明の範囲の0.01〜30%内の低濃度酸素含有雰囲
気とし、熱処理時間を本発明の範囲の20〜300秒内
として不融化繊維の予備炭化を行なったので、予備炭化
炉30内での不融化繊維の切断や毛羽立ちを生じること
なく予備炭化することができ、その結果、得られた黒鉛
繊維は繊維の毛羽立ちが少ないことは勿論、切断もわず
かであった。又不融化繊維の予備炭化時に本発明範囲の
5〜100%の延伸処理を加えたので、得られた黒鉛繊
維は引張強度、圧縮強度及び弾性率が共に向上したもの
になった。
As shown in Examples 1 and 2, the atmosphere during preliminary carbonization was an atmosphere containing low oxygen concentration within the range of 0.01 to 30% of the present invention, and the heat treatment time was within the range of 20 to 300 seconds of the present invention. Since the infusible fibers were pre-carbonized as described above, the infusible fibers could be pre-carbonized in the pre-carbonization furnace 30 without being cut or fluffed, and as a result, the graphite fibers obtained had no fiber fuzz. Of course, there were only a few cuts. Furthermore, since the infusible fibers were subjected to a stretching treatment of 5 to 100% within the scope of the present invention during preliminary carbonization, the resulting graphite fibers had improved tensile strength, compressive strength, and elastic modulus.

比較例1 実施例1にて、5%の酸素濃度の酸化性ガス含有雰囲気
とせずに、不活性ガス(窒素ガス)中で予備炭化した以
外は、実施例1と同様に処理した。
Comparative Example 1 The same process as in Example 1 was carried out, except that preliminary carbonization was performed in an inert gas (nitrogen gas) instead of creating an atmosphere containing an oxidizing gas with an oxygen concentration of 5%.

この場合には、予備炭化炉30で不融化繊維束Fが切断
し、予備炭化繊維を得ることができなかった。
In this case, the infusible fiber bundle F was cut in the pre-carbonization furnace 30, and no pre-carbonized fibers could be obtained.

比較例2 不融化繊維束Fを直接予備炭化炉30内へと線状で連続
的に導入し、250秒間(実施例1の2.5倍の時間)
かけて予備炭化処理を行ない、繊維束Fには、張力が1
フイラメント当たり0゜017g付与された。それ以外
は実施例1と同様に処理した。
Comparative Example 2 The infusible fiber bundle F was continuously and linearly introduced directly into the preliminary carbonization furnace 30 for 250 seconds (2.5 times the time of Example 1).
The fiber bundle F has a tension of 1.
0.017 g was applied per filament. Other than that, the process was the same as in Example 1.

この場合、予備炭化炉内で断糸することはな(,1時間
の連続運転ができた。しかし、得られた予備炭化繊維は
毛羽立ちの多いものであった。
In this case, there was no yarn breakage in the pre-carbonization furnace (one hour of continuous operation was possible. However, the obtained pre-carbonized fibers had a lot of fuzz.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温しで炭素繊維を得た。炭素繊維の糸径は9.8μm
であり、引張強度は2.5GPa、引張弾性率は270
GPa、圧縮強度は1゜0GPaであった。又、この炭
素繊維の融膠着度は17%であった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 9.8μm
The tensile strength is 2.5 GPa and the tensile modulus is 270.
GPa, and the compressive strength was 1°0 GPa. Further, the degree of fusion and adhesion of this carbon fiber was 17%.

更に、炭素繊維をアルゴンガス雰囲気中で2500℃ま
で昇温して得た黒鉛炭素繊維は、糸径が9.7μmであ
り、引張強度は3.2GPa、弓張弾性率は690GP
a、圧縮強度は0.4GPaであった。又、この黒鉛繊
維の融膠着度は41%であった。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.7 μm, a tensile strength of 3.2 GPa, and a bowing modulus of 690 GPa.
a. The compressive strength was 0.4 GPa. Further, the degree of fusion and adhesion of this graphite fiber was 41%.

比較例3 予備炭化に際し、張力を不融化繊維束Fに1フイラメン
ト当たり0.003g付与した以外は、実施例1と同様
に処理した。この場合、予備炭化中に糸の延伸は起こら
なかった。
Comparative Example 3 The process was carried out in the same manner as in Example 1, except that during preliminary carbonization, a tension of 0.003 g per filament was applied to the infusible fiber bundle F. In this case, no yarn drawing occurred during precarbonization.

この予備炭化繊維を窒素ガス雰囲気中で1500℃まで
昇温して炭素繊維を得た。炭素繊維の糸径は9.8μm
であり、引張強度は2.8GPa、引張弾性率は275
GPaであった。又、この炭素繊維の融膠着度は5%で
あった。
This pre-carbonized fiber was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. Carbon fiber thread diameter is 9.8μm
The tensile strength is 2.8 GPa and the tensile modulus is 275.
It was GPa. Further, the degree of fusion and adhesion of this carbon fiber was 5%.

又、炭素繊維をアルゴンガス雰囲気中で2500℃まで
昇温して得た黒鉛炭素繊維は、糸径が9.7μmであり
、引張強度は3゜3GPa、弓張弾性率は700GPa
であった。又、この黒鉛繊維の融膠着度は8%であった
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.7 μm, a tensile strength of 3°3 GPa, and a bow tensile modulus of 700 GPa.
Met. Further, the degree of fusion and adhesion of this graphite fiber was 8%.

以上のように、予備炭化時の雰囲気、加熱時間又は延伸
量の少な(とも一つを本発明の範囲外として予備炭化を
行なった比較例1〜3では、予備炭化炉30内で不融化
繊維の切断、糸切れが多発した。そして得られた炭素繊
維、黒鉛繊維は、繊維の切断も多く、引張強度、圧縮強
度及び弾性率も低いものになった。
As described above, in Comparative Examples 1 to 3, in which preliminary carbonization was performed with the atmosphere, heating time, or amount of stretching at the time of preliminary carbonization being small (all of which were outside the scope of the present invention), the infusible fibers were The resulting carbon fibers and graphite fibers had many fiber breaks and had low tensile strength, compressive strength, and elastic modulus.

及11目例里 以上説明したように、本発明の製造方法では、ピッチ繊
維束を不融化した不融化繊維束の予備炭化を、最高温度
が500〜700℃の酸化性ガス含有雰囲気中で5〜1
00%の延伸処理を加えながら短時間加熱することによ
り行なうので、予備炭化炉内での不融化繊維束の繊維の
切断や毛羽立ちを押さえて、予備炭化の際の歩留りを向
上するだけでなく、繊維の引張強度、圧縮強度、弾性率
を向上した炭素繊維を得ることができる。
As explained above, in the production method of the present invention, the infusible pitch fiber bundle is pre-carbonized in an oxidizing gas-containing atmosphere with a maximum temperature of 500 to 700°C. ~1
This is done by heating for a short time while applying 00% stretching treatment, so it not only prevents the fibers of the infusible fiber bundle from being cut and fluffed in the pre-carbonization furnace, but also improves the yield during pre-carbonization. Carbon fibers with improved tensile strength, compressive strength, and elastic modulus can be obtained.

更に、予備炭化時間を、従来の1/2〜1/10程度ま
でに短縮でき、効率よく高引張強度、高引張弾性率及び
高圧縮強度を有した炭素繊維を製造することができる。
Furthermore, the preliminary carbonization time can be shortened to about 1/2 to 1/10 of the conventional time, and carbon fibers having high tensile strength, high tensile modulus, and high compressive strength can be efficiently produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法の一実施例を示す説明図で
ある。 30:予備炭化炉 32:緊張手段 F : 繊維束
FIG. 1 is an explanatory diagram showing an embodiment of the manufacturing method of the present invention. 30: Pre-carbonization furnace 32: Tensioning means F: Fiber bundle

Claims (1)

【特許請求の範囲】 1)紡糸、集束されたピッチ繊維束を不融化し、前記不
融化された不融化繊維束を予備炭化し、然る後に炭化し
、必要に応じて更に黒鉛化することからなるピッチ系炭
素繊維及び黒鉛繊維の製造方法において、前記不融化繊
維束の予備炭化を、最高温度が500〜700℃の酸化
性ガス含有雰囲気中で、前記不融化繊維束に5〜100
%の延伸処理を加えながら、短時間熱処理することによ
り行なうことを特徴とするピッチ系炭素繊維及び黒鉛繊
維の製造方法。 2)前記雰囲気中の酸化性ガスが酸素であり、該雰囲気
中の酸素含有量が0.01〜30%である請求項1記載
の方法。 3)前記加熱時間が20〜300秒である請求項1又は
2記載の方法。
[Claims] 1) Making the spun and bundled pitch fiber bundle infusible, pre-carbonizing the infusible infusible fiber bundle, then carbonizing it, and further graphitizing it if necessary. In the method for producing pitch-based carbon fibers and graphite fibers, the infusible fiber bundle is pre-carbonized in an oxidizing gas-containing atmosphere with a maximum temperature of 500 to 700°C.
A method for producing pitch-based carbon fibers and graphite fibers, characterized in that the process is carried out by heat treatment for a short time while adding % stretching treatment. 2) The method according to claim 1, wherein the oxidizing gas in the atmosphere is oxygen, and the oxygen content in the atmosphere is 0.01 to 30%. 3) The method according to claim 1 or 2, wherein the heating time is 20 to 300 seconds.
JP23300490A 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber Pending JPH04119126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23300490A JPH04119126A (en) 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23300490A JPH04119126A (en) 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber

Publications (1)

Publication Number Publication Date
JPH04119126A true JPH04119126A (en) 1992-04-20

Family

ID=16948309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23300490A Pending JPH04119126A (en) 1990-09-03 1990-09-03 Production of pitch-based carbon fiber and graphite fiber

Country Status (1)

Country Link
JP (1) JPH04119126A (en)

Similar Documents

Publication Publication Date Title
JPS63264917A (en) Production of carbon fiber and graphite fiber
JPH04119126A (en) Production of pitch-based carbon fiber and graphite fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPH04272235A (en) Production of pitch-base carbon fiber and graphite fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPH0491228A (en) Production of pitch-based carbon fiber
JPH04272233A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04272232A (en) Production of pitch-base carbon fiber and graphite fiber
JPH05171519A (en) Production of pitch carbon fiber
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production
JPH04163319A (en) Pitch-based carbon fiber having extremely high thermal conductivity and production thereof
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH04257322A (en) Production of pitch carbon fiber and graphite fiber
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH05171518A (en) Pitch carbon fiber
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPS62133120A (en) Production of carbon fiber and graphite fiber
JPH043453B2 (en)
JPH026619A (en) Production of carbon fiber and graphite fiber
JPH0291223A (en) Production of carbon fiber yarn and graphite yarn
EP0481762A2 (en) Pitch-based carbon fiber