JPH043453B2 - - Google Patents

Info

Publication number
JPH043453B2
JPH043453B2 JP61028356A JP2835686A JPH043453B2 JP H043453 B2 JPH043453 B2 JP H043453B2 JP 61028356 A JP61028356 A JP 61028356A JP 2835686 A JP2835686 A JP 2835686A JP H043453 B2 JPH043453 B2 JP H043453B2
Authority
JP
Japan
Prior art keywords
fibers
producing carbon
graphite
heat treatment
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61028356A
Other languages
Japanese (ja)
Other versions
JPS62184125A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP2835686A priority Critical patent/JPS62184125A/en
Publication of JPS62184125A publication Critical patent/JPS62184125A/en
Publication of JPH043453B2 publication Critical patent/JPH043453B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 ≪産業上の利用分野≫ 本発明は、炭素質ピツチ繊維から炭素繊維及び
黒鉛繊維を製造する方法に関する。更に詳しく
は、本発明は光学的異方性炭素質ピツチを紡糸
し、不融化、炭化、黒鉛化を行い、ロングフイラ
メントを得るのに適した炭素繊維及び黒鉛繊維の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <<Industrial Application Field>> The present invention relates to a method for producing carbon fibers and graphite fibers from carbonaceous pitch fibers. More specifically, the present invention relates to a method for producing carbon fibers and graphite fibers suitable for obtaining long filaments by spinning optically anisotropic carbonaceous pitch and subjecting it to infusibility, carbonization, and graphitization.

≪従来の技術≫ 従来、自動車、航空機その他の各種産業分野に
係る広範な技術分野において、軽量、高強度、高
弾性率等の性質を有する高性能素材の開発が要望
されており、係る観点から炭素繊維或いは成型炭
素材料が注目されている。特に、炭素質ピツチか
ら炭素繊維を製造する方法は、安価で高性能の炭
素繊維を製造し得る方法として重要視されてい
る。
<<Conventional technology>> In the past, there has been a demand for the development of high-performance materials with properties such as light weight, high strength, and high modulus of elasticity in a wide range of technical fields related to automobiles, aircraft, and various other industrial fields. Carbon fiber or molded carbon materials are attracting attention. In particular, the method of producing carbon fiber from carbonaceous pitch is considered important as a method that can produce carbon fiber with low cost and high performance.

しかしながら、従来の技術によつては、不融化
繊維の引つ張り強度が約0.01GPaと小さい上、脆
いためにその取扱が難しく、高性能製品を得るの
に必要なロングフイラメント状の繊維を得ること
は極めて困難であつた。
However, with conventional techniques, the tensile strength of infusible fibers is as low as approximately 0.01 GPa, and the fibers are brittle, making them difficult to handle. This was extremely difficult.

ピツチ繊維からロングフイラメント状の炭素繊
維を製造する方法として、従来、紡糸した糸を金
網のカゴの中に落として堆積せしめ、これを金網
ごと不融化し、更に700℃以上で第1次の熱処理
(予備炭化)を行い、糸条の引つ張り強度が
0.2GPa以上の強度となるようにした上で、該カ
ゴから引き上げて巻き取つた後若しくは巻き取り
つつ1500℃程度の温度で炭化して、炭素繊維を得
る方法が提案されている(特公昭51−12740号)。
しかしながらこの方法では、糸を堆積せしめた場
合に、捩れ又は撚りがかかる傾向があり、又糸の
屈曲ができやすく、このため炭素繊維にした時に
凹凸が著しく外観の悪い糸となる上、屈曲部の強
度が著しく低下するために糸切れが頻発し高品質
の糸ができ難いという欠点があつた。かかる欠点
は、糸を堆積せしめる場合の湾曲率を大きくとつ
ても本質的に改善することのできるものではなか
つた。
Conventionally, the method for producing long filament carbon fibers from pitch fibers involves dropping the spun yarn into a wire mesh basket and depositing it, making it infusible together with the wire mesh, and then subjecting it to a first heat treatment at 700°C or higher. (preliminary carbonization) to increase the tensile strength of the yarn.
A method has been proposed in which carbon fibers are obtained by making the fibers have a strength of 0.2 GPa or higher, and then carbonizing the fibers at a temperature of about 1500°C after or while winding them up from the basket. −12740).
However, in this method, when the yarns are piled up, they tend to be twisted or twisted, and the yarns tend to be bent, so when made into carbon fibers, the yarns have extremely uneven appearance and have a poor appearance. This has the disadvantage that the strength of the yarn is significantly reduced, resulting in frequent yarn breakage, making it difficult to produce high-quality yarn. These drawbacks could not be essentially improved by increasing the curvature when the threads were piled up.

一方、特公昭53−4128号公報には、メソフエー
スピツチを溶融紡糸し、ボビンに一度巻き取り、
このうちの一部の糸条を金網皿に置いて250℃〜
500℃の酸化性雰囲気で酸化して糸の強度を増加
せしめ、糸扱いを容易にできるようにしてから加
工する方法が開示されている。しかしながらこの
方法によつては最終製品である炭素繊維の糸の強
度が低下する上、一度巻き取つた糸の一部ずつを
取り出しながら酸化して行くので生産効率が悪い
という欠点があつた。
On the other hand, Japanese Patent Publication No. 53-4128 discloses that a mesophase pitch is melt-spun, wound once around a bobbin,
Place some of the threads on a wire mesh plate and heat to 250℃~
A method is disclosed in which the yarn is oxidized in an oxidizing atmosphere at 500° C. to increase the strength of the yarn, making it easier to handle the yarn, and then processing the yarn. However, this method has the disadvantage that the strength of the carbon fiber yarn as the final product is reduced, and that the production efficiency is poor because the yarn is oxidized while being taken out one by one after it has been wound.

上記の生産効率上の問題を改善するために、特
開昭60−81320号及び特開昭60−21911号公報に
は、ボビン巻のまま不融化して一定温度以下の非
酸化性雰囲気で予備炭化を行う方法が開示されて
いる。しかしながら、これらの方法においてはボ
ビン上のピツチ繊維の巻厚が厚くなると、不融化
中又は予備炭化中の通気性が不十分であるため不
融化度のバラツキが大きくなり、炭素繊維又は黒
鉛繊維にした時の強度のバラツキが極めて大きく
なるという欠点があつた。
In order to improve the above-mentioned problems in production efficiency, Japanese Patent Application Laid-Open No. 60-81320 and Japanese Patent Application Laid-Open No. 60-21911 discloses that the bobbin is made infusible as it is and prepared in a non-oxidizing atmosphere below a certain temperature. A method of performing carbonization is disclosed. However, in these methods, when the thickness of pitch fiber on the bobbin increases, the degree of infusibility increases due to insufficient air permeability during infusibility or pre-carbonization, and the carbon fiber or graphite fiber becomes The drawback was that the variation in strength was extremely large when it was applied.

又、ボビン巻のまま不融化し、予備炭化まで行
つてから解舒しようとすると、繊維の強度は約
0.2GPaと強くなつているが、通気性が不十分な
ため繊維間及び繊維束間の膠着や融着がいちじる
しく解舒(巻戻)が極めて困難になり、巻戻しに
際し、糸の毛羽が発生し易く、炭素繊維又は黒鉛
繊維にした時の商品価値を著しく低下させるとい
う欠点があつた。このような問題点を解決するに
は、膠着や融着の度合が予備炭化繊維に比較して
極めて低い不融化の終わつた段階でボビンから解
舒して連続的に線状で通糸しながら予備炭化、炭
化、黒鉛化を行う方法が考えられる。しかしなが
らこの方法においては、不融化繊維の強度がまだ
ピツチ繊維並で弱い上、不融化中に、繊維を集束
している油剤の分解や劣化が起こり、繊維束の集
束が乱れ、繊維束が極めて弱くて脆くなるため、
不融化後のボビンからの解舒(巻戻)が著しく困
難になり、巻戻しに際し毛羽が発生し易いという
欠点を有していた。
Additionally, if you attempt to unwind the fiber after it has been infusible as it is wound on the bobbin and has undergone preliminary carbonization, the strength of the fiber will be approximately
Although it is strong at 0.2GPa, due to insufficient air permeability, agglutination and fusion between fibers and fiber bundles are noticeable, making unwinding (unwinding) extremely difficult, and fluffing of the yarn occurs when unwinding. It has the disadvantage that it is easy to process, and when it is made into carbon fiber or graphite fiber, its commercial value is significantly lowered. In order to solve these problems, the degree of adhesion and fusion is extremely low compared to pre-carbonized fibers. At the stage of infusibility, the fibers are unwound from the bobbin and threaded continuously in a linear manner. Possible methods include preliminary carbonization, carbonization, and graphitization. However, with this method, the strength of the infusible fibers is still as weak as that of pitch fibers, and during infusibility, the oil that binds the fibers decomposes and deteriorates, causing the fiber bundles to become disorganized and become extremely fragile. Because it becomes weak and brittle,
Unwinding (unwinding) from the bobbin after infusibility is extremely difficult, and fuzz is likely to occur during unwinding.

又、ボビン上のピツチ繊維の巻厚が厚くなる
と、不融化中の通気性が不十分なため、不融化度
のバラツキが大きくなり炭素繊維又は黒鉛繊維に
した時の強度のバラツキが極めて大きくなるとい
う欠点があつた。
Furthermore, when the thickness of the pitch fiber on the bobbin increases, the air permeability during infusibility is insufficient, so the degree of infusibility increases, and when it is made into carbon fiber or graphite fiber, the strength variation becomes extremely large. There was a drawback.

更に、これらの不融化繊維を予備炭化及び炭化
工程にかける際、特開昭59−15517号公報に開示
されている様に、繊維束の温度が700〜800℃の温
度に達するまでに繊維束の強度が室温における強
度の約1/4に低下するので、熱処理中に繊維束の
切断が起こり易く糸扱いが困難であるという欠点
を有していた。
Furthermore, when these infusible fibers are subjected to preliminary carbonization and carbonization processes, as disclosed in Japanese Patent Application Laid-Open No. 59-15517, the fiber bundle is Since the strength of the yarn is reduced to about 1/4 of the strength at room temperature, the fiber bundles tend to break during heat treatment, making it difficult to handle the yarn.

これらの欠点は、特開昭60−173121号公報に開
示された通気性ボビンを使用する方法によつて大
幅に改善されたが、尚生産効率が十分でなく更に
改善が求められていた。
Although these drawbacks were greatly improved by the method using an air permeable bobbin disclosed in Japanese Patent Application Laid-Open No. 173121/1982, the production efficiency was still insufficient and further improvements were required.

≪発明が解決しようとする問題点≫ 一方、均一に不融化することができ、物性のバ
ラツキが小さく、且つ炭素繊維とした時に外観の
良い糸を得る方法として、ゴデツトローラーで延
伸した糸を不融化用の熱風炉に0.15m/分の糸速
度で連続的に通し、次いで炭化炉へ連続的に通し
て炭素繊維を得る方法が開示されている(特開昭
55−128020号公報)。しかしながら、この方法に
おいては、不融化処理中に、不融化が進むにつれ
て糸の集束が乱れ、繊維束が切断し易く、操業が
難しいという欠点があつた。又、時間当たりの製
品生産量が著しく小さいという欠点があつた。
≪Problems to be solved by the invention≫ On the other hand, as a method of obtaining a yarn that can be uniformly infusible, has small variations in physical properties, and has a good appearance when made into carbon fiber, it is possible to infusible yarn drawn with a godet roller. A method is disclosed in which carbon fibers are obtained by continuously threading the thread through a hot air oven at a speed of 0.15 m/min, and then passing it continuously through a carbonization furnace (Japanese Patent Application Laid-Open No.
55-128020). However, this method has the drawback that during the infusibility treatment, as the infusibility progresses, the bundle of yarns becomes disordered and the fiber bundles are easily cut, making operation difficult. Another drawback was that the amount of product produced per hour was extremely small.

又、これらの不融化繊維を予備炭化工程にかけ
る際、特開昭59−15517号の公報に開示されてい
る様に、繊維束の温度が、室温における強度の約
1/4に低下するので、熱処理中繊維束が切断し易
いという欠点があつた。
Furthermore, when these infusible fibers are subjected to a preliminary carbonization process, the temperature of the fiber bundle decreases to about 1/4 of the strength at room temperature, as disclosed in Japanese Patent Application Laid-Open No. 59-15517. However, there was a drawback that the fiber bundles were easily cut during heat treatment.

そこで、不融化処理中、繊維束の集束の乱れに
よる繊維束の切断がなく、時間当たりの製品生産
量が大きく、又、糸の外観が良い上取扱い時に毛
羽立ちが少なく、且つ高強度、高弾性で糸の強度
ムラのない高品質のピツチ系炭素繊維のロングフ
イラメントを、安価にしかも効率良く製造する方
法が切望されてきた。
Therefore, during the infusibility treatment, there is no breakage of fiber bundles due to disturbance of the bundle of fiber bundles, and the product output per hour is large.Also, the yarn has a good appearance, has little fuzz when handled, and has high strength and high elasticity. Therefore, there has been a strong need for a method for producing long filaments of high-quality pitch carbon fibers with uniform strength at low cost and efficiently.

従つて本発明は、糸扱いし易く高品質のピツチ
系炭素繊維及び黒鉛繊維を製造する方法を提供す
ることを目的としている。
Therefore, an object of the present invention is to provide a method for producing pitch-based carbon fibers and graphite fibers that are easy to handle and have high quality.

又本発明の別の目的は、外観が良く、高強度、
高弾性率である、高品質ピツチ系ロングフイラメ
ントの炭素繊維及び黒鉛繊維を効率良く製造する
方法を提供することにある。
Another object of the present invention is to have good appearance, high strength,
An object of the present invention is to provide a method for efficiently producing high-quality pitch-type long filament carbon fibers and graphite fibers having a high modulus of elasticity.

≪問題を解決するための手段≫ 本発明のかかる諸目的は、炭素質ピツチを溶融
紡糸し、紡糸されたピツチ繊維を合糸し、酸化雰
囲気で繊維束を連続的に線状で通して不融化を行
い、1800℃以下の非酸化性ガス雰囲気で第1次の
熱処理を行い、次いで3000℃以下の不活性ガス雰
囲気で第2次の熱処理をすることにより炭化又は
黒鉛化処理するに際し、不融化前の繊維に耐熱性
油剤を付与する炭素繊維及び黒鉛繊維の製造方法
であつて、前記紡糸後のピツチ繊維のフイラメン
ト数が50〜1000フイラメントであり、合糸後のピ
ツチ繊維のフイラメント数が200〜50000フイラメ
ントであることを特徴とする炭素繊維及び黒鉛繊
維の製造方法により達成された。
<<Means for Solving the Problems>> The objects of the present invention are to melt-spun carbonaceous pitch, combine the spun pitch fibers, and thread the fiber bundle continuously in a linear manner in an oxidizing atmosphere. When performing carbonization or graphitization treatment, the first heat treatment is performed in a non-oxidizing gas atmosphere at 1800℃ or less, and then the second heat treatment is performed in an inert gas atmosphere at 3000℃ or less. A method for producing carbon fibers and graphite fibers in which a heat-resistant oil agent is applied to fibers before melting, wherein the number of filaments of the pitch fiber after spinning is 50 to 1000 filaments, and the number of filaments of the pitch fiber after spinning is 50 to 1000 filaments. This was achieved by a method for producing carbon fibers and graphite fibers characterized by 200 to 50,000 filaments.

(a) 炭素質ピツチ 本発明に用いる炭素質ピツチは、特に限定さ
れるものではなく、石炭を乾溜して得られるコ
ールタールピツチ、石炭液化物等の石炭系ピツ
チ、ナフサ分解タールピツチ、接触分解タール
ピツチ、常圧蒸留残渣、液圧蒸留残渣等の石油
系ピツチ、合成樹脂を分解して得られる合成ピ
ツチ等の各種のピツチ、これらのピツチを水素
又は水素供与物で水素化したものの他、熱処
理、溶剤抽出等で改質したものも用いることが
できる。炭素質ピツチの軟化点は、230℃〜320
℃であることが好ましい。
(a) Carbonaceous pitch The carbonaceous pitch used in the present invention is not particularly limited, and includes coal tar pitch obtained by dry distillation of coal, coal-based pitch such as coal liquefied product, naphtha cracking tar pitch, and catalytic cracking tar pitch. , various types of pitches such as petroleum-based pitches such as atmospheric distillation residues and hydraulic distillation residues, synthetic pitches obtained by decomposing synthetic resins, hydrogenated pitches of these pitches with hydrogen or hydrogen donors, heat treatment, Those modified by solvent extraction etc. can also be used. The softening point of carbonaceous pitch is 230℃~320℃
Preferably it is ℃.

これらの炭素質ピツチは、等方性ピツチであ
つても光学的異方性ピツチであつても良く、ネ
オメソフエース、プリメソフエースと言われる
ピツチであつても良いが、特に、光学的異方性
炭素質ピツチとして、偏光顕微鏡で測定して約
95%以上の光学的異方性相を含有し、且つ、軟
化点が230〜320℃であるものを使用すること
が、紡糸及び最終製品の品質の観点から好まし
い。
These carbonaceous pitches may be isotropic pitches or optically anisotropic pitches, or may be pitches called neomesophase or premethophase, but in particular, optically anisotropic pitches may be used. As a carbonaceous pitch, approximately
It is preferable to use a material containing 95% or more of an optically anisotropic phase and having a softening point of 230 to 320° C. from the viewpoint of spinning and quality of the final product.

(b‐1) 光学的異方性ピツチ 本発明で使用する光学的異方性炭素質ピツ
チとは、常温で固化したピツチ塊の断面を研
磨し、反射型偏光顕微鏡で直交ニコルを回転
して光輝が認められるピツチ、即ち実質的に
光学的異方性であるピツチが大部分であるピ
ツチを意味し、光輝が認められず光学的等方
性であるピツチについては、本明細書では光
学的に等方性炭素質ピツチと呼称する。従つ
て、本明細書における光学的異方性炭素質ピ
ツチには、純粋な光学的異方性炭素質ピツチ
のみならず、光学的異方性相の中に光学的等
方性相が球状又は不定型の島状に包含されて
いる場合も含まれる。
(b-1) Optically anisotropic pitch The optically anisotropic carbonaceous pitch used in the present invention is obtained by polishing the cross section of a pitch lump solidified at room temperature and rotating crossed nicols using a reflective polarizing microscope. In this specification, pitches in which glitter is observed, that is, pitches in which the majority of pitches are substantially optically anisotropic, are referred to as pitches in which glitter is not observed and are optically isotropic. It is called isotropic carbonaceous pitch. Therefore, the optically anisotropic carbonaceous pitch in this specification includes not only a pure optically anisotropic carbonaceous pitch but also a spherical or optically isotropic phase in the optically anisotropic phase. This also includes cases where it is contained in an amorphous island.

又、実質的に光学的異方性である場合と
は、光学的異方性炭素質ピツチと光学的等方
性炭素質ピツチが混在するが、光学的等方性
ピツチの量が少ないために上記偏光顕微鏡に
よつては光学的等方性相(以下IPとする)
を観測することができず、光学的異方性相
(以下APとする)のみが観測される場合であ
る。因に、一般には、APとIPの間に明瞭な
境界が観察される。
In addition, the case of substantially optical anisotropy means that optically anisotropic carbonaceous pitches and optically isotropic carbonaceous pitches coexist, but because the amount of optically isotropic pitches is small, Depending on the polarizing microscope mentioned above, optically isotropic phase (hereinafter referred to as IP)
This is a case where only the optically anisotropic phase (hereinafter referred to as AP) is observed. In general, a clear boundary is observed between AP and IP.

本明細書におけるAPは、所謂「メソ相」
と同様と考えられるが、「メソ相」にはキノ
リン又はピリジンに実質上不溶性のものと、
キノリン又はピリジンに溶解する成分を多く
含むものとの2種類があり、本明細書でいう
APは主として後者の「メソ相」である。
AP in this specification is the so-called "meso phase"
However, the "meso phase" includes a substance that is substantially insoluble in quinoline or pyridine, and
There are two types: those containing a large amount of components soluble in quinoline or pyridine, and those referred to in this specification.
AP is mainly the latter "meso phase".

上記AP相及びIP相は光学的性質のみなら
ず粘度においても大きく異なるために、一般
に、両者が混在するピツチを紡糸することは
糸切れの原因や糸の太さムラとなるので好ま
しくない。このことは、光学的等方性ピツチ
が紡糸に好ましくない異物を含まない場合で
あつても、IP相がAP相の中に均一に分散し
ていない場合には特に悪い結果をもたらすこ
と意味する。従つて、本発明で使用する光学
的異方性ピツチには実質的な均質性が要求さ
れる。このような均質な光学的異方性ピツチ
は、IP含有量が20%以下であつて、反射型
顕微鏡観察でピツチの断面に粒径1μm以上
の固形粒子を検出できない上、溶融紡糸温度
で揮発物による発泡が実質上ないものであ
る。
Since the AP phase and the IP phase are significantly different not only in optical properties but also in viscosity, it is generally undesirable to spin a pitch in which both phases coexist, as this may cause yarn breakage or uneven thickness of the yarn. This means that even if the optically isotropic pitch does not contain undesirable contaminants for spinning, it will give particularly bad results if the IP phase is not homogeneously dispersed within the AP phase. . Therefore, the optically anisotropic pitch used in the present invention is required to have substantial homogeneity. Such a homogeneous optically anisotropic pitch has an IP content of 20% or less, and solid particles with a diameter of 1 μm or more cannot be detected in the cross section of the pitch by reflection microscopy, and they do not volatilize at the melt spinning temperature. There is virtually no foaming caused by substances.

本発明においては、APとIPの定量は、偏
光顕微鏡直交ニコル下で観察し、写真撮影し
てAP又はIP部分の占める面積率を測定して
行うが、この面積率は統計上実質的に体積%
を表す。しかしながら、APとIPの比重差は
0.05程度であり小さいので、近似的には体積
%と重量%とは等しいとして取り扱うことが
できる。
In the present invention, AP and IP are quantified by observing under crossed nicols with a polarizing microscope, taking photographs, and measuring the area ratio occupied by the AP or IP portion, but statistically this area ratio is substantially equal to the volume %
represents. However, the difference in specific gravity between AP and IP is
Since it is small at about 0.05, volume % and weight % can be approximately treated as equal.

本発明で使用する光学的異方性ピツチは、
その軟化点は低いことが好ましい。ここに、
ピツチの軟化点とはピツチの固相と液相間の
転移温度であり、差動走査型熱量計によつて
ピツチの溶解又は凝固する際の潜熱の吸収又
は放出ピーク温度から求めることができる。
この方法によつて測定した軟化点は、リング
アンドボール法、微量融点法等の他の測定方
によつて得られる温度と、±10℃の範囲で一
致する。
The optically anisotropic pitch used in the present invention is
Preferably, its softening point is low. Here,
The softening point of pitch is the transition temperature between the solid phase and liquid phase of pitch, and can be determined from the peak temperature of absorption or release of latent heat during melting or solidification of pitch using a differential scanning calorimeter.
The softening point measured by this method agrees within a range of ±10°C with the temperature obtained by other measurement methods such as the ring and ball method and the micro melting point method.

本発明における紡糸には、通常の紡糸技術
を使用することができる。一般に溶融紡糸に
適する紡糸温度は、紡糸する物質の軟化点よ
り60℃〜100℃高い温度である。一方、本発
明で使用する光学的異方性ピツチは380℃以
上では熱分解重縮合がおこり分解ガスが発生
したり、不融解物が生成する場合がある。従
つて、本発明で使用する光学的異方性ピツチ
の軟化点は320℃以下であることが好ましく、
後述の不融化処理工程の上からは230℃以上
であるこが好ましい。
Ordinary spinning techniques can be used for spinning in the present invention. Generally, the spinning temperature suitable for melt spinning is 60°C to 100°C higher than the softening point of the material to be spun. On the other hand, in the optically anisotropic pitch used in the present invention, thermal decomposition polycondensation occurs at temperatures above 380° C., which may generate decomposed gas or produce unmelted substances. Therefore, the softening point of the optically anisotropic pitch used in the present invention is preferably 320°C or lower,
The temperature is preferably 230° C. or higher in the infusibility treatment step described below.

(b‐2) 光学的異方性ピツチの製造方法 本発明で使用する光学的異方性ピツチはい
かなる製法を用いて製造してもよいが、ピツ
チ製造用の一般的原料である重質炭化水素
油、タール、市販ピツチ等を反応槽で380℃
〜500℃の温度にて撹拌し、不活性ガスで脱
気しながら十分に熱分解重縮合して、残渣ピ
ツチの光学的異方性相(以下APと略す)を
高める従来の方法を使用することができる。
しかしながら、この方法によつてAPが80%
以上のものを製造した場合には、熱分解重縮
合反応が進み過ぎ、キノリン不溶分が70重量
%以上と大きくなり軟化点も330℃以上とな
る場合もあるのみならず、光学的等方性相
(以下IPと略す)も微小球状の分散状態とは
なりにくく必ずしも好ましい方法とは言えな
い。
(b-2) Method for producing optically anisotropic pitches The optically anisotropic pitches used in the present invention may be produced using any production method, but heavy carbonized pitches, which are common raw materials for pitches production, may be used. Hydrogen oil, tar, commercially available pitcher, etc. are heated to 380℃ in a reaction tank.
A conventional method is used to increase the optically anisotropic phase (hereinafter abbreviated as AP) of the residual pitch by sufficiently performing pyrolytic polycondensation while stirring at a temperature of ~500°C and degassing with an inert gas. be able to.
However, this method reduces AP by 80%.
When the above products are manufactured, the thermal decomposition polycondensation reaction proceeds too much, and the quinoline insoluble content increases to over 70% by weight, and the softening point may exceed 330°C, as well as optical isotropy. The phase (hereinafter abbreviated as IP) is also difficult to form a microspherical dispersed state, so this method cannot necessarily be said to be preferable.

従つて、本発明で使用する光学的異方性ピ
ツチの好ましい製造方法は、熱分解重縮合反
応を半ばで打ち切つてその重縮合物を350℃
〜400℃の範囲の温度で保持して実質的に静
置し、下層に密度の大きいAPを成長熟成さ
せつつ沈積し、これを密度の小さいIPが多
い上層の部分より分離して取り出す方法であ
り、この方法の詳細は特開昭57−119984号明
細書に記載されている。
Therefore, the preferred method for producing the optically anisotropic pitch used in the present invention is to stop the thermal decomposition polycondensation reaction halfway and heat the polycondensate at 350°C.
This is a method in which AP is kept at a temperature in the range of ~400°C and allowed to stand essentially still, allowing dense AP to grow and mature in the lower layer, and then being separated from the upper layer, which has a large amount of low-density IP. The details of this method are described in JP-A-57-119984.

本発明で使用する光学的異方性ピツチの更
に好ましい製造方法は、特開昭58−180585号
公報に記載されている如く、APを適度に含
み未だ過度に重質化されていない炭素質ピツ
チを溶融状態のまま遠心分離操作にかけ、迅
速にAP部分を沈降せしめる方法である。こ
の方法によれば、AP相は合体成長しつつ下
層(遠心力方向の層)に集積し、APが約80
%以上で連続層を成し、その中に僅かにIP
を晶状又は微小な球状体で分散している形態
のピツチが下層となり、一方上層はIPが大
部分で、その中にAPが微小な球状態で分散
している形態のピツチとなる。この場合、両
層の境界が明瞭であり、下層のみを上層から
分離して取り出すことができ、容易にAP含
有率が大きく紡糸しやすい光学的異方性ピツ
チを製造することができる。この方法によれ
ば、AP含有率が95%以上で軟化点が230℃〜
320℃の炭素質ピツチを短時間に、経済的に
得ることができる。このような光学的異方性
炭素質ピツチは、溶融紡糸加工特性において
優れ、その均質性と高い配向性のために、そ
れを紡糸して得られた炭素繊維及び黒鉛繊維
の引つ張り強度並びに弾性率は極めて優れた
ものとなる。
A more preferable method for producing the optically anisotropic pitch used in the present invention is as described in JP-A No. 58-180585, in which a carbonaceous pitch containing an appropriate amount of AP and not yet excessively heavy is used. In this method, the AP portion is rapidly precipitated by centrifuging it while it is in a molten state. According to this method, the AP phase coalesces and grows, accumulating in the lower layer (layer in the direction of centrifugal force), and the AP is approximately 80
% or more, forming a continuous layer, with a small amount of IP in it.
The lower layer consists of pitches in which IP is dispersed in the form of crystals or minute spherules, while the upper layer consists mostly of IP, with AP dispersed therein in the form of minute spheres. In this case, the boundary between both layers is clear, and only the lower layer can be separated and taken out from the upper layer, making it possible to easily produce an optically anisotropic pitch with a high AP content and easy spinning. According to this method, the AP content is 95% or more and the softening point is 230℃~
Carbonaceous pitch at 320°C can be obtained economically in a short time. Such optically anisotropic carbonaceous pitch has excellent melt-spinning properties, and due to its homogeneity and high orientation, the tensile strength and tensile strength of carbon fibers and graphite fibers obtained by spinning it are improved. The elastic modulus is extremely excellent.

(c) 繊維の製造 () 紡糸 炭素質ピツチの紡糸は、公知の方法によつ
て行うことができる。このような方法は、例
えば、直径0.1mm〜0.5mmの紡糸口を1〜1000
ヶ有する紡糸口金を下方に有する紡糸容器に
ピツチを張り込み、不活性ガス雰囲気下で
280〜370℃の間の一定の温度にピツチを保持
し、溶融状態に保つたまま不活性ガスの圧力
を数百mmHgに上昇せしめて口金から溶融ピ
ツチを押し出し、温度及び雰囲気を制御しつ
つ流下したピツチ繊維を高速で回転するボビ
ンに巻き取るものである。
(c) Production of fiber () Spinning Carbonaceous pitch can be spun by a known method. For example, in this method, 1 to 1000 spinnerets with a diameter of 0.1 mm to 0.5 mm are used.
A pitcher is placed in a spinning container with a spinneret below it, and the spinneret is placed under an inert gas atmosphere.
The pitch is held at a constant temperature between 280 and 370 degrees Celsius, and the pressure of the inert gas is increased to several hundred mmHg while maintaining it in a molten state, and the molten pitch is pushed out of the mouthpiece and allowed to flow down while controlling the temperature and atmosphere. The pitch fibers are wound onto a bobbin that rotates at high speed.

又、紡糸口金から紡糸したピツチ繊維を集
束させて気流で引取りつつ下方の集積ケース
の中にケンス状に集積する方法を採用するこ
ともできる。この場合、紡糸容器へのピツチ
の供給を、予め溶融したピツチやギアポンプ
等により加圧供給することによつて連続的に
紡糸することが可能である。更に、上記方法
において、口金の近傍で一定の温度に制御さ
れ高速で下降するガスを用いてピツチ繊維を
延伸しつつ引取り、下方のベルトコンベア上
に長繊維を作る方法も用いることができる。
Alternatively, it is also possible to adopt a method in which pitch fibers spun from a spinneret are collected in a can-like manner in a lower collecting case while being collected by an air current. In this case, continuous spinning is possible by supplying pitch to the spinning container under pressure using pre-melted pitch or a gear pump or the like. Furthermore, in the above method, it is also possible to use a method in which pitch fibers are drawn and taken up using gas that is controlled at a constant temperature and descends at high speed in the vicinity of the die, and long fibers are produced on a belt conveyor below.

更に、周壁に紡糸口金を有する円筒状の紡
糸容器を高速で回転させ、これに溶融ピツチ
を連続的に供給し、円筒紡糸器の周壁より遠
心力によつてピツチを押し出し、回転の作用
によつて延伸されるピツチ繊維を集積するよ
うな紡糸方法を採用することもできる。
Furthermore, a cylindrical spinning container having a spinneret on the peripheral wall is rotated at high speed, and molten pitch is continuously supplied to the spinning container, and the pitch is pushed out from the peripheral wall of the cylindrical spinning device by centrifugal force, and the spinning container is rotated at high speed. It is also possible to adopt a spinning method in which pitch fibers that are drawn together are accumulated.

本発明においてはボビンに巻いた状態から
均一な解舒(巻戻)を行うために、紡糸時の
トラバースは2〜100mm/(ボビン1回転当
り)のような大きなトラバースをかけて巻き
取り、巻厚は1〜100mm好ましくは5〜50mm
とすることが有効である。トラバースは、ピ
ツチ繊維のボビンからの解舒(巻戻)性を考
慮すれば5〜20mm/(ボビン1回転)程度が
好ましい。
In the present invention, in order to unwind (unwind) uniformly from the state wound on the bobbin, the traverse during spinning is a large traverse of 2 to 100 mm/(per bobbin rotation). Thickness: 1-100mm, preferably 5-50mm
It is effective to do so. The traverse is preferably about 5 to 20 mm/(one revolution of the bobbin) in consideration of the unwinding (unwinding) property of pitch fibers from the bobbin.

本発明においては、いずれの公知の方法に
よつて紡糸する場合であつても、軟化点の低
い炭素質ピツチを使用するので、280℃〜370
℃という従来よりも低温で紡糸することがで
きる。このような温度で紡糸する場合には熱
分解や熱重合が極めて低く抑えられるので、
紡糸後のピツチ繊維は、紡糸前のピツチと殆
ど同じ化学的組成を維持することができる。
従つて、紡糸後の繊維を再溶融して再度紡糸
することができて好都合である。
In the present invention, carbonaceous pitch with a low softening point is used, regardless of which known method is used for spinning.
It can be spun at a lower temperature than conventional methods, which is ℃. When spinning at such temperatures, thermal decomposition and thermal polymerization are kept extremely low, so
The pitch fibers after spinning can maintain almost the same chemical composition as the pitch before spinning.
Therefore, it is convenient that the fibers after spinning can be remelted and spun again.

本発明においては、溶融紡糸したピツチ繊
維はエアサツカーを通して集束しつつオイリ
ングローラーに導き集束剤(油剤)を付けて
更に集束する。この場合の集束剤としては、
例えばエチルアルコール、イソプロピルアル
コール、n−プロピルアルコール、ブチルア
ルコール等のアルコール類又は粘度3〜
300cst(25℃)のジメチルポリシロキサン、
メチルフエニルポリシロキサン等を低沸点の
シリコン油(ポリシロキサン)又はパラフイ
ン油等の溶剤で希釈したもの、又は乳化剤を
入れて水に分散させたもの;同様にグラフア
イト又はポリエチレングリコールやヒンダー
ドエステル類を分散させたもの;界面活性剤
を水で希釈したもの;その他通常の繊維、例
えばポリエステル繊維に使用される各種の油
剤の内、ピツチ繊維をおかさないものを使用
することができる。集束剤の繊維への付着量
は通常0.01〜10重量%であるが、特に0.05〜
5重量%であることが好ましい。
In the present invention, the melt-spun pitch fibers are bundled through an air sucker, and then guided to an oiling roller where a sizing agent (oil agent) is applied and further bundled. In this case, the sizing agent is
For example, alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, or alcohols with a viscosity of 3 to 3
300cst (25℃) dimethylpolysiloxane,
Methylphenylpolysiloxane etc. diluted with a low boiling point silicone oil (polysiloxane) or a solvent such as paraffin oil, or dispersed in water with an emulsifier added; Similarly, graphite, polyethylene glycol or hindered ester Dispersions of surfactants; surfactants diluted with water; and various oils used for ordinary fibers, such as polyester fibers, which do not damage pitch fibers can be used. The amount of sizing agent attached to the fibers is usually 0.01 to 10% by weight, but especially 0.05 to 10% by weight.
Preferably it is 5% by weight.

() ピツチ繊維の合糸 本発明においては、不融化時に安定に連続
して通糸するために、不融化に先立ち合糸を
行う。
() Doubling of pitch fibers In the present invention, doubling is performed prior to infusibility in order to thread the yarn stably and continuously during infusibility.

溶融紡糸機1台(1紡糸口金)から紡糸さ
れるピツチ繊維のフイラメント数は溶融紡糸
のため限界があり、通常は1〜2000であり、
好ましくは50〜1000フイラメントである。
The number of filaments of pitch fiber spun from one melt spinning machine (one spinneret) is limited due to melt spinning, and is usually 1 to 2000.
Preferably 50 to 1000 filaments.

本発明では、溶融紡糸で得られるピツチ繊
維束を2〜20本用いて、200〜50000好ましく
は500〜5000フイラメントに合糸する。合糸
は、紡糸されたピツチ繊維を複数のボビンに
巻取つた後、同時に解舒し繊維束を1つに合
束し1つのボビンに巻取ることによつて行わ
れる。合糸時の巻取りトラバースはボビン1
回転当り5〜100mmであることが好ましい。
ボビンからの解舒性を良くするためにはトラ
バースを大きくする方が良いが、大き過ぎる
と糸が損傷し易いので好ましくない。
In the present invention, 2 to 20 pitch fiber bundles obtained by melt spinning are used to form 200 to 50,000 filaments, preferably 500 to 5,000 filaments. The yarn doubling is performed by winding the spun pitch fibers around a plurality of bobbins, and then simultaneously unwinding the fiber bundles, combining the fiber bundles into one, and winding them around one bobbin. Winding traverse during doubling is bobbin 1
Preferably, it is 5 to 100 mm per rotation.
In order to improve the unwinding property from the bobbin, it is better to make the traverse larger, but if it is too large, the thread is likely to be damaged, so it is not preferable.

ケンス状に落としたピツチ繊維を複数のカ
ゴ又はケースから引き上げ合糸しても良い。
Pitch fibers dropped into cans may be pulled up from multiple baskets or cases and spliced.

合糸は、ボビンからの解舒のみでなく複数
の紡糸機又は紡糸口金から同時に紡糸された
ピツチ繊維を集束し合糸することも可能であ
る。
For doubling, it is possible not only to unwind from a bobbin, but also to collect and double pitch fibers spun simultaneously from a plurality of spinning machines or spinnerets.

合糸は、1度に2〜20本合糸しても良い
が、2〜10本を1回目に合糸し、更に、2〜
10本再合糸する方法も用いられる。
It is possible to double 2 to 20 threads at a time, but 2 to 10 threads may be multiplied at the first time, and then 2 to 20 threads may be multiplied at a time.
A method in which 10 sutures are recombined is also used.

合糸後の巻厚は通常は、1〜100mm、好ま
しくは5〜50mmである。
The winding thickness after doubling is usually 1 to 100 mm, preferably 5 to 50 mm.

本発明では、不融化時の不融化炉への安定
な通糸性を確保するために、合糸に際し及
び/又は合糸の後で耐熱性油剤を付与する。
In the present invention, a heat-resistant oil agent is applied during and/or after the yarn doubling in order to ensure stable threadability to the infusibility furnace during infusibility.

耐熱性油剤としては、25℃における粘度が
10〜1000cstのアルキルフエニルポリシロキ
サン、ジアルキルポリシロキサン、ヒンダー
ドエステル油を、沸点160℃以下のシリコー
ン油、パラフイン油、アルコール類で希釈
し、0.01〜10%溶液、好ましくは0.1〜2%
溶液として使用する。
As a heat-resistant oil, the viscosity at 25℃ is
Dilute 10 to 1000 cst of alkyl phenyl polysiloxane, dialkyl polysiloxane, or hindered ester oil with silicone oil, paraffin oil, or alcohol with a boiling point of 160°C or lower to form a 0.01 to 10% solution, preferably 0.1 to 2%.
Use as a solution.

特にアルキルフエニルポリシロキサンは耐
熱性に優れているので好ましい。
In particular, alkylphenyl polysiloxanes are preferred because they have excellent heat resistance.

アルキルフエニルポリシロキサンは、フエ
ニル基含有量が5モル%〜80モル%、好まし
くは5モル%〜50モル%であり、アルキル基
としてはメチル基、エチル基及びプロピル基
が好ましい。耐熱性油剤中に、アミン類、有
機セレン化合物、フエノール類等の酸化防止
剤を含む方法も使用される。酸化防止剤とし
ては、フエニルアルフアナフチルアミン、ジ
ラウリルセレナイド、フエノチアジン、鉄オ
クトレート等が使われる。
The alkylphenyl polysiloxane has a phenyl group content of 5 mol% to 80 mol%, preferably 5 mol% to 50 mol%, and the alkyl group is preferably a methyl group, an ethyl group, or a propyl group. A method in which antioxidants such as amines, organic selenium compounds, and phenols are included in the heat-resistant oil agent is also used. As the antioxidant, phenylalphanaphthylamine, dilaurylselenide, phenothiazine, iron octolate, etc. are used.

耐熱性基材油を希釈する成分は、連続不融
炉に入る以前に殆ど蒸発している必要がある
ため、沸点160℃以下のもので、且つピツチ
繊維を溶解せず、且つ基材油であるジメチル
ポリシロキサン、メチルフエニルポリシロキ
サン等を溶解するものが好ましい。
Most of the components used to dilute the heat-resistant base stock must be evaporated before entering the continuous infusible furnace, so they must have a boiling point of 160°C or lower, do not dissolve the pitch fibers, and must be diluted with the base stock. Those that can dissolve certain dimethylpolysiloxanes, methylphenylpolysiloxanes, etc. are preferred.

これらの希釈成分として、C2〜C8のアル
カノール−1、アルカノール−2、不飽和第
1アルコール、ヘキサメチルジシロキサン、
オクタメチルトリシロキサン等を使用するの
が好ましい。
These diluting components include C2 to C8 alkanol-1, alkanol-2, unsaturated primary alcohol, hexamethyldisiloxane,
Preferably, octamethyltrisiloxane or the like is used.

油剤の付与は、スプレー、ローラー接触等
の何れの方式で行つても良い。
The oil may be applied by any method such as spraying or roller contact.

合糸後の巻圧は任意に設定できるが、作業
性、操業性の面から10〜100mmが好ましい。
The winding pressure after doubling can be set arbitrarily, but from the viewpoint of workability and operability, it is preferably 10 to 100 mm.

合糸は、不融化炉に通糸する前に行つても
良いが、合糸しながら不融化を行うこともで
きる。
The threads may be combined before being passed through the infusibility furnace, but the infusibility may be performed while the threads are being combined.

() ピツチ繊維の不融化 本発明においては、酸化性雰囲気に繊維束
を連続的に通して不融化を行う。
() Infusibility of pitch fibers In the present invention, the fiber bundle is continuously passed through an oxidizing atmosphere to make it infusible.

本発明では、連続通糸が円滑にできるよう
合糸し、耐熱性油剤を付与し、不融化処理
中、繊維束の断糸がないようにして行うの
で、ピツチ繊維を酸化して不融性炭素質繊維
とする工程における温度、酸化剤、反応時間
について、公知の種々の組み合わせを用いる
ことができる。本発明における不融化工程の
温度は150〜400℃、好ましくは200〜300℃の
範囲でステツプ状又は徐々に昇温して、通常
は30分〜5時間処理する。不融化は、空気、
酸素、空気と酸素又は空気と窒素の混合ガス
等を使用して行うことができる。本発明で
は、酸素濃度を高くしても繊維束内の反応熱
の蓄積による燃焼の恐れがないので、反応時
間を短縮する方法として酸素濃度を高くする
ことができる。
In the present invention, the threads are doubled to ensure smooth continuous threading, a heat-resistant oil is applied, and the fiber bundles are not broken during the infusibility treatment. Various known combinations of temperature, oxidizing agent, and reaction time in the step of producing carbonaceous fibers can be used. The temperature of the infusibility step in the present invention is 150 to 400°C, preferably 200 to 300°C, and the temperature is increased stepwise or gradually, and the treatment is usually carried out for 30 minutes to 5 hours. Infusible is air,
This can be carried out using oxygen, a mixed gas of air and oxygen, or air and nitrogen, or the like. In the present invention, even if the oxygen concentration is increased, there is no fear of combustion due to the accumulation of reaction heat within the fiber bundle, so the oxygen concentration can be increased as a method of shortening the reaction time.

本発明においては、200℃以下の温度でハ
ロゲン、NO2、SO2、SO3、オゾン等の酸化
剤を含んだ雰囲気中で単時間処理するか、又
は、酸素ガス雰囲気中でピツチの軟化点より
30〜50℃低い温度、即ち150〜240℃の温度で
十分な不融化が得られる迄5分〜1時間保持
し、その後必要により約300℃迄昇温して不
融化を終了せしめる方法で行つてもよく、特
に後者の方法は容易且つ確実であり好まし
い。
In the present invention, the softening point of pitch is treated at a temperature of 200°C or less in an atmosphere containing an oxidizing agent such as halogen, NO 2 , SO 2 , SO 3 or ozone, or in an oxygen gas atmosphere. Than
The process is carried out by holding at a temperature 30 to 50 degrees Celsius lower, i.e., 150 to 240 degrees Celsius, for 5 minutes to one hour until sufficient infusibility is achieved, and then raising the temperature to approximately 300 degrees Celsius to complete infusibility if necessary. The latter method is particularly preferred as it is easy and reliable.

不融化に際しては、雰囲気と同じ種類のフ
レツシユなガスを毎分0.1〜5回の割合で流
通置換して、古いガスを排出することが好ま
しい。
For infusibility, it is preferable to replace the old gas by circulating a fresh gas of the same type as the atmosphere at a rate of 0.1 to 5 times per minute.

不融化処理時の雰囲気はフアンによつて強
制的に撹拌することが好ましく、その風速は
0.1〜10m/秒、好ましくは0.5〜5m/秒で
ある。このような強制撹拌は繊維束内へのガ
スの浸透を推進し、不融化炉内の温度分布を
なくして焼成を均一にする効果がある。
It is preferable to forcibly stir the atmosphere during the infusibility treatment using a fan, and the wind speed is
0.1-10 m/sec, preferably 0.5-5 m/sec. Such forced stirring promotes gas penetration into the fiber bundle, eliminates temperature distribution in the infusibility furnace, and has the effect of making firing uniform.

不融化処理は、繊維に張力をかけずに行う
こともできるが、通常は、不融化炉内で繊維
束(糸条)がたるみ炉底をこすることにより
発生する引きずり傷の防止、及び外観を良好
にし、且つ引張強度、引張弾性率等の炭素繊
維物性を向上せしめるために、1フイラメン
ト当り0.001〜0.2gの張力をかけながら不融
化を行うことが好ましい。
Infusibility treatment can be performed without applying tension to the fibers, but it is usually done to prevent drag scratches caused by the fiber bundles (threads) sagging in the infusibility furnace and rub against the bottom of the furnace, and to improve the appearance of the fibers. In order to improve carbon fiber physical properties such as tensile strength and tensile modulus, it is preferable to perform the infusibility while applying a tension of 0.001 to 0.2 g per filament.

連続不融化炉を出た糸は、一度ボビンに巻
き取り、その後第1次の熱処理、次いで第2
次の熱処理にかけられる。又、巻き取ること
なくそのまま第1次及び第2次の熱処理を行
つても良い。
The thread leaving the continuous infusibility furnace is once wound onto a bobbin, then subjected to first heat treatment, then second heat treatment.
It is then subjected to the following heat treatment. Further, the first and second heat treatments may be performed as they are without being wound up.

連続不融化炉を出た糸は、炉内での油剤の
一部の分解、蒸発、劣化等により脆く、且つ
弱くなつているので、巻き取る前、又は次の
第1次熱処理工程へ移る前に前記の耐熱性油
剤を付与して、繊維の糸扱い性を向上させる
ことが好ましい。
The yarn leaving the continuous infusibility furnace is brittle and weak due to decomposition, evaporation, deterioration, etc. of a part of the oil in the furnace, so it is necessary to remove the yarn before winding it or moving on to the next primary heat treatment process. It is preferable to add the above-mentioned heat-resistant oil to the fibers to improve the yarn handling properties of the fibers.

() 熱処理工程 連続不融化によつて不融性となつた炭素質
ピツチ繊維を、化学的に不活性な窒素ガス又
はアルゴンガス雰囲気で、500〜1000℃迄昇
温し初期の炭化を行うことによつて予備炭化
繊維が得られ、更に1000〜2000℃迄昇温し、
炭化することによつて所謂炭素繊維が得ら
れ、2000℃〜3000℃迄昇温し、黒鉛化するこ
とによつて黒鉛繊維が得られる。次にこれら
の方法について詳述する。
() Heat treatment process The carbonaceous pitch fibers, which have become infusible through continuous infusibility, are heated to 500 to 1000°C in a chemically inert nitrogen gas or argon gas atmosphere to perform initial carbonization. A pre-carbonized fiber is obtained by heating the fiber to 1000-2000°C.
So-called carbon fibers are obtained by carbonization, and graphite fibers are obtained by increasing the temperature to 2000°C to 3000°C and graphitizing it. Next, these methods will be explained in detail.

本発明においては、連続熱処理炉に、熱処
理しようとする繊維を線状で連続的に通して
熱処理を行う。
In the present invention, heat treatment is performed by continuously passing the fiber to be heat treated in a linear manner through a continuous heat treatment furnace.

特に本発明においては、適切な炉の温度プ
ロフアイル(温度勾配)のもとで、不融化し
たピツチ繊維を予備炭化、炭化、黒鉛化処理
することによつて性能の優れた製品を効率良
く得るために、2段階の熱処理を行う。一般
に、炉の長さが短いと適切な温度プロフアイ
ル(温度勾配)を得ることは設備上困難であ
るが、一方、炉の長さが長くなると繊維束が
たるむために炉内をこすり、傷がつく度合が
増え、結果として製品性能が低下する。これ
らの相反する問題は、熱処理炉を分割し、第
1次の熱処理、第2次の熱処理という2段階
の処理を行うことによつて解決される。2つ
に分割することにより適切な温度プロフアイ
ルを作り易くなり、又、繊維束のたるみによ
る傷の発生も少なくすることが可能となる。
In particular, in the present invention, products with excellent performance can be efficiently obtained by pre-carbonizing, carbonizing, and graphitizing infusible pitch fibers under an appropriate furnace temperature profile (temperature gradient). For this purpose, a two-step heat treatment is performed. In general, if the length of the furnace is short, it is difficult to obtain an appropriate temperature profile (temperature gradient), but on the other hand, if the length of the furnace is long, the fiber bundles will sag and rub against the inside of the furnace, causing scratches. The degree of adhesion increases, resulting in a decrease in product performance. These conflicting problems can be solved by dividing the heat treatment furnace and performing two stages of treatment: first heat treatment and second heat treatment. By dividing the fiber bundle into two, it becomes easier to create an appropriate temperature profile, and it is also possible to reduce the occurrence of scratches due to slack in the fiber bundle.

又、このような2段階の処理を行うことに
よつて第1次の熱処理、第2次の熱処理を合
わせた炉の長さを長くできるので、糸の温度
の実質的な昇温速度(本明細書では、これを
熱処理の昇温速度とする)が一定の場合に
は、炉への通糸速度を大きくすることができ
時間当たりの生産量を大きくすることができ
るので有利である。
In addition, by performing such two-stage treatment, the length of the furnace including the first heat treatment and the second heat treatment can be increased, so the actual temperature increase rate (the main rate) of the yarn temperature can be increased. In the specification, this is referred to as the temperature increase rate of heat treatment) if it is constant, it is advantageous because the threading speed to the furnace can be increased and the production amount per hour can be increased.

本発明における2段階の熱処理に際する熱
処理の分離温度は、不融化したピツチ繊維の
予備炭化、及び炭化中に発生する反応生成ガ
ス、タール状物質の1次的、2次的影響によ
る製品性能への影響を最小にするために、第
1次の熱処理温度を、繊維束強度も考慮して
1800℃以下、好ましくは600〜1500℃として
行う。ガスの発生量は500℃前後で最も多い
ので、600℃以上であることが好ましく、約
1500℃では反応生成ガスが少量になるので好
ましい。
The separation temperature of the heat treatment in the two-step heat treatment in the present invention is determined by the preliminary carbonization of the infusible pitch fibers and the product performance due to the primary and secondary effects of reaction product gas and tar-like substances generated during carbonization. In order to minimize the effect on
The temperature is 1800°C or lower, preferably 600 to 1500°C. The amount of gas generated is greatest at around 500℃, so it is preferable that the temperature is 600℃ or higher, and around 500℃.
A temperature of 1500°C is preferable because the reaction product gas is small.

第1次の熱処理は、ボビン巻のまま行うこ
とも可能であるが、特に不融化した不融化繊
維をボビンから解舒しつつ、必要に応じて更
に合糸しながら実施することが好ましい。
Although the first heat treatment can be carried out while the bobbin is being wound, it is particularly preferable to perform the first heat treatment while unwinding the infusible infusible fibers from the bobbin and, if necessary, further doubling the yarns.

第1次の熱処理は、窒素ガス及び/又はア
ルゴンガスのような非酸化性ガス雰囲気下に
線状で連続的に通して行う。雰囲気ガスは、
不融化繊維から生成した排ガスを除去するた
め、0.05〜1回/分の割合で流通置換する。
これらのガスの一部をリサイクルし、或いは
精製して全部を再び使用することも可能であ
る。
The first heat treatment is performed by continuous linear passage under a non-oxidizing gas atmosphere such as nitrogen gas and/or argon gas. The atmospheric gas is
In order to remove the exhaust gas generated from the infusible fibers, circulation is performed at a rate of 0.05 to 1 time/minute.
It is also possible to recycle some of these gases or to purify them and use them all again.

第1次の熱処理をいきなり高い温度から行
うと、繊維の溶融及び/又は融着により繊維
束の切断や部分的な糸切れが起こる。これを
避けるため、熱処理の開始を400℃以下、好
ましくは300℃以下から開始する。第1次の
熱処理の昇温速度は、徐々に炭化を行い繊維
束の軟化点を少しずつ上昇させて融着による
繊維束の切断を避けるため、20〜2000℃/分
好ましくは50〜500℃/分とする。
If the first heat treatment is performed suddenly at a high temperature, the fiber bundles will be cut or the fibers will be partially broken due to melting and/or fusing of the fibers. To avoid this, heat treatment is started at 400°C or lower, preferably at 300°C or lower. The temperature increase rate in the first heat treatment is preferably 20-2000℃/min, preferably 50-500℃, in order to gradually carbonize the fiber bundle and increase the softening point of the fiber bundle little by little to avoid cutting the fiber bundle due to fusion. /minute.

昇温速度を、遅くすれば通糸は容易になる
が、経済的でない。第1次の熱処理温度(最
高温度)は先に述べた理由により、1800℃以
下好ましくは600〜1500℃で行う。最高温度
到達後、1時間以内保持することも行われ
る。
If the heating rate is made slower, threading becomes easier, but this is not economical. The first heat treatment temperature (maximum temperature) is 1800°C or lower, preferably 600 to 1500°C, for the reasons mentioned above. After the maximum temperature is reached, it may be held for less than one hour.

第1次の熱処理は張力をかけずに行うこと
もできるが、繊維束がたるむことによつて、
熱処理炉の炉底や炉壁で糸がこすれて発生す
る損傷を防ぐと共に、張力下に糸条を焼成す
ることによつて、炭素繊維又は黒鉛繊維の物
性を上げるため、1フイラメント当たり
0.001〜0.2gの張力をかけて行うことが好ま
しい。第1次の熱処理は、通常0.1〜20m/
分の速度で連続的に焼成炉を通して行う。
The first heat treatment can be performed without applying tension, but the fiber bundle may become slack.
In order to prevent damage caused by thread rubbing on the bottom and walls of the heat treatment furnace, and to increase the physical properties of carbon fiber or graphite fiber by firing the thread under tension,
It is preferable to apply a tension of 0.001 to 0.2 g. The first heat treatment is usually 0.1~20m/
Run through the kiln continuously at a rate of 1 minute.

第2次の熱処理は、アルゴンガス及び/又
は窒素ガス等の不活性ガス雰囲気の連続熱処
理炉に通して行う。雰囲気ガスは、黒鉛繊維
を作る場合は特にアルゴンガスが好ましい。
雰囲気ガスは、繊維から生成したガスを除去
するため0.05〜1回/分の割合で流通置換す
る。必要に応じて雰囲気ガスをリサイクル
し、又は精製して再使用することも行う。
The second heat treatment is performed through a continuous heat treatment furnace in an inert gas atmosphere such as argon gas and/or nitrogen gas. Argon gas is particularly preferable as the atmospheric gas when producing graphite fibers.
The atmospheric gas is circulated and replaced at a rate of 0.05 to 1 time/minute in order to remove gas generated from the fibers. If necessary, the atmospheric gas may be recycled or purified and reused.

第2次の熱処理は、最高温度が1000〜3000
℃の範囲となるように行う。最高温度到達後
30分以内保持することも行われる。
The maximum temperature of the second heat treatment is 1000 to 3000.
Do this so that the temperature is within the range of ℃. After reaching maximum temperature
Holding for up to 30 minutes is also done.

第2次の熱処理の開始温度は1000℃以下で
あり、そこから第2次の熱処理の最高温度迄
の昇温速度は、100〜2000℃/分で行う。
The starting temperature of the second heat treatment is 1000°C or less, and the temperature increase rate from there to the maximum temperature of the second heat treatment is 100 to 2000°C/min.

第2次の熱処理は、張力をかけずに行うこ
とができるが、通炉中の糸の損傷を防ぎ、且
つ張力下で処理して炭素繊維及び黒鉛繊維の
物性を向上せしめるため1フイラメント当た
り0.001〜0.2gの張力をかけて行うことが好
ましい。
The second heat treatment can be performed without applying tension, but in order to prevent damage to the yarn during passing through the furnace and to improve the physical properties of carbon fibers and graphite fibers by processing under tension, it is necessary to It is preferable to apply a tension of ~0.2 g.

第2次の熱処理は、第1次の熱処理ですで
に炭素繊維又はそれに近い強度の繊維となつ
ているので、すでに公知となつているポリア
クリロニトリル系炭素繊維の場合の焼成法に
よつて焼成することができる(例えば、米国
特許第3700511号、同第3764662号、同第
3900556号、同第3954750号、同第4301136号、
英国特許第1110791号、同第1215005号、特公
昭45−12540号、同45−19415号、同47−
26733号、同47−36463号、特開昭46−2961
号、同47−716号、同60−99010号参照)。
In the second heat treatment, since the first heat treatment has already turned into carbon fibers or fibers with similar strength, firing is performed using the already known firing method for polyacrylonitrile carbon fibers. (For example, U.S. Pat. No. 3700511, U.S. Pat. No. 3764662, U.S. Pat.
No. 3900556, No. 3954750, No. 4301136,
British Patent No. 1110791, British Patent No. 1215005, Special Publication No. 12540, British Patent No. 45-19415, British Patent No. 47-
No. 26733, No. 47-36463, JP-A-46-2961
No. 47-716, No. 60-99010).

第2次の熱処理炉を出た糸は、必要に応じ
て集束剤、サイジング剤等を付与した上、ボ
ビンに巻き取る。
The yarn leaving the second heat treatment furnace is treated with a sizing agent, a sizing agent, etc. as necessary, and then wound onto a bobbin.

尚、本発明における第1次の熱処理、第2
次熱処理の結果は、予備炭化、炭化、黒鉛化
の言葉で下記のように表現することができ
る。
In addition, the first heat treatment and the second heat treatment in the present invention
The results of the secondary heat treatment can be expressed in terms of preliminary carbonization, carbonization, and graphitization as follows.

第1次熱処理 第2次熱処理 予備炭化 炭化 予備炭化/炭化 炭化 予備炭化 炭化/黒鉛化 予備炭化/炭化 炭化/黒鉛化 予備炭化/炭化 黒鉛化 ≪発明の効果≫ 本発明は、炭素質ピツチ繊維を合糸して繊維束
の強度を増し、更に耐熱性油剤を付与してから、
繊維束を線状で連続的に不融化を行うので、不融
化中の繊維束の切断がなく、又、合糸するので生
産速度が速くできる。
First heat treatment Second heat treatment Pre-carbonization Carbonization Pre-carbonization/carbonization Carbonization Pre-carbonization Carbonization/graphitization Pre-carbonization/carbonization Carbonization/graphitization Pre-carbonization/carbonization Graphitization <<Effects of the Invention>> The present invention provides carbonaceous pitch fibers. After doubling to increase the strength of the fiber bundle and adding a heat-resistant oil,
Since the fiber bundle is continuously infusible in a linear form, there is no cutting of the fiber bundle during infusibility, and since the fiber bundles are doubled, the production speed can be increased.

繊維束を連続して線状で不融化炉を通す方式で
あるので、外観の良い繊維が得られるばかりでな
く、不融化中のムラがなく、均一な繊維を得るこ
とができ、又、引張強度、引張弾性が高い炭素繊
維、黒鉛繊維を得ることができる。
Since the fiber bundle is continuously passed through the infusibility furnace in a linear manner, it is possible not only to obtain fibers with good appearance, but also to obtain uniform fibers with no unevenness during infusibility. Carbon fibers and graphite fibers with high strength and tensile elasticity can be obtained.

1800℃以下での第1次熱処理、3000℃以下での
第2次の熱処理も、繊維束を線状で連続的に焼成
できで、設備の連続化ができると共に、外観が良
くて均一な、引張強度、引張弾性率等の物性の高
い炭素繊維及び黒鉛繊維を得ることができる。
The first heat treatment at 1,800℃ or less and the second heat treatment at 3,000℃ or less allow fiber bundles to be fired continuously in a linear form, making it possible to use continuous equipment, and to produce a uniform product with a good appearance. Carbon fibers and graphite fibers with high physical properties such as tensile strength and tensile modulus can be obtained.

又、第2次の高温度の熱処理を非常に短時間で
終了させることにより、高強度、高弾性率の黒鉛
繊維を容易に得ることができる。又、このように
して得られた炭素繊維、黒鉛繊維は、糸扱い時の
毛羽立ちが少なく、糸の外観も良い高品質のロン
グフイラメント糸であり、巻き取り、巻き戻し、
合糸及び織物や編物とすることも自在であり、複
合材料を製造する場合のフイラメントワインデイ
ングやプリプレグの製造等に使用することができ
るので、その応用範囲も広く本発明の意義は大き
い。
Further, by completing the second high-temperature heat treatment in a very short time, graphite fibers with high strength and high modulus of elasticity can be easily obtained. In addition, the carbon fibers and graphite fibers obtained in this way are high-quality long filament yarns that have little fuzz when handled and have a good appearance.
It can be made into yarns, woven fabrics, or knitted fabrics, and can be used for filament winding in the production of composite materials, production of prepregs, etc. Therefore, the scope of its application is wide, and the significance of the present invention is great.

≪実施例≫ 以下に本発明を実施例によつて更に詳述する
が、本発明はこれにより限定されるものではな
い。
<<Example>> The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

実施例 1 光学的異方性相(AP)を約55%含有し、軟化
点が232℃である炭素質ピツチを前駆体ピツチと
して使用した。この前駆体ピツチは、キノリン不
溶分16.1重量%と灰分0.26重量%を含有してお
り、370℃における粘度は2.8ポイズであつた。こ
のピツチを内容積20の溶融タンク中で溶融し、
370℃に制御して、ローター内有効容積200mlの円
筒型連続遠心分離装置へ20ml/分の流量で送り、
ローター温度を370℃に制御しつつ、遠心力を
30000GでAP排出口より光学的異方性相の多いピ
ツチ(Aピツチ)、IP排出口より光学的等方性の
多いピツチ(Iピツチ)を連続して抜き出した。
Example 1 A carbonaceous pitch containing approximately 55% optically anisotropic phase (AP) and having a softening point of 232° C. was used as a precursor pitch. This precursor pitch contained 16.1% by weight of quinoline insoluble matter and 0.26% by weight of ash, and had a viscosity of 2.8 poise at 370°C. This pitch is melted in a melting tank with an internal volume of 20,
The temperature is controlled at 370°C and sent at a flow rate of 20 ml/min to a cylindrical continuous centrifugal separator with an effective volume of 200 ml in the rotor.
Centrifugal force is reduced while controlling the rotor temperature to 370℃.
At 30,000G, a pitch with more optical anisotropy than the AP outlet (A pitch) and a pitch with more optical isotropy than the IP outlet (I pitch) were successively extracted.

得られた光学的異方性ピツチは、光学的異方性
相を98%含み、軟化点265℃、キノリン不溶分は
29.5%であつた。
The obtained optically anisotropic pitch contains 98% optically anisotropic phase, has a softening point of 265°C, and has a quinoline insoluble content.
It was 29.5%.

次に、得られた光学的異方性ピツチを、500穴
の紡糸口金を有する溶融紡糸機(ノズル孔径:直
径0.3mm)に通し、355℃で約200mmHgの窒素ガス
圧で押し出して、ノズル下部に設けた、高速で回
転する直径210mm幅200mmのステンレス網製の金網
ボビンに巻き取り、約500m/分の巻き取り速度
で10分間紡糸した。ボビン1回転当たりのトラバ
ースのピツチは10mm/1回転であつた。紡糸の間
の糸切れはなかつた。この際紡糸した糸はエアー
サツカーで略集束してオイリングローラーに導
き、糸に対して約0.5%の割合で集束用油剤を供
給した。油剤としては、25℃における粘度が
14cstのジメチルポリシロキサンを使用した。
Next, the obtained optically anisotropic pitch was passed through a melt spinning machine with a 500-hole spinneret (nozzle hole size: diameter 0.3 mm), extruded at 355°C with a nitrogen gas pressure of about 200 mmHg, and The fibers were wound onto a stainless steel wire mesh bobbin with a diameter of 210 mm and a width of 200 mm that rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min. The traverse pitch per one revolution of the bobbin was 10 mm/one revolution. There was no yarn breakage during spinning. At this time, the spun yarn was approximately converged with an air spooler and guided to an oiling roller, and a converging oil was supplied at a ratio of about 0.5% to the yarn. As an oil agent, the viscosity at 25℃ is
14cst dimethylpolysiloxane was used.

ピツチ繊維を巻いたボビン6個を、トラバース
のピツチを20mm/1回転として合糸し、3000フイ
ラメントとして、10メツシユ(空間率55%)のス
テンレス製の金網ボビンに巻き取つた。
Six bobbins wound with pitch fibers were combined with a traverse pitch of 20 mm/rotation, and wound as a 3000 filament onto a stainless steel wire mesh bobbin with 10 meshes (55% void ratio).

合糸時に、25℃で40cstのメチルフエニルポリ
シロキサン0.5重量%と、イソプロピルアルコー
ル99.5重量%とを混合した油剤を付与した。
At the time of yarn doubling, an oil agent containing 0.5% by weight of 40 cst methylphenyl polysiloxane and 99.5% by weight of isopropyl alcohol was applied at 25°C.

このようにして得たボビン巻のピツチ繊維をボ
ビンから解舒(巻戻)しつつ、炉入口温度150℃、
最高温度270℃の空気雰囲気のフアン付強制熱風
循環の連続不融化炉に導入した。温度150℃から
270℃まで10℃/分で昇温し、270℃で30分間保持
した。処理時間は、150分であつた。この間、炉
内雰囲気を新しい空気で0.5回/分の割合で置換
した。
While unwinding (unwinding) the bobbin-wound pitch fiber obtained in this way from the bobbin, the furnace inlet temperature was set at 150°C.
It was introduced into a continuous infusibility furnace with forced hot air circulation equipped with a fan in an air atmosphere with a maximum temperature of 270°C. Temperature from 150℃
The temperature was raised to 270°C at a rate of 10°C/min and held at 270°C for 30 minutes. The treatment time was 150 minutes. During this time, the atmosphere in the furnace was replaced with fresh air at a rate of 0.5 times/minute.

不融化時の風速は、0.7m/秒、繊維束にかけ
た張力は、0.007g/1フイラメント当りであつ
た。
The wind speed during infusibility was 0.7 m/sec, and the tension applied to the fiber bundle was 0.007 g/filament.

不融化処理の終了後、合糸に用いたのと同じ油
剤を付与し、一旦ボビンに巻き取つた。このボビ
ンを、第1次の熱処理を行う連続焼成炉の前にセ
ツトした。
After the infusibility treatment was completed, the same oil agent used for doubling was applied, and the yarn was once wound onto a bobbin. This bobbin was set in front of a continuous firing furnace for performing the first heat treatment.

この糸巻を、解舒しつつ、連続的に線状で第1
次の熱処理、第2次の熱処理を行つたが、この
間、ボビンからの糸巻の解舒は、円滑に行われ
た。
While unwinding this bobbin, the first
The next heat treatment, the second heat treatment, was carried out, and during this time the thread was unwound from the bobbin smoothly.

第1次の熱処理は、炉入口温度300℃、最高温
度800℃の窒素ガス雰囲気の連続焼成炉で行つた。
昇温速度は200℃/分、通糸速度は1m/分で行
つた。第2次の熱処理は、窒素ガス雰囲気で、最
高温度1500℃で行い、この時の昇温速度は500
℃/分、通糸速度は1m/分であつた。第2次の
熱処理炉の出口で巻き取り、炭素繊維を得た。通
糸中の張力は1フイラメント当り、0.01gで行つ
た。得られた炭素繊維の引張強度は2.5GPa、引
張弾性率は260GPaであり、糸径は9.9μmであつ
た。
The first heat treatment was performed in a continuous firing furnace in a nitrogen gas atmosphere with a furnace inlet temperature of 300°C and a maximum temperature of 800°C.
The temperature increase rate was 200° C./min, and the threading speed was 1 m/min. The second heat treatment is performed in a nitrogen gas atmosphere at a maximum temperature of 1500℃, and the temperature increase rate at this time is 500℃.
The threading speed was 1 m/min. It was wound up at the exit of the second heat treatment furnace to obtain carbon fiber. The tension during threading was 0.01 g per filament. The obtained carbon fiber had a tensile strength of 2.5 GPa, a tensile modulus of 260 GPa, and a thread diameter of 9.9 μm.

実施例 2 第2次の熱処理を2500℃、アルゴンガス雰囲気
で行つた他は実施例1と同様にして黒鉛繊維を得
た。得られた黒鉛繊維の引張強度は、2.4GPa、
引張弾性は650GPaとなり、糸径は9.7μmであつ
た。
Example 2 Graphite fibers were obtained in the same manner as in Example 1, except that the second heat treatment was performed at 2500° C. in an argon gas atmosphere. The tensile strength of the graphite fiber obtained is 2.4GPa,
The tensile elasticity was 650 GPa, and the thread diameter was 9.7 μm.

このようにして得た炭素繊維、黒鉛繊維は、そ
の巻戻し、巻取り、合糸等は自在に行うことがで
きた。
The carbon fibers and graphite fibers obtained in this way could be unwound, wound up, doubled, etc. as desired.

比較例 1 合糸を行わなかつた他は、実施例1と同様に処
理した。このようにして得たピツチ繊維は、不融
化中、炉内で繊維束が切断し、長い不融化繊維を
得ることができなかつた。
Comparative Example 1 The same process as in Example 1 was carried out except that the yarns were not doubled. The fiber bundles of the thus obtained pitch fibers were cut in the furnace during infusibility, making it impossible to obtain long infusible fibers.

比較例 2 合糸時に、耐熱性油剤をつけなかつた他は、実
施例1と同様に処理した。この場合、連続不融化
炉中で繊維束の切断が頻繁に起こり、長い繊維を
得ることができなかつた。
Comparative Example 2 The same process as in Example 1 was carried out except that no heat-resistant oil was applied during the yarn doubling. In this case, the fiber bundles were frequently cut in the continuous infusibility furnace, making it impossible to obtain long fibers.

Claims (1)

【特許請求の範囲】 1 炭素質ピツチを溶融紡糸し、紡糸されたピツ
チ繊維を合糸し、酸化雰囲気で繊維束を連続的に
線状で通して不融化を行い、1800℃以下の非酸化
性ガス雰囲気で第1次の熱処理を行い、次いで
3000℃以下の不活性ガス雰囲気で第2次の熱処理
をすることにより炭化又は黒鉛化処理するに際
し、不融化前の繊維に耐熱性油剤を付与する炭素
繊維及び黒鉛繊維の製造方法であつて、前記紡糸
後のピツチ繊維のフイラメント数が50〜1000フイ
ラメントであり、合糸後のピツチ繊維のフイラメ
ント数が200〜50000フイラメントであることを特
徴とする炭素繊維及び黒鉛繊維の製造方法。 2 合糸時のトラバースを5〜100mm/(ボビン
1回転)とすることを特徴とする特許請求の範囲
第1項に記載の炭素繊維及び黒鉛繊維の製造方
法。 3 合糸時、1m当たり0.1〜30回の撚りをかけ
ることを特徴とする特許請求の範囲第1項に記載
の炭素繊維及び黒鉛繊維の製造方法。 4 合糸したピツチ繊維に付与する耐熱性油剤が
25℃で10〜1000cstの粘度を有するアルキルフエ
ニルポリシロキサン及び/又はジアルキルポリシ
ロキサンと、沸点160℃以下の低沸点シリコーン
油及び/又はアルコール類との混合物であること
を特徴とする特許請求の範囲第1項に記載の炭素
繊維及び黒鉛繊維の製造方法。 5 アルキルフエニルポリシロキサンがフエニル
基を5モル%〜80モル%含有することを特徴とす
る特許請求の範囲第4項に記載の炭素繊維及び黒
鉛繊維の製造方法。 6 アルキル基がメチル基、エチル基、プロピル
基の何れかである特許請求の範囲第4項又は第5
項に記載の炭素繊維及び黒鉛繊維の製造方法。 7 アルコール類が、炭素数2〜8の、アルカノ
ール−1、アルカノール−2及び不飽和第1アル
コールの中から選択された少なくとも1種のアル
コールであることを特徴とする特許請求の範囲第
4項に記載の炭素繊維及び黒鉛繊維の製造方法。 8 耐熱性油剤中に、アミン類、有機セレン化合
物、フエノール類から選択された少なくとも1種
の酸化防止剤を含むことを特徴とする特許請求の
範囲第4項乃至第7項の何れかに記載の炭素繊維
及び黒鉛繊維の製造方法。 9 酸化防止剤が、フエニル−α−ナフチルアミ
ン、ジラウリルセレナイド、フエノチアジン、鉄
オクトレートの中から選択された1種又は2種以
上の混合物であることを特徴とする特許請求の範
囲第8項に記載の炭素繊維及び黒鉛繊維の製造方
法。 10 不融化処理を150℃〜400℃の温度範囲で、
且つ空気、酸素又は、空気と酸素若しくは空気と
窒素の混合ガス雰囲気下で行うことを特徴とする
特許請求の範囲第1項に記載の炭素繊維及び黒鉛
繊維の製造方法。 11 酸化性ガスを含有した雰囲気下で不融化を
行うことを特徴とする特許請求の範囲第1項に記
載の炭素繊維及び黒鉛繊維の製造方法。 12 酸化性ガスが、ハロゲン、NO2、SO2
SO3及びオゾンの中から選択された少なくとも1
種であることを特徴とする特許請求の範囲第1項
に記載の炭素繊維及び黒鉛繊維の製造方法。 13 不融化雰囲気ガスを0.1〜5回/分の割合
で流通置換することを特徴とする特許請求の範囲
第1項に記載の炭素繊維及び黒鉛繊維の製造方
法。 14 不融化雰囲気を、風速が0.1〜10m/秒の
速度となるように強制撹拌することを特徴とする
特許請求の範囲第1項に記載の炭素繊維及び黒鉛
繊維の製造方法。 15 不融化時に、繊維に張力をかけることを特
徴とする特許請求の範囲第1項に記載の炭素繊維
及び黒鉛繊維の製造方法。 16 不融化後のピツチ繊維に耐熱性油剤を付与
した後熱処理することを特徴とする特許請求の範
囲第1項に記載の炭素繊維及び黒鉛繊維の製造方
法。 17 第1次の熱処理を、窒素ガス及び/又はア
ルゴンガスの雰囲気下で行うことを特徴とする特
許請求の範囲第1項〜第16項の何れかに記載の
炭素繊維及び黒鉛繊維の製造方法。 18 雰囲気ガスを0.05〜1回/分の割合で流通
置換することを特徴とする特許請求の範囲第17
項に記載の炭素繊維及び黒鉛繊維の製造方法。 19 第1次の熱処理における最高温度が、600
〜1500℃である特許請求の範囲第1項に記載の炭
素繊維及び黒鉛繊維の製造方法。 20 第1次の熱処理開始温度が、400℃以下で
あり、該開始温度から第1次の熱処理の最高温度
までの昇温速度が20〜2000℃/分であることを特
徴とする特許請求の範囲第1項に記載の炭素繊維
及び黒鉛繊維の製造方法。 21 第1次の熱処理の昇温速度が50〜5000℃/
分であることを特徴とする特許請求の範囲第20
項に記載の炭素繊維及び黒鉛繊維の製造方法。 22 第1次の熱処理を、1フイラメント当り
0.001〜0.2gの張力をかけながら焼成することを
特徴とする特許請求の範囲第1項に記載の炭素繊
維及び黒鉛繊維の製造方法。 23 第2次の熱処理をアルゴンガス及び/又は
窒素ガスの雰囲気下で行うことを特徴とする特許
請求の範囲第1項に記載の炭素繊維及び黒鉛繊維
の製造方法。 24 第2次の熱処理の雰囲気ガスを0.05〜1
回/分の割合で流通置換することを特徴とする特
許請求の範囲第23項に記載の炭素繊維及び黒鉛
繊維の製造方法。 25 第2次の熱処理における最高温度が、1000
〜3000℃であることを特徴とする特許請求の範囲
第1項に記載の炭素繊維及び黒鉛繊維の製造方
法。 26 第2次の熱処理開始温度が、1000℃以下で
あり、該開始温度から第2次の熱処理の最高温度
迄の昇温速度が100〜2000℃/分であることを特
徴とする特許請求の範囲第1項に記載の炭素繊維
及び黒鉛繊維の製造方法。 27 第2次の熱処理を、1フイラメント当り
0.001〜0.2gの張力をかけながら焼成することを
特徴とする特許請求の範囲第1項に記載の炭素繊
維及び黒鉛繊維の製造方法。 28 炭素質ピツチが、光学的異方性炭素質ピツ
リが約95%以上の光学的異方性相を含有する光学
的異方性ピツチであり、且つ軟化点が約230〜320
℃であることを特徴とする特許請求の範囲第1項
に記載の炭素繊維及び黒鉛繊維の製造方法。
[Scope of Claims] 1. Carbonaceous pitch is melt-spun, the spun pitch fibers are combined, and the fiber bundle is passed continuously in a linear manner in an oxidizing atmosphere to make it infusible. The first heat treatment is performed in a toxic gas atmosphere, and then
A method for producing carbon fibers and graphite fibers, in which a heat-resistant oil agent is applied to fibers before infusibility during carbonization or graphitization treatment by performing a second heat treatment in an inert gas atmosphere at 3000 ° C. or less, A method for producing carbon fibers and graphite fibers, characterized in that the pitch fibers after spinning have a filament number of 50 to 1000 filaments, and the pitch fibers after spinning have a filament number of 200 to 50,000 filaments. 2. The method for producing carbon fibers and graphite fibers according to claim 1, characterized in that the traverse during doubling is 5 to 100 mm/(one rotation of the bobbin). 3. The method for producing carbon fibers and graphite fibers according to claim 1, characterized in that the yarns are twisted 0.1 to 30 times per meter during doubling. 4 The heat-resistant oil agent applied to the doubled Pituchi fibers
A patent claim characterized in that it is a mixture of an alkylphenyl polysiloxane and/or a dialkyl polysiloxane having a viscosity of 10 to 1000 cst at 25°C, and a low-boiling silicone oil and/or an alcohol having a boiling point of 160°C or less. A method for producing carbon fibers and graphite fibers according to scope 1. 5. The method for producing carbon fibers and graphite fibers according to claim 4, wherein the alkyl phenyl polysiloxane contains 5 mol% to 80 mol% of phenyl groups. 6 Claim 4 or 5 in which the alkyl group is any of methyl, ethyl, and propyl groups
The method for producing carbon fibers and graphite fibers as described in 2. 7. Claim 4, characterized in that the alcohol is at least one alcohol selected from alkanol-1, alkanol-2, and unsaturated primary alcohols having 2 to 8 carbon atoms. The method for producing carbon fiber and graphite fiber described in . 8. According to any one of claims 4 to 7, the heat-resistant oil agent contains at least one antioxidant selected from amines, organic selenium compounds, and phenols. A method for producing carbon fiber and graphite fiber. 9. Claim 8, characterized in that the antioxidant is one or a mixture of two or more selected from phenyl-α-naphthylamine, dilaurylselenide, phenothiazine, and iron octolate. The method for producing carbon fiber and graphite fiber described in . 10 Infusibility treatment at a temperature range of 150°C to 400°C,
The method for producing carbon fibers and graphite fibers according to claim 1, wherein the method is carried out in an atmosphere of air, oxygen, or a mixed gas of air and oxygen or air and nitrogen. 11. The method for producing carbon fibers and graphite fibers according to claim 1, wherein the infusibility is carried out in an atmosphere containing an oxidizing gas. 12 The oxidizing gas is halogen, NO 2 , SO 2 ,
At least one selected from SO 3 and ozone
The method for producing carbon fibers and graphite fibers according to claim 1, wherein the carbon fibers and graphite fibers are seeds. 13. The method for producing carbon fibers and graphite fibers according to claim 1, characterized in that the infusible atmosphere gas is circulated and replaced at a rate of 0.1 to 5 times/minute. 14. The method for producing carbon fibers and graphite fibers according to claim 1, wherein the infusible atmosphere is forcibly stirred at a wind speed of 0.1 to 10 m/sec. 15. The method for producing carbon fibers and graphite fibers according to claim 1, which comprises applying tension to the fibers during infusibility. 16. The method for producing carbon fibers and graphite fibers according to claim 1, which comprises applying a heat-resistant oil to the infusible pitch fibers and then heat-treating them. 17. The method for producing carbon fibers and graphite fibers according to any one of claims 1 to 16, characterized in that the first heat treatment is performed in an atmosphere of nitrogen gas and/or argon gas. . 18 Claim 17, characterized in that atmospheric gas is circulated and replaced at a rate of 0.05 to 1 time/min.
The method for producing carbon fibers and graphite fibers as described in 2. 19 The maximum temperature in the first heat treatment is 600
The method for producing carbon fibers and graphite fibers according to claim 1, wherein the temperature is 1500°C. 20 The first heat treatment start temperature is 400°C or less, and the temperature increase rate from the start temperature to the maximum temperature of the first heat treatment is 20 to 2000°C/min. A method for producing carbon fibers and graphite fibers according to scope 1. 21 The temperature increase rate of the first heat treatment is 50 to 5000℃/
Claim 20, characterized in that
The method for producing carbon fibers and graphite fibers as described in 2. 22 First heat treatment per filament
The method for producing carbon fibers and graphite fibers according to claim 1, characterized in that firing is performed while applying a tension of 0.001 to 0.2 g. 23. The method for producing carbon fibers and graphite fibers according to claim 1, wherein the second heat treatment is performed in an atmosphere of argon gas and/or nitrogen gas. 24 Adjust the atmospheric gas for the second heat treatment to 0.05 to 1
24. The method for producing carbon fibers and graphite fibers according to claim 23, characterized in that the exchange is carried out at a rate of times/minute. 25 The maximum temperature in the second heat treatment is 1000
The method for producing carbon fibers and graphite fibers according to claim 1, wherein the temperature is 3000°C. 26 A patent claim characterized in that the start temperature of the second heat treatment is 1000°C or less, and the temperature increase rate from the start temperature to the maximum temperature of the second heat treatment is 100 to 2000°C/min. A method for producing carbon fibers and graphite fibers according to scope 1. 27 Second heat treatment per filament
The method for producing carbon fibers and graphite fibers according to claim 1, characterized in that firing is performed while applying a tension of 0.001 to 0.2 g. 28 The carbonaceous pitch is an optically anisotropic pitch containing about 95% or more of an optically anisotropic phase, and has a softening point of about 230 to 320.
The method for producing carbon fibers and graphite fibers according to claim 1, wherein the temperature is .degree.
JP2835686A 1986-02-10 1986-02-10 Production of carbon yarn and graphite yarn Granted JPS62184125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2835686A JPS62184125A (en) 1986-02-10 1986-02-10 Production of carbon yarn and graphite yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2835686A JPS62184125A (en) 1986-02-10 1986-02-10 Production of carbon yarn and graphite yarn

Publications (2)

Publication Number Publication Date
JPS62184125A JPS62184125A (en) 1987-08-12
JPH043453B2 true JPH043453B2 (en) 1992-01-23

Family

ID=12246328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2835686A Granted JPS62184125A (en) 1986-02-10 1986-02-10 Production of carbon yarn and graphite yarn

Country Status (1)

Country Link
JP (1) JPS62184125A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2930166B2 (en) * 1992-09-04 1999-08-03 新日本製鐵株式会社 Carbon fiber production method
JP2930167B2 (en) * 1992-09-04 1999-08-03 新日本製鐵株式会社 Carbon fiber production method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571819A (en) * 1978-11-24 1980-05-30 Showa Denko Kk Production of carbon fiber
JPS59150114A (en) * 1983-02-10 1984-08-28 Nippon Steel Corp Production of continuous filaments of pitch carbon
JPS59223315A (en) * 1983-05-27 1984-12-15 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber
JPS6021910A (en) * 1983-07-11 1985-02-04 Nippon Steel Corp Method for continuous heat treatment of pitch fiber bundle
JPS6088125A (en) * 1983-10-14 1985-05-17 Nippon Oil Co Ltd Production of pitch based graphitized fiber
JPS6089124A (en) * 1983-10-20 1985-05-20 Sanyo Electric Co Ltd Power application control circuit
JPS60246819A (en) * 1984-05-16 1985-12-06 Mitsubishi Chem Ind Ltd Preparation of carbon yarn of pitch type
JPS60259629A (en) * 1984-05-31 1985-12-21 Nippon Oil Co Ltd Production of graphitized pitch fiber
JPH043452A (en) * 1990-04-20 1992-01-08 Toshiba Corp Resin sealed semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5571819A (en) * 1978-11-24 1980-05-30 Showa Denko Kk Production of carbon fiber
JPS59150114A (en) * 1983-02-10 1984-08-28 Nippon Steel Corp Production of continuous filaments of pitch carbon
JPS59223315A (en) * 1983-05-27 1984-12-15 Mitsubishi Chem Ind Ltd Production of pitch based carbon fiber
JPS6021910A (en) * 1983-07-11 1985-02-04 Nippon Steel Corp Method for continuous heat treatment of pitch fiber bundle
JPS6088125A (en) * 1983-10-14 1985-05-17 Nippon Oil Co Ltd Production of pitch based graphitized fiber
JPS6089124A (en) * 1983-10-20 1985-05-20 Sanyo Electric Co Ltd Power application control circuit
JPS60246819A (en) * 1984-05-16 1985-12-06 Mitsubishi Chem Ind Ltd Preparation of carbon yarn of pitch type
JPS60259629A (en) * 1984-05-31 1985-12-21 Nippon Oil Co Ltd Production of graphitized pitch fiber
JPH043452A (en) * 1990-04-20 1992-01-08 Toshiba Corp Resin sealed semiconductor device

Also Published As

Publication number Publication date
JPS62184125A (en) 1987-08-12

Similar Documents

Publication Publication Date Title
JPS63264917A (en) Production of carbon fiber and graphite fiber
JPS60173121A (en) Production of carbon yarn and graphite yarn
JPH043453B2 (en)
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPS62191515A (en) Production of carbon fiber and graphite fiber
JPH043452B2 (en)
JPH0674528B2 (en) Method for producing carbon fiber and graphite fiber
JPS62289616A (en) Production of carbon and graphite fiber
JPH026619A (en) Production of carbon fiber and graphite fiber
JPS62156315A (en) Production of carbon fiber and graphite fiber
JPS62184124A (en) Production of carbon yarn and graphite yarn
JPH0291223A (en) Production of carbon fiber yarn and graphite yarn
JPH01246420A (en) Production of carbon yarn and graphite yarn
JPS62191520A (en) Production of carbon fiber and graphite fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPS62133122A (en) Production of carbon fiber and graphite fiber
JPS62191516A (en) Production of carbon fiber and graphite fiber
JPH038809A (en) Production of carbon fiber and graphite fiber
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04257322A (en) Production of pitch carbon fiber and graphite fiber
JPH0491228A (en) Production of pitch-based carbon fiber
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production