JPH04257322A - Production of pitch carbon fiber and graphite fiber - Google Patents

Production of pitch carbon fiber and graphite fiber

Info

Publication number
JPH04257322A
JPH04257322A JP41654190A JP41654190A JPH04257322A JP H04257322 A JPH04257322 A JP H04257322A JP 41654190 A JP41654190 A JP 41654190A JP 41654190 A JP41654190 A JP 41654190A JP H04257322 A JPH04257322 A JP H04257322A
Authority
JP
Japan
Prior art keywords
fiber bundle
temperature
fiber
infusible
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP41654190A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
小峰 喜久治
Takashi Hino
日野 隆
Kiyotoshi Mase
間瀬 清年
Masaharu Yamamoto
雅晴 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP41654190A priority Critical patent/JPH04257322A/en
Publication of JPH04257322A publication Critical patent/JPH04257322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To provide a method for producing pitch carbon fibers, capable of obtaining the carbon fibers improved in the tensile strength, tensile elastic modulus and compression strength, while preventing the breakage and fuzzing of an infusible fiber strand in a preliminary carbonization oven. CONSTITUTION:Before an infusible fiber stand is preliminarily carbonized, the fiber stand is thermally treated at temperatures 30-100 deg.C lower than the melt-breaking temperature of the infusible fiber stand and raised at a rate of 100-5000 deg.C/min for a short time of 1-300 sec, and simultaneously drawn in a drawing rate of 5-100%. The thermal treatment and the simultaneous drawing treatment prevent the breakage and fuzzing of the infusible fiber stand in a preliminary carbonization oven, improve the yield of the preliminary carbonization, the tensile strength, tensile elastic modulus and compression strength of the finally obtained carbon fiber strand.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、一般には炭素繊維(本
明細書にて「炭素繊維」とは特に明記しない場合には炭
素繊維のみならず黒鉛繊維をも含めて使用する。)の製
造方法に関するものであり、特に種々の炭素質ピッチか
ら炭素繊維を極めて効率よく且つ多量に製造する方法に
関するものである。
[Industrial Application Field] The present invention generally relates to the production of carbon fibers (in this specification, unless otherwise specified, "carbon fibers" is used to include not only carbon fibers but also graphite fibers). The present invention relates to a method for producing carbon fibers from various carbonaceous pitches in a highly efficient manner and in large quantities.

【0002】0002

【従来の技術】石油系ピッチ、石炭系ピッチ等の炭素質
ピッチから製造されるピッチ系炭素繊維は、現在最も多
量に製造されているレ−ヨン系やPAN系の炭素繊維に
比較して炭化収率が高く、弾性率等の物理的特性も優れ
ており、更に低コストにて製造し得るという利点を有し
ているために近年注目を浴びている。
[Prior Art] Pitch-based carbon fibers manufactured from carbonaceous pitches such as petroleum-based pitch and coal-based pitch are more carbonized than rayon-based and PAN-based carbon fibers, which are currently produced in large quantities. It has attracted attention in recent years because it has the advantages of high yield, excellent physical properties such as elastic modulus, and can be manufactured at low cost.

【0003】現在、ピッチ系炭素繊維は、(1)石油系
ピッチ、石炭系ピッチ等から炭素繊維に適した炭素質ピ
ッチを調製し、該炭素質ピッチを加熱溶融して紡糸機に
て紡糸し、集束してピッチ繊維束を製造し、(2)前記
ピッチ繊維束を不融化炉にて酸化性雰囲気下にて150
〜350℃までに加熱して不融化し、(3)次いで、不
融化された繊維束を炭化炉にて不活性雰囲気下にて30
00℃以下にまで加熱して炭化或は黒鉛化すること、に
より製造されている。
[0003]Currently, pitch-based carbon fibers are produced by (1) preparing carbonaceous pitch suitable for carbon fiber from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, and spinning it with a spinning machine. (2) The pitch fiber bundle is heated in an infusible furnace under an oxidizing atmosphere for 150 min.
(3) Then, the infusible fiber bundle was heated to ~350°C in an inert atmosphere for 30 minutes.
It is manufactured by heating to below 00°C to carbonize or graphitize.

【0004】しかしながら、従来の技術によっては、ピ
ッチ繊維、不融化繊維の引張強度が約0.01GPaと
小さい上、脆いためにその取扱いが難しく、高性能製品
を得るのに必要なロングフィラメント状の繊維を安定し
て多量に得ることが極めて困難であった。
However, with conventional techniques, pitch fibers and infusible fibers have a low tensile strength of about 0.01 GPa and are brittle, making them difficult to handle. It has been extremely difficult to stably obtain fibers in large quantities.

【0005】これらの問題解決方法の一つとして、本発
明者等は、炭素質ピッチを紡糸して得たピッチ繊維を合
糸してストレート系油剤を付与することによって繊維束
の強さを強くした上で、酸素濃度が30%以上の富酸素
ガス中で、繊維束を連続的に線状で通して不融化する方
法を提案した(特開昭63−264917号を参照せよ
)。
[0005] As one method for solving these problems, the present inventors have strengthened the strength of the fiber bundle by doubling pitch fibers obtained by spinning carbonaceous pitch and applying a straight oil. Then, they proposed a method of infusible fiber bundles by passing them continuously in a line in an oxygen-rich gas having an oxygen concentration of 30% or more (see JP-A No. 63-264917).

【0006】[0006]

【発明が解決しようとする課題】ところで、不融化繊維
束の予備炭化の工程で不融化繊維束を延伸できれば、こ
れを炭素繊維にしたときに、引張強度、引張弾性率及び
圧縮強度を向上できる可能性があるが、通糸する不融化
繊維束が約0.01GPaと脆弱であるため、従来、不
融化繊維束の延伸処理は困難であった。
[Problem to be Solved by the Invention] By the way, if the infusible fiber bundle can be drawn in the process of preliminary carbonization of the infusible fiber bundle, the tensile strength, tensile modulus, and compressive strength can be improved when the infusible fiber bundle is made into carbon fiber. Although this is a possibility, the infusible fiber bundle to be threaded is weak at about 0.01 GPa, so it has been difficult to draw the infusible fiber bundle in the past.

【0007】又不融化繊維束を、化学的に不活性なアル
ゴン又は窒素ガスなどの雰囲気中で500〜1000℃
まで昇温して初期の炭化を行なう予備炭化工程に、線状
で通した場合には、特開昭59−15517号に開示さ
れるように、繊維束の温度が700〜800℃の温度に
達するまでに、繊維束の強さが室温下の強さより大幅に
減少し、予備炭化処理中に炉内で繊維束が切断し、毛羽
立ち易いという大きな欠点があった。
[0007] The infusible fiber bundle is heated at 500 to 1000°C in a chemically inert atmosphere such as argon or nitrogen gas.
When the fiber bundle is passed through a preliminary carbonization process in which the temperature is raised to 700 to 800°C, as disclosed in JP-A-59-15517, By this time, the strength of the fiber bundles had significantly decreased compared to the strength at room temperature, and the fiber bundles were likely to break in the furnace during the preliminary carbonization process, resulting in a major drawback in that they were likely to become fluffy.

【0008】上記特開昭63−264917号に記載の
発明も、この問題点を根本的に解決し得るものではなく
、予備炭化炉において不融化繊維束の炉内断糸が頻繁に
発生し、通糸歩留りが低下し、毛羽立ち易いという問題
があった。
The invention described in JP-A No. 63-264917 cannot fundamentally solve this problem, and breaks of the infusible fiber bundles frequently occur in the pre-carbonizing furnace. There were problems in that the yarn threading yield was low and the yarn was easily fluffed.

【0009】更に、1本の不融化繊維束は、100〜1
00000本のフィラメントが集束されて構成された繊
維束の形態とされており、従って、予備炭化に際して、
各フィラメントが融着したり、膠着したりする度合いが
大となり、製品である焼成処理後の炭素繊維の品質に問
題を生じるという大きな欠点が発生した。
Furthermore, one infusible fiber bundle has 100 to 1
It is in the form of a fiber bundle composed of 00,000 filaments, and therefore, during preliminary carbonization,
A major drawback occurred in that each filament was fused or stuck to a large degree, causing a problem in the quality of the carbon fiber product after firing treatment.

【0010】本発明者等は、連続焼成プロセスにおいて
炭素繊維を製造する方法を研究する過程で、不活性ガス
雰囲気下で予備炭化をする際に、不融化繊維束の溶融破
断温度より30〜100℃低い温度まで急速に昇温して
、繊維束を短時間の熱処理しながら同時に延伸処理する
ことにより、得られる炭素繊維の物性、即ち引張強及び
引張弾性率が飛躍的に向上し、又圧縮強度も増大するこ
とを見出した。
[0010] In the process of researching a method for producing carbon fibers using a continuous firing process, the present inventors discovered that when performing preliminary carbonization in an inert gas atmosphere, the By rapidly raising the temperature to a low temperature of °C and simultaneously drawing the fiber bundle while heat treating it for a short time, the physical properties of the resulting carbon fibers, namely tensile strength and tensile modulus, are dramatically improved, and the compression It was found that the strength also increases.

【0011】更に驚いたことには、上記のような条件の
熱処理及びこれと同時の延伸処理(以下、必要に応じて
延伸熱処理という)を行なった場合には、処理時の繊維
束の炉内での断糸も回避することができ、予備炭化の際
の歩留りも向上できることが分かった。
What is even more surprising is that when the heat treatment under the above conditions and the simultaneous drawing treatment (hereinafter referred to as drawing heat treatment) are carried out, the temperature of the fiber bundle inside the furnace during the treatment is It was found that it was possible to avoid yarn breakage during the process, and that the yield during preliminary carbonization could also be improved.

【0012】本発明は、斯る新規な知見に基づきなされ
たものである。
The present invention has been made based on this new finding.

【0013】従って、本発明の目的は、不融化繊維の予
備炭化炉内での断糸を防止し、繊維束を効果的に延伸処
理することにより、高引張強度、高引張弾性率及び高圧
縮強度を有した高品質の炭素繊維を製造するためのピッ
チ系炭素繊維の製造方法を提供することである。
Therefore, an object of the present invention is to prevent fiber breakage of infusible fibers in a pre-carbonization furnace and to effectively draw fiber bundles, thereby achieving high tensile strength, high tensile modulus and high compression. An object of the present invention is to provide a method for producing pitch-based carbon fibers for producing high-quality carbon fibers having strength.

【0014】[0014]

【課題を解決するための手段】上記目的は本発明に係る
ピッチ系炭素繊維及び黒鉛繊維の製造方法にて達成され
る。要約すれば本発明は、紡糸、集束されたピッチ繊維
束を不融化し、前記不融化された不融化繊維束を予備炭
化し、然る後に炭化し、必要に応じて更に黒鉛化するこ
とからなるピッチ系炭素繊維及び黒鉛繊維の製造方法に
おいて、前記不融化繊維束を予備炭化する際に、不活性
ガス雰囲気中で繊維束の溶融破断温度よりも30〜10
0℃低い温度まで100〜5000℃/分の速度で昇温
して、繊維束を1〜300秒の極く短時間で熱処理しな
がら同時に延伸率5〜100%の延伸処理することによ
り、繊維束の予備炭化をすることを特徴とするピッチ系
炭素繊維及び黒鉛繊維の製造方法である。
[Means for Solving the Problems] The above objects are achieved by a method for producing pitch-based carbon fibers and graphite fibers according to the present invention. In summary, the present invention comprises infusibleizing a spun and bundled pitch fiber bundle, pre-carbonizing the infusible infusible fiber bundle, then carbonizing it, and further graphitizing it if necessary. In the method for producing pitch-based carbon fibers and graphite fibers, when pre-carbonizing the infusible fiber bundle, the temperature is 30 to 10% lower than the melting and breaking temperature of the fiber bundle in an inert gas atmosphere.
By heating the fiber bundle at a rate of 100-5000°C/min to a temperature lower than 0°C and heat-treating the fiber bundle in a very short time of 1-300 seconds, the fibers are simultaneously stretched at a stretching rate of 5-100%. This is a method for producing pitch-based carbon fibers and graphite fibers, which is characterized by pre-carbonizing a bundle.

【0015】尚、繊維束の溶融破断温度とは、窒素雰囲
気の一定温度(例えば400℃)に保持された加熱部長
さ2mの炉に繊維束を10m/分で通糸して(繊維束の
昇温速度5000℃/分に相当)、繊維の溶融により繊
維束が切断する温度をいう。繊維束の溶融破断温度は、
切断した繊維束を目視により観察して繊維に溶融が認め
られたときの温度として得ることができるが、正確には
走査型電子顕微鏡による観察で繊維の溶融を認めたとき
の温度として求められる。
The melting and breaking temperature of the fiber bundle is determined by passing the fiber bundle through a furnace with a heating section length of 2 m maintained at a constant temperature (for example, 400° C.) in a nitrogen atmosphere at a rate of 10 m/min. (equivalent to a heating rate of 5000°C/min), which is the temperature at which the fiber bundle is cut by melting the fibers. The melting and breaking temperature of the fiber bundle is
It can be obtained as the temperature at which melting of the fibers is observed by visually observing a cut fiber bundle, but more precisely, it is determined as the temperature at which melting of the fibers is observed by observation with a scanning electron microscope.

【0016】又昇温速度とは、炉の入り口温度から炉の
均熱部温度に繊維束が到達する時間から求めた値をいう
[0016] The temperature increase rate is a value determined from the time it takes for the fiber bundle to reach the temperature at the soaking section of the furnace from the temperature at the entrance of the furnace.

【0017】本発明においては、繊維束の溶融破断温度
よりも30〜100℃低い温度まで急速に昇温して、熱
処理及びこれと同時の延伸処理からなる短時間の延伸熱
処理をするが、好ましくは溶融破断温度よりも40〜8
0℃低い温度までの昇温とすることがよい。又昇温速度
は100〜5000℃/分の速度が用いられるが、好ま
しくは500〜4000℃/分である。
In the present invention, the temperature is rapidly raised to a temperature 30 to 100° C. lower than the melt-break temperature of the fiber bundle, and a short-time drawing heat treatment is performed, which consists of heat treatment and simultaneous drawing treatment. is 40~8 higher than the melt rupture temperature.
It is preferable to raise the temperature to a temperature 0°C lower. As for the temperature increase rate, a rate of 100 to 5000°C/min is used, preferably 500 to 4000°C/min.

【0018】本発明によれば、上記のように、不活性ガ
ス雰囲気下で予備炭化する際、繊維束の溶融破断温度よ
りも30〜100℃低い温度まで急速に昇温して、短時
間の熱処理及び延伸処理するので、得られる炭素繊維の
物性は、引張強度及び引張弾性率が飛躍的に向上し、又
圧縮強度も増大したものになる。
According to the present invention, as described above, during preliminary carbonization in an inert gas atmosphere, the temperature is rapidly raised to a temperature 30 to 100°C lower than the melting and breaking temperature of the fiber bundle, and the fiber bundle is heated for a short time. Since the heat treatment and stretching treatment are performed, the physical properties of the carbon fiber obtained are such that the tensile strength and tensile modulus are dramatically improved, and the compressive strength is also increased.

【0019】[0019]

【実施例】以下、本発明の実施例について詳細に説明す
る。
[Examples] Examples of the present invention will be described in detail below.

【0020】先ず、炭素質ピッチは当業者には周知の方
法によって紡糸できる。例えば、石油系ピッチ、石炭系
ピッチ、芳香族炭化水素類を原料とするピッチ等の炭素
繊維の製造に適した炭素質ピッチを加熱溶融して1〜2
000本、好ましくは50〜1000本のフィラメント
を紡糸し、各フィラメントには通常使用されているオイ
リングローラを使用して集束剤を付与して、これら多数
のフィラメントを集束し、1本の糸条としてボビンに巻
取られる。
First, carbonaceous pitch can be spun by methods well known to those skilled in the art. For example, by heating and melting carbonaceous pitch suitable for manufacturing carbon fiber, such as petroleum pitch, coal pitch, pitch made from aromatic hydrocarbons, etc.
000 filaments, preferably 50 to 1000 filaments are spun, and a sizing agent is applied to each filament using a commonly used oiling roller to bundle these many filaments into a single yarn. It is wound onto a bobbin.

【0021】集束剤としては、例えば水、エチルアルコ
ール、イソプロピルアルコール、n−プロピルアルコー
ル、ブチルアルコール、等のアルコール類又は粘度5〜
1000cst(25℃)のジメチルポリシロキサン、
アルキルフェニルポリシロキサン等を、低沸点のシリコ
ーン油(ポリシロキサン)又はパラフィン油等の溶剤で
稀釈したもの、又は乳化剤を入れて水に分散させたもの
;同様にグラファイト又はポリエチレングリコールやヒ
ンダードエステル類を分散させたもの;界面活性剤を水
で稀釈したもの;その他通常の繊維、例えばポリエステ
ル繊維に使用される各種油剤の内ピッチ繊維を犯さない
ものを使用することができる。
Examples of the sizing agent include water, alcohols such as ethyl alcohol, isopropyl alcohol, n-propyl alcohol, butyl alcohol, or sizing agents with a viscosity of 5 to 5.
1000cst (25°C) dimethylpolysiloxane,
Alkylphenylpolysiloxane etc. diluted with a low boiling point silicone oil (polysiloxane) or a solvent such as paraffin oil, or dispersed in water with an emulsifier added; Similarly, graphite, polyethylene glycol or hindered esters Dispersions of surfactants; surfactants diluted with water; and other oils that do not harm pitch fibers among the various oils used for ordinary fibers, such as polyester fibers, can be used.

【0022】集束剤のピッチ繊維への付与量は、通常0
.01〜10重量%とされるが、特に0.05〜5重量
%が好ましい。
[0022] The amount of sizing agent applied to the pitch fibers is usually 0.
.. 0.01 to 10% by weight, particularly preferably 0.05 to 5% by weight.

【0023】上述のようにして一旦ボビンに巻取られた
多数のフィラメントから成る糸条は、複数個の、例えば
2〜50個のボビンを同時に解舒することによって、又
は複数回に分けて、例えば1回目は2〜10本を、次い
で残余分をといつたように、解舒合糸を繰返し行なうこ
とによつて、2〜50本の糸条を合束(合糸)し、10
0〜100000本、好ましくは500〜10000本
のフィラメントからピッチ繊維束(以後単に「ピッチ繊
維」という。)が製造され、他のボビンに巻取られる。
[0023] The thread consisting of a large number of filaments once wound onto a bobbin as described above can be unwound by simultaneously unwinding a plurality of bobbins, for example 2 to 50 bobbins, or by dividing it into multiple times. For example, by unwinding and doubling 2 to 10 yarns the first time and then combing the remaining yarn, 2 to 50 yarns are bundled (paired), and 10
A pitch fiber bundle (hereinafter simply referred to as "pitch fiber") is produced from 0 to 100,000 filaments, preferably 500 to 10,000 filaments, and wound onto another bobbin.

【0024】斯る合糸時に、不融化時及び予備炭化時の
処理を考慮してピッチ繊維に耐熱性の油剤が付与される
。耐熱性の油剤としては、アルキルフェニルポリシロキ
サンが好ましく、フェニル基を5〜80%、好ましくは
10〜50%含み、又、アルキル基としてはメチル基、
エチル基、プロピル基が好ましく、同一分子に2種以上
のアルキル基を有していても良い。又、粘度は25℃に
て10〜1000cstのものが使用される。更に後述
するような酸化防止剤を添加することもできる。
At the time of such doubling, a heat-resistant oil agent is applied to the pitch fibers in consideration of treatments during infusibility and preliminary carbonization. As the heat-resistant oil agent, alkylphenylpolysiloxane is preferable, containing 5 to 80%, preferably 10 to 50%, of phenyl groups, and the alkyl groups include methyl groups,
Ethyl groups and propyl groups are preferred, and the same molecule may contain two or more types of alkyl groups. Further, the viscosity used is 10 to 1000 cst at 25°C. Furthermore, an antioxidant as described later can also be added.

【0025】他の好ましい油剤としては、ジメチルポリ
シロキサンに酸化防止剤を入れたものが使用可能であり
、粘度としては25℃で5〜1000cstのものが好
ましい。酸化防止剤としては、アミン類、有機セレン化
合物、フェノール類等、例えばフェニル−α−ナフチル
アミン、ジラウリルセレナイド、フェノチアジン、鉄オ
クトレート等を挙げることができる。これらの酸化防止
剤は、上述したように、更に耐熱性を高める目的で上記
アルキルフェニルポリシロキサンに添加することも可能
である。
Another preferred oil agent that can be used is dimethylpolysiloxane containing an antioxidant, and preferably has a viscosity of 5 to 1000 cst at 25°C. Examples of the antioxidant include amines, organic selenium compounds, phenols, and the like, such as phenyl-α-naphthylamine, dilauryl selenide, phenothiazine, and iron octolate. As mentioned above, these antioxidants can also be added to the alkylphenylpolysiloxane for the purpose of further increasing heat resistance.

【0026】更に、好ましい油剤としては、上記各油剤
を沸点が600℃以下の界面活性剤を用いて、乳化した
ものを使用することもできる。このとき界面活性剤とし
ては、ポリオキシエチレンアルキルエーテル、ポリオキ
シエチレンアルキルエステル、ポリオキシエチレン変性
シリコーン、ポリオキシアルキレン変性シリコーン等を
使用し得る。
[0026] Furthermore, as a preferable oil agent, it is also possible to use one obtained by emulsifying each of the above-mentioned oil agents using a surfactant having a boiling point of 600°C or less. At this time, as the surfactant, polyoxyethylene alkyl ether, polyoxyethylene alkyl ester, polyoxyethylene-modified silicone, polyoxyalkylene-modified silicone, etc. can be used.

【0027】これら油剤は、ローラ接触、スプレー塗布
、泡沫塗布等により、ピッチ繊維に0.01〜10重量
%、好ましくは0.05〜5重量%が付与される。
These oil agents are applied to the pitch fibers in an amount of 0.01 to 10% by weight, preferably 0.05 to 5% by weight, by roller contact, spray coating, foam coating, or the like.

【0028】上述のように、合糸されたピッチ繊維に耐
熱性油剤を付与することにより、該ピッチ繊維は強度が
著しく強くなり糸扱い性が極めて向上する。
As described above, by applying a heat-resistant oil agent to the pitch fibers which have been doubled, the strength of the pitch fibers becomes significantly stronger and the yarn handling properties are greatly improved.

【0029】以上の如くにして製造されたピッチ繊維を
ボビンより解舒して、不融化炉へと送給する。
The pitch fibers produced as described above are unwound from a bobbin and sent to an infusibility furnace.

【0030】不融化炉内の温度は150〜350℃の範
囲内の或る一定温度とすることもできるが、炉入口より
炉出口にかけて150℃から350℃へと次第に増大す
る温度勾配を有するように設定することもできる。
[0030] The temperature inside the infusibility furnace can be set to a certain constant temperature within the range of 150 to 350°C, but it is possible to have a temperature gradient that gradually increases from 150°C to 350°C from the furnace inlet to the furnace outlet. It can also be set to .

【0031】又、不融化炉内は酸化性雰囲気とされ、不
融化炉内には空気、酸素、空気と酸素又は空気と窒素の
混合ガス等の酸化性ガスが供給されるが、好ましいガス
として酸素濃度30〜90%の富酸素ガスが使用される
The inside of the infusibility furnace is made into an oxidizing atmosphere, and an oxidizing gas such as air, oxygen, a mixed gas of air and oxygen, or air and nitrogen is supplied to the inside of the infusibility furnace. Oxygen-rich gas with an oxygen concentration of 30-90% is used.

【0032】本発明に従えば、不融化処理時に、繊維束
には張力をかけずに行なうこともできるが、不融化炉内
での繊維束のたるみによる炉底、炉壁をこすることによ
り生じる引きずり傷の発生防止、及び外観が良く且つ引
張強度、引張弾性率などの炭素繊維の物性の向上のため
に、1フィラメント当たり0.001〜0.2gの張力
をかけながら不融化を行なうことが好ましい。
According to the present invention, the infusibility treatment can be carried out without applying tension to the fiber bundle, but by rubbing the furnace bottom and furnace wall due to slack of the fiber bundle in the infusibility furnace, Infusibility is performed while applying a tension of 0.001 to 0.2 g per filament in order to prevent the occurrence of drag scratches, improve the appearance, and improve the physical properties of carbon fiber such as tensile strength and tensile modulus. is preferred.

【0033】このようにして、不融化繊維束の酸素濃度
が7〜12重量%になるように不融化される。不融化炉
で不融化された不融化繊維束は、上述したように、連続
的に予備炭化炉内に導入され、予備炭化される。
[0033] In this way, the infusible fiber bundle is infusible so that the oxygen concentration becomes 7 to 12% by weight. The infusible fiber bundle that has been infusible in the infusible furnace is continuously introduced into the pre-carbonization furnace and pre-carbonized, as described above.

【0034】予備炭化は、不活性ガス雰囲気下で実施さ
れ、好ましいガスとしては窒素ガス、アルゴンガスが使
用される。予備炭化は300〜1300℃の温度で行な
われるが、本発明では、予備炭化の際、繊維束の溶融破
断温度より30〜100℃低い温度まで100〜500
0℃/分の速度で昇温して、繊維束を1〜300秒の極
く短時間の延伸熱処理する。
Preliminary carbonization is carried out under an inert gas atmosphere, with nitrogen gas and argon gas being preferably used. Pre-carbonization is carried out at a temperature of 300-1300°C, but in the present invention, during pre-carbonization, the temperature is 100-500°C lower than the melt breakage temperature of the fiber bundle.
The fiber bundle is subjected to a drawing heat treatment for a very short time of 1 to 300 seconds by increasing the temperature at a rate of 0° C./min.

【0035】上記の延伸熱処理は、例えば400℃とい
うような定温炉で行なってもよく、炉入り口部から出口
部にかけて300℃、400℃、500℃、600℃、
1100℃というように、段階的に高くした温度が保持
された温度傾斜炉で行なってもよい。
[0035] The above-mentioned stretching heat treatment may be carried out in a constant temperature furnace, for example, at 400°C.
It may be carried out in a temperature gradient furnace in which the temperature is maintained at a stepwise increase, such as 1100°C.

【0036】本発明においては、繊維束の溶融破断温度
よりも30〜100℃低い温度まで急速に昇温して延伸
熱処理するが、好ましくは溶融破断温度より40〜80
℃低い温度がよい。上記の昇温が溶融破断温度より30
℃低い温度を超える高い温度まで行なわれると、繊維束
に融膠着が起こって繊維束が破断するので、好ましくな
い。又上記の昇温が溶融破断温度よりも100℃低い温
度未満の低い温度までであると、繊維束の延伸が困難に
なるので、同様に好ましくない。
In the present invention, the temperature is rapidly raised to a temperature 30 to 100° C. lower than the melt breaking temperature of the fiber bundle, and the stretching heat treatment is preferably carried out at a temperature of 40 to 80° C. lower than the melt breaking temperature of the fiber bundle.
A lower temperature is better. The above temperature increase is 30° above the melting rupture temperature.
If the temperature is higher than a low temperature of .degree. C., it is not preferable because the fiber bundles will fuse and stick together, causing the fiber bundles to break. Furthermore, if the temperature is increased to a low temperature that is less than 100° C. lower than the melt breakage temperature, it becomes difficult to draw the fiber bundle, which is similarly undesirable.

【0037】上記の溶融破断温度よりも30〜100℃
低い温度までの繊維束の昇温速度は、100〜5000
℃/分の速度が用いられるが、好ましくは500〜40
00℃/分である。昇温速度が100℃/分未満の場合
、繊維組織の熱重合や炭化が一部進みながら焼成される
ので十分な延伸ができにくくなり、逆に5000℃/分
を超える場合、昇温が速すぎて繊維束の通糸速度を速め
なければならず、繊維束の巻取り速度に問題が出て来、
やはり好ましくない。
[0037] 30 to 100°C higher than the above melt rupture temperature
The heating rate of the fiber bundle to a low temperature is 100 to 5000
A rate of 500 to 40 °C/min is used, preferably 500 to 40 °C/min.
00°C/min. If the heating rate is less than 100°C/min, the fiber structure will be fired while thermal polymerization and carbonization will partially proceed, making it difficult to draw the fibers sufficiently; Therefore, the threading speed of the fiber bundle had to be increased, which caused problems with the winding speed of the fiber bundle.
I still don't like it.

【0038】延伸熱処理の時間は、1〜300秒が用い
られるが、好ましくは5〜200秒℃の極く短時間であ
るのがよい。
[0038] The time for the stretching heat treatment is 1 to 300 seconds, preferably a very short time of 5 to 200 seconds.

【0039】延伸熱処理における延伸処理は、繊維束に
テンションを付与するか、2つのローラの差動により行
なわれ、いずれの方法によっても達成される。延伸時の
テンションは1フィラメント当たり0.001〜0.2
0gが付与される。
The drawing process in the drawing heat treatment is carried out by applying tension to the fiber bundle or by differentially moving two rollers, and can be achieved by either method. The tension during stretching is 0.001 to 0.2 per filament.
0g is given.

【0040】繊維束の延伸率は5〜100%、好ましく
は10〜80%とするのがよい。延伸率が5%未満では
十分な延伸効果が得られず、又100%を超えると、延
伸による繊維のダメージが多くなるので好ましくない。
The stretching ratio of the fiber bundle is preferably 5 to 100%, preferably 10 to 80%. If the stretching ratio is less than 5%, a sufficient stretching effect cannot be obtained, and if it exceeds 100%, the fibers will be damaged by stretching, which is not preferable.

【0041】延伸熱処理は1回で行なってもよいが、例
えば400℃で1度延伸し、引き続き500℃で延伸す
るというように複数回に分けて実施することもできる。 複数回に分けた場合には繊維のダメージが少なく、延伸
が容易にできるようになるので好ましい。
[0041] The stretching heat treatment may be carried out once, but it can also be carried out in multiple steps, for example, stretching once at 400°C and then stretching at 500°C. It is preferable to divide the process into multiple times because the fibers are less damaged and can be drawn easily.

【0042】上記の延伸熱処理終了後、引き続き、不融
化繊維束に対し延伸処理のない通常の予備炭化処理を行
なってもよい。
[0042] After the above-mentioned drawing heat treatment is completed, the infusible fiber bundle may be subsequently subjected to a normal preliminary carbonization treatment without drawing treatment.

【0043】従来であると、不融化繊維束は脆弱で、不
融化繊維束の予備炭化で繊維の切断や毛羽立ちが発生す
るのを避けようとすれば、予備炭化工程だけは繊維束に
テンションを掛けないか或いは掛けても取扱性が悪化し
ない最小限のテンションとして行なわざるを得ない状態
で、まして予備炭化の段階で積極的にテンションを掛け
て繊維束の延伸処理を加えることによっては、繊維の引
張強度、引張弾性率、圧縮強度の向上を図ることは不可
能であった。
Conventionally, infusible fiber bundles are fragile, and in order to avoid cutting or fuzzing of the fibers during pre-carbonization of the infusible fiber bundles, it is necessary to apply tension to the fiber bundles only during the pre-carbonization process. If tension is not applied at all, or if tension is applied at a minimum level that does not deteriorate handling properties, it is even more difficult to apply tension to the fiber bundle during the pre-carbonization stage to draw the fiber bundle. It has been impossible to improve the tensile strength, tensile modulus, and compressive strength of.

【0044】これが、本発明では、不融化繊維束の溶融
破断温度よりも30〜100℃低い温度まで急速に昇温
して、短時間の延伸熱処理をすることにより、不融化繊
維束の切断や毛羽立ちの発生を防止するだけでなく、テ
ンションを掛けて延伸処理しながら予備炭化をすること
ができる。この予備炭化の際の不融化繊維束への積極的
なテンションを掛けた延伸処理により、繊維組織の配列
性が高まり、最終的に得られる炭素繊維の引張強度、引
張弾性率及び圧縮強度を有効に向上することが可能とな
る。
In the present invention, the temperature is rapidly raised to a temperature 30 to 100° C. lower than the melting break temperature of the infusible fiber bundle, and the infusible fiber bundle is cut and heated for a short time. In addition to preventing the occurrence of fuzz, it is possible to perform preliminary carbonization while applying tension and stretching. During this preliminary carbonization, the stretching process that applies active tension to the infusible fiber bundle increases the alignment of the fiber structure and effectively increases the tensile strength, tensile modulus, and compressive strength of the final carbon fiber. It becomes possible to improve the

【0045】以上のようにして不融化繊維束の予備炭化
を行なったら、得られた予備炭化繊維束を続いて炭化炉
で不活性ガス雰囲気下にて温度1500〜2000℃ま
で加熱して炭化し、必要に応じて3000℃まで加熱し
て黒鉛化すればよい。これにより繊維の切断や毛羽立ち
がなく、且つ引張強度、引張弾性率及び圧縮強度が向上
した炭素繊維を得ることができる。
After pre-carbonizing the infusible fiber bundle as described above, the obtained pre-carbonized fiber bundle is then heated to a temperature of 1500 to 2000° C. in a carbonization furnace under an inert gas atmosphere to carbonize it. , if necessary, it may be graphitized by heating up to 3000°C. This makes it possible to obtain carbon fibers that are free from fiber breakage and fluffing and have improved tensile strength, tensile modulus, and compressive strength.

【0046】本発明で用いる原料炭素質ピッチは、公知
の原料、例えば石油系の各種重質油、熱分解タール、接
触分解タール、石炭の乾留によって得られる重質油、タ
ールなどを出発原料として、その熱分解重縮合によって
得られるメソフェースピッチ(光学的異方性ピッチ)、
芳香族炭化水素類を原料とするメソフェースピッチ、光
学的異方性相と光学的等方性相を含有するピッチ或いは
光学的等方性ピッチであってもよい。例えば、超高強度
の高性能炭素繊維を、熱分解重縮合によって得られたメ
ソフェースピッチから製造する場合、メソフェース含有
量70〜100%のメソフェースピッチが好ましく、特
に実質的に100%のメソフェースを含有するメソフェ
ースピッチが最も好ましい。
The raw material carbonaceous pitch used in the present invention is prepared from known raw materials such as various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, heavy oil and tar obtained by carbonization of coal, etc. , mesophase pitch (optically anisotropic pitch) obtained by its thermal decomposition polycondensation,
It may be a mesoface pitch made from aromatic hydrocarbons, a pitch containing an optically anisotropic phase and an optically isotropic phase, or an optically isotropic pitch. For example, when ultra-high-strength, high-performance carbon fibers are produced from mesoface pitch obtained by pyrolysis polycondensation, mesoface pitch with a mesoface content of 70 to 100% is preferred, particularly substantially 100% mesoface pitch. Most preferred is a mesoface pitch containing.

【0047】尚、不融化繊維は、ピッチ繊維を線状で連
続的に不融化するものとして説明したが、ケンス状(ピ
ッチ繊維を金網の容器の中に入れて堆積したもの、及び
これに類似のもの)で不融化したもの、メッシュベルト
上にピッチ繊維を載せて不融化したもの、或いはボビン
巻のまま不融化したものなどについても、本発明は同様
に実施でき、且つ同様の効果を奏し得る。
[0047] The infusible fibers have been described as linear pitch fibers that are continuously infusible, but can-shaped fibers (pitch fibers deposited in a wire mesh container, and similar The present invention can be carried out in the same way, and the same effects can be achieved with the use of materials made infusible by using a mesh belt, pitch fibers placed on a mesh belt, or products made infusible while wound on a bobbin. obtain.

【0048】次に、本発明に係る炭素繊維の製造方法を
具体的な実施例に即して更に説明する。
Next, the method for manufacturing carbon fiber according to the present invention will be further explained based on specific examples.

【0049】実施例1 光学的異方性相98%からなる炭素繊維用ピッチを、5
00孔の紡糸口金を有する溶融紡糸機(ノズル孔径:直
径0.3mm)に通し、355℃で200mmHgの窒
素ガス圧で押し出して紡糸した。
Example 1 Carbon fiber pitch consisting of 98% optically anisotropic phase was
It was passed through a melt spinning machine (nozzle hole diameter: 0.3 mm in diameter) having a spinneret with 00 holes, and extruded and spun at 355° C. under a nitrogen gas pressure of 200 mmHg.

【0050】紡糸した500本のフィラメントはエアー
サッカーで略集束してオイリングローラに導き、糸に対
して約0.2重量%の割合で集束用油剤を供給し、50
0フィラメントから成るピッチ繊維を形成した。油剤と
しては、25℃における粘度が14cstのメチルフェ
ニルポリシロキサンを使用した。
The 500 spun filaments were approximately converged by an air sucker and guided to an oiling roller, and a converging oil was supplied at a ratio of about 0.2% by weight to the yarn.
A pitch fiber consisting of 0 filaments was formed. As the oil agent, methylphenylpolysiloxane having a viscosity of 14 cst at 25° C. was used.

【0051】該ピッチ繊維は、ノズル下部に設けた高速
で回転する直径210mm、幅200mmのステンレス
鋼製のボビンに巻き取り、約500m/分の巻き取り速
度で10分間紡糸した。
The pitch fiber was wound onto a stainless steel bobbin with a diameter of 210 mm and a width of 200 mm that was provided at the bottom of the nozzle and rotated at high speed, and spun for 10 minutes at a winding speed of about 500 m/min.

【0052】次いで、ピッチ繊維を巻いた前記ボビン6
個を解舒し、そしてオイリングローラを使用して耐熱性
油剤を付与しながら合糸し、3000フィラメントから
成るピッチ繊維(束)を形成し、他のステンレス製ボビ
ンに巻取つた。
Next, the bobbin 6 wound with pitch fibers is
The fibers were unwound, and the fibers were combined using an oiling roller while applying a heat-resistant oil to form a pitch fiber (bundle) consisting of 3,000 filaments, which was wound onto another stainless steel bobbin.

【0053】合糸時に油剤としては25℃で40cst
のメチルフェニルポリシロキサン(フェニル基含有量4
5モル%)を使用した。付与量は糸に対し0.5%であ
つた。
[0053] As an oil agent during yarn doubling, use 40cst at 25°C.
of methylphenylpolysiloxane (phenyl group content 4
5 mol%) was used. The amount applied was 0.5% based on the yarn.

【0054】このようにして得た、ボビン巻のピッチ繊
維をボビンから解舒しつつ、炉入口温度180℃、最高
温度295℃の温度勾配を持つ富酸素雰囲気(酸素/窒
素=60/40)の連続不融化炉に線状で連続的に導入
した。昇温速度は6℃/分であり、不融化時間は19分
であった。繊維束にかけたテンションは1フィラメント
当たり0.007g(3000フィラメントの繊維束に
対して20g)であった。不融化後の不融化繊維の酸素
濃度は9.5重量%であった。
While unwinding the bobbin-wound pitch fiber thus obtained from the bobbin, an oxygen-rich atmosphere (oxygen/nitrogen = 60/40) having a temperature gradient of a furnace inlet temperature of 180°C and a maximum temperature of 295°C is prepared. It was introduced continuously in a linear manner into a continuous infusibility furnace. The temperature increase rate was 6° C./min, and the infusibility time was 19 minutes. The tension applied to the fiber bundle was 0.007 g per filament (20 g for a fiber bundle of 3000 filaments). The oxygen concentration of the infusible fiber after infusibility was 9.5% by weight.

【0055】不融化中、ボビンからのピッチ繊維の解舒
は円滑に行なわれ、不融化炉内での繊維束の断糸もなく
円滑に不融化処理ができた。このようにして不融化され
た不融化繊維束の窒素雰囲気中での溶融破断温度は45
0℃であった。
During the infusibility, the pitch fibers were smoothly unwound from the bobbin, and the infusibility treatment could be carried out smoothly without any breakage of the fiber bundle in the infusibility furnace. The melting failure temperature of the infusible fiber bundle made infusible in this way in a nitrogen atmosphere is 45
It was 0°C.

【0056】この不融化繊維束を、400℃(不融化繊
維束の溶融破断温度よりも50℃低い温度)の窒素雰囲
気の予備炭化炉に3000℃/分の昇温速度で通糸して
、熱処理と延伸処理を同時に行なう延伸熱処理を施した
[0056] This infusible fiber bundle is passed through a pre-carbonization furnace in a nitrogen atmosphere at 400°C (a temperature 50°C lower than the melting failure temperature of the infusible fiber bundle) at a heating rate of 3000°C/min. Stretching heat treatment was performed in which heat treatment and stretching treatment were performed simultaneously.

【0057】この延伸熱処理時間は25秒であった。繊
維束には1フィラメント当たり0.007gのテンショ
ンが付与された。延伸率は21%であった。1時間の連
続処理を行なったが、その間炉内での繊維束の断糸は生
じなかった。
[0057] The stretching heat treatment time was 25 seconds. A tension of 0.007 g per filament was applied to the fiber bundle. The stretching ratio was 21%. Although the continuous treatment was carried out for one hour, no breakage of the fiber bundle occurred in the furnace during that time.

【0058】次いで上記のように処理された繊維束を更
に100℃/分で1000℃まで昇温して、テンション
を掛けずに通常の予備炭化をした。
Next, the fiber bundle treated as described above was further heated to 1000° C. at a rate of 100° C./min and subjected to normal preliminary carbonization without applying tension.

【0059】このようにして得られた予備炭化繊維を窒
素ガス雰囲気中で1500℃まで昇温して炭素繊維を得
た。炭素繊維の糸径は8.9μmであり、引張強度は3
.3GPa、引張弾性率は330GPa、圧縮強度は1
.2GPaであった。
The pre-carbonized fiber thus obtained was heated to 1500° C. in a nitrogen gas atmosphere to obtain carbon fiber. The carbon fiber thread diameter is 8.9 μm, and the tensile strength is 3
.. 3GPa, tensile modulus is 330GPa, compressive strength is 1
.. It was 2GPa.

【0060】又、炭素繊維をアルゴンガス雰囲気中で2
500℃まで昇温して得た黒鉛炭素繊維は、糸径が8.
8μmであり、引張強度は4.0GPa、引張弾性率は
810GPa、圧縮強度は0.5GPaであった。
[0060] Also, the carbon fiber was exposed to 2
The graphite carbon fiber obtained by raising the temperature to 500°C has a thread diameter of 8.
8 μm, tensile strength was 4.0 GPa, tensile modulus was 810 GPa, and compressive strength was 0.5 GPa.

【0061】実施例2 実施例1において、400℃で一度延伸熱処理をした繊
維束の溶融破断温度は550℃であった。この繊維束を
用いこれを500℃(該繊維束の溶融破断温度よりも5
0℃低い温度)の窒素雰囲気の予備炭化炉に3000℃
/分の昇温速度で通糸し、再度延伸熱処理を施した。
Example 2 In Example 1, the fiber bundle subjected to the drawing heat treatment once at 400°C had a melting and breaking temperature of 550°C. This fiber bundle was heated at 500°C (50°C higher than the melting and breaking temperature of the fiber bundle).
3000℃ in a pre-carbonization furnace with nitrogen atmosphere (temperature 0℃ lower)
The yarn was threaded at a temperature increase rate of /min and subjected to drawing heat treatment again.

【0062】処理時間は25秒で、繊維束には1フィラ
メント当たり20gのテンションが付与された。このと
きの延伸率は25%であった。400℃のときの延伸と
500℃のときの延伸の合計の延伸率は46%であった
The treatment time was 25 seconds, and a tension of 20 g per filament was applied to the fiber bundle. The stretching ratio at this time was 25%. The total stretching ratio of stretching at 400°C and stretching at 500°C was 46%.

【0063】上記以外は実施例1と同様に処理した。1
時間の連続処理をしたが、その間炉内での断糸はなかっ
た。
[0063] Except for the above, the process was carried out in the same manner as in Example 1. 1
Although the process was carried out continuously for several hours, there was no yarn breakage in the furnace during that time.

【0064】この様にして処理された繊維を次の予備炭
化処理にかけたところ、24時間の連続運転中、予備炭
化炉内で断糸することはなく、得られた予備炭化繊維束
に毛羽立ちも殆どなかった。
When the fibers treated in this way were subjected to the next pre-carbonization treatment, there was no breakage in the pre-carbonization furnace during continuous operation for 24 hours, and the obtained pre-carbonized fiber bundles did not have any fluff. There wasn't much.

【0065】この予備炭化繊維束を窒素ガス雰囲気中で
1500℃まで昇温して炭素繊維を得た。炭素繊維の糸
径は8.3μmであり、引張強度は3.6GPa、引張
弾性率は340GPaであった。
[0065] This pre-carbonized fiber bundle was heated to 1500°C in a nitrogen gas atmosphere to obtain carbon fibers. The carbon fiber had a thread diameter of 8.3 μm, a tensile strength of 3.6 GPa, and a tensile modulus of 340 GPa.

【0066】更に、炭素繊維をアルゴンガス雰囲気中で
2500℃まで昇温して得た黒鉛炭素繊維は、糸径が8
.2μmであり、引張強度は4.2GPa、引張弾性率
は850GPaであった。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 8.
.. 2 μm, tensile strength was 4.2 GPa, and tensile modulus was 850 GPa.

【0067】実施例1〜2に示されるように、予備炭化
の際に、本発明の範囲の繊維束の溶融破断温度よりも3
0〜100℃低い温度まで急速に昇温して、短時間の延
伸熱処理を行なったので、予備炭化炉内での不融化繊維
束の断糸を生じることなく予備炭化することができ、そ
の結果、得られた炭素繊維及び黒鉛繊維は繊維の毛羽立
ちが少ないことは勿論、断糸もわずかであった。又予備
炭化時に上記の延伸熱処理により繊維束に5〜100%
の延伸処理を加えたので、得られた炭素繊維及び黒鉛繊
維は引張強度、引張弾性率及び圧縮強度が共に向上した
ものになった。
As shown in Examples 1 and 2, during pre-carbonization, the melting and breaking temperature of the fiber bundle within the range of the present invention was lowered by 3.
Since the temperature was rapidly raised to a temperature lower than 0 to 100 degrees Celsius and the drawing heat treatment was performed for a short time, it was possible to pre-carbonize the infusible fiber bundle without causing yarn breakage in the pre-carbonization furnace. The carbon fibers and graphite fibers obtained had not only little fiber fuzz but also slight yarn breakage. In addition, during preliminary carbonization, the above-mentioned stretching heat treatment is applied to the fiber bundle by 5 to 100%.
Since the stretching treatment was added, the obtained carbon fibers and graphite fibers had improved tensile strength, tensile modulus, and compressive strength.

【0068】比較例1 実施例1において、予備炭化炉の温度を430℃(繊維
束の溶融破断温度より20℃低い温度)とした以外は、
実施例1と同様に処理した。
Comparative Example 1 In Example 1, except that the temperature of the preliminary carbonization furnace was 430°C (20°C lower than the melting and breaking temperature of the fiber bundle),
It was treated in the same manner as in Example 1.

【0069】その結果、繊維束は炉内で断糸し、連続運
転することができなかった。
As a result, the fiber bundles were broken in the furnace, making continuous operation impossible.

【0070】比較例2 実施例1において、予備炭化炉の温度を330℃(繊維
束の溶融破断温度よりも120℃低い温度)とした以外
は、実施例1と同様に処理した。この場合は、繊維束の
延伸は起こらなかった。
Comparative Example 2 The same procedure as in Example 1 was carried out except that the temperature of the preliminary carbonization furnace was 330° C. (120° C. lower than the melting and breaking temperature of the fiber bundle). In this case, no drawing of the fiber bundle occurred.

【0071】その結果、予備炭化炉内で断糸することは
なく、1時間の連続運転ができた。しかし、この予備炭
化繊維を窒素ガス雰囲気中で1500℃まで昇温して得
た炭素繊維の糸径は9.8μmであり、引張強度は2.
6GPa、引張弾性率は270GPa、圧縮強度は1.
0GPaであった。
As a result, there was no yarn breakage in the preliminary carbonization furnace, and continuous operation for one hour was possible. However, the carbon fiber obtained by heating this pre-carbonized fiber to 1500°C in a nitrogen gas atmosphere has a thread diameter of 9.8 μm and a tensile strength of 2.
6GPa, tensile modulus is 270GPa, and compressive strength is 1.
It was 0 GPa.

【0072】更に、炭素繊維をアルゴンガス雰囲気中で
2500℃まで昇温して得た黒鉛炭素繊維は、糸径が9
.7μmであり、引張強度は3.2GPa、引張弾性率
は690GPa、圧縮強度は0.4GPaであった。
Furthermore, graphite carbon fiber obtained by heating carbon fiber to 2500°C in an argon gas atmosphere has a thread diameter of 9.
.. 7 μm, tensile strength was 3.2 GPa, tensile modulus was 690 GPa, and compressive strength was 0.4 GPa.

【0073】比較例3 実施例1において、昇温速度を50℃/分とした以外は
、実施例1と同様に処理した。この場合は、繊維束の延
伸は起こらなかった。
Comparative Example 3 The same procedure as in Example 1 was carried out except that the temperature increase rate was 50° C./min. In this case, no drawing of the fiber bundle occurred.

【0074】この場合に得られた炭素繊維の物性は、比
較例2と同様に、延伸したもの比べ低いものであった。
Similar to Comparative Example 2, the physical properties of the carbon fiber obtained in this case were lower than that of the stretched carbon fiber.

【0075】[0075]

【発明の効果】以上説明したように、本発明の製造方法
では、ピッチ繊維束を不融化した不融化繊維束を予備炭
化する際に、繊維束の溶融破断温度よりも30〜100
℃低い温度まで100〜5000℃/分の速度で昇温し
て、繊維束を1〜300秒の極く短時間の熱処理しなが
ら同時に延伸率5〜100%の延伸処理するので、予備
炭化炉内での不融化繊維束の断糸や毛羽立ちを押さえて
、予備炭化の際の歩留りを向上するだけでなく、繊維の
引張強度、引張弾性率及び圧縮強度を向上した炭素繊維
を得ることができる。
As explained above, in the manufacturing method of the present invention, when pre-carbonizing the infusible fiber bundle obtained by infusible pitch fiber bundle, the temperature is 30 to 100% lower than the melting and breaking temperature of the fiber bundle.
The temperature is raised to a low temperature at a rate of 100 to 5000 degrees C/min, and the fiber bundle is heat treated for a very short time of 1 to 300 seconds while simultaneously being stretched at a stretching rate of 5 to 100%. This not only improves the yield during pre-carbonization by suppressing breakage and fluffing of the infusible fiber bundles in the process, but also allows carbon fibers with improved fiber tensile strength, tensile modulus, and compressive strength to be obtained. .

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  紡糸、集束されたピッチ繊維束を不融
化し、前記不融化された不融化繊維束を予備炭化し、然
る後に炭化し、必要に応じて更に黒鉛化することからな
るピッチ系炭素繊維及び黒鉛繊維の製造方法において、
前記不融化繊維束を予備炭化する際に、不活性ガス雰囲
気中で繊維束の溶融破断温度よりも30〜100℃低い
温度まで100〜5000℃/分の速度で昇温して、繊
維束を1〜300秒の極く短時間で熱処理しながら同時
に延伸率5〜100%の延伸処理することにより、繊維
束の予備炭化をすることを特徴とするピッチ系炭素繊維
及び黒鉛繊維の製造方法。
1. Pitch, which is made by infusibleizing a spun and bundled pitch fiber bundle, pre-carbonizing the infusible infusible fiber bundle, followed by carbonization, and further graphitization if necessary. In the method for producing carbon fiber and graphite fiber,
When pre-carbonizing the infusible fiber bundle, the fiber bundle is heated at a rate of 100 to 5000°C/min to a temperature 30 to 100°C lower than the melting and breaking temperature of the fiber bundle in an inert gas atmosphere. A method for producing pitch-based carbon fibers and graphite fibers, which comprises pre-carbonizing a fiber bundle by heat treatment for a very short time of 1 to 300 seconds and simultaneously stretching at a stretching rate of 5 to 100%.
【請求項2】  前記不融化繊維束の熱処理及び延伸処
理を複数回に分けて行なう請求項1の製造方法。
2. The manufacturing method according to claim 1, wherein the heat treatment and stretching treatment of the infusible fiber bundle are performed in multiple steps.
JP41654190A 1990-12-28 1990-12-28 Production of pitch carbon fiber and graphite fiber Pending JPH04257322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP41654190A JPH04257322A (en) 1990-12-28 1990-12-28 Production of pitch carbon fiber and graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP41654190A JPH04257322A (en) 1990-12-28 1990-12-28 Production of pitch carbon fiber and graphite fiber

Publications (1)

Publication Number Publication Date
JPH04257322A true JPH04257322A (en) 1992-09-11

Family

ID=18524762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP41654190A Pending JPH04257322A (en) 1990-12-28 1990-12-28 Production of pitch carbon fiber and graphite fiber

Country Status (1)

Country Link
JP (1) JPH04257322A (en)

Similar Documents

Publication Publication Date Title
KR900004918B1 (en) Process for producing chopped strand of carbon fiber
JP2000345435A (en) Pitch fiber bundle, pitch-based carbon fiber bundle and its production
JPS63264917A (en) Production of carbon fiber and graphite fiber
JPH04257322A (en) Production of pitch carbon fiber and graphite fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04272232A (en) Production of pitch-base carbon fiber and graphite fiber
JPS62289617A (en) Production of carbon and graphite fiber
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04272233A (en) Production of pitch-base carbon fiber and graphite fiber
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH04272235A (en) Production of pitch-base carbon fiber and graphite fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPH05171519A (en) Production of pitch carbon fiber
JPH04119126A (en) Production of pitch-based carbon fiber and graphite fiber
JP2582848B2 (en) Method for producing pitch-based carbon fiber
JPH043453B2 (en)
JPH04119125A (en) Production of pitch-based carbon fiber and graphite fiber
JP3321913B2 (en) Method for producing pitch-based carbon fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPH0491228A (en) Production of pitch-based carbon fiber
JP2763001B2 (en) Method for producing pitch carbon fiber
JPH05295620A (en) Production of pitch-based carbon fiber
JPH05171518A (en) Pitch carbon fiber