JPH0617319A - Production of pitch-based carbon fiber - Google Patents

Production of pitch-based carbon fiber

Info

Publication number
JPH0617319A
JPH0617319A JP19640092A JP19640092A JPH0617319A JP H0617319 A JPH0617319 A JP H0617319A JP 19640092 A JP19640092 A JP 19640092A JP 19640092 A JP19640092 A JP 19640092A JP H0617319 A JPH0617319 A JP H0617319A
Authority
JP
Japan
Prior art keywords
furnace
pitch
carbonization
graphitization
fiber bundle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19640092A
Other languages
Japanese (ja)
Inventor
Kikuji Komine
喜久治 小峰
Masaharu Yamamoto
雅晴 山本
Yoshimasa Chiba
喜政 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP19640092A priority Critical patent/JPH0617319A/en
Publication of JPH0617319A publication Critical patent/JPH0617319A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily provide the carbon fiber having a high tensile strength, high tensile modulus and high thermal conductivity, significantly reduced in the cost of the carbonizing process therefor. CONSTITUTION:Separation of the processes prior to continuous precarbonization from those after the continuous carbonization enables drawing intended to improve both the tensile strength and tensile modulus of precarbonized fiber bundles F in a graphitizing oven 50 in their graphitization, also enables their graphitization degree at lower temperature treatment with their prolonged residence time in the oven 50 to be improved. With this practice, both the tensile strength and tensile modulus of the graphite fibers obtained by drawing in the graphitization at lower temperatures can be improved at a reduced cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素質ピッチから製造
されるピッチ系炭素繊維の製造方法に関し、特に炭化工
程のコストを大幅に安価にでき、且つ高引張強度、高引
張弾性率及び高熱伝導性の炭素繊維を容易に得ることを
可能とした炭素繊維の製造方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing pitch-based carbon fibers produced from carbonaceous pitch, and in particular, the cost of the carbonization step can be significantly reduced, and high tensile strength, high tensile elastic modulus and high heat resistance can be obtained. It is a method for producing a carbon fiber which makes it possible to easily obtain a conductive carbon fiber.

【0002】本明細書にて「炭素繊維」とは特に明記し
ない場合には炭素繊維のみならず黒鉛繊維をも含めて使
用する。
In the present specification, unless otherwise specified, "carbon fiber" is used to include not only carbon fiber but also graphite fiber.

【0003】[0003]

【従来の技術】現在、レーヨン系やPAN系の炭素繊維
並びにピッチ系炭素繊維は種々の技術分野にて広く使用
されるに至り、特に、石油系ピッチ、石炭系ピッチ等の
炭素質ピッチから製造されるピッチ系炭素繊維は、レー
ヨン系やPAN系の炭素繊維に比較して炭化収率が高
く、弾性率等の物理的特性も優れており、更に低コスト
にて製造し得るという利点を有しているために近年注目
を浴びている。
2. Description of the Related Art At present, rayon-based and PAN-based carbon fibers and pitch-based carbon fibers have come to be widely used in various technical fields, and in particular, they are manufactured from carbonaceous pitch such as petroleum-based pitch and coal-based pitch. The pitch-based carbon fiber has a higher carbonization yield than that of rayon-based or PAN-based carbon fiber, has excellent physical properties such as elastic modulus, and has the advantage that it can be manufactured at low cost. Because of this, it has been attracting attention in recent years.

【0004】現在、ピッチ系炭素繊維は、(1)石油系
ピッチ、石炭系ピッチ等から炭素繊維に適した炭素質ピ
ッチを調製し、該炭素質ピッチを加熱溶融し、紡糸機に
て紡糸してピッチ繊維を製造し、得られたピッチ繊維の
繊維束を更に集束した後、(2)前記ピッチ繊維を不融
化炉で酸化性雰囲気下にて温度250〜350℃までに
加熱して不融化し、(3)引き続いて、該不融化繊維を
予備炭化炉で不活性雰囲気下にて最高温度500〜15
00℃まで加熱して予備炭化し、(4)次いで、予備炭
化繊維を炭化炉で不活性雰囲気下にて温度1500〜2
000℃まで加熱して炭化し、更には3000℃まで加
熱して黒鉛化すること、により製造されている。
Currently, pitch-based carbon fibers are prepared by (1) preparing a carbonaceous pitch suitable for carbon fibers from petroleum-based pitch, coal-based pitch, etc., heating and melting the carbonaceous pitch, and spinning with a spinning machine. Pitch fibers are produced by the above method, and the obtained fiber bundles of pitch fibers are further bundled, and then (2) the pitch fibers are infusibilized by heating to a temperature of 250 to 350 ° C. in an infusible furnace under an oxidizing atmosphere. Then, (3) subsequently, the infusible fiber is heated to a maximum temperature of 500 to 15 in a preliminary carbonization furnace under an inert atmosphere.
(4) Next, the pre-carbonized fiber is heated to 00 ° C. to pre-carbonize it, and the pre-carbonized fiber is heated to a temperature of 1500 to 2 in an inert atmosphere in a carbonization furnace.
It is manufactured by heating to 000 ° C. to carbonize, and further heating to 3000 ° C. to graphitize.

【0005】[0005]

【発明が解決しようとする課題】ところで、上記のピッ
チ繊維の不融化から予備炭化繊維の炭化更には黒鉛化を
テンション付与下に連続処理することが行なわれてい
る。
By the way, the above-mentioned infusibilization of the pitch fiber, carbonization of the pre-carbonized fiber, and further graphitization are continuously carried out under tension.

【0006】このような連続処理によれば、繊維束の蓄
熱除去がやり易く均一な焼成ができるので、一定品質の
炭素繊維を多量に作る方法としては優れている。
According to such a continuous treatment, since the heat accumulation of the fiber bundle can be easily removed and uniform firing can be carried out, it is an excellent method for producing a large amount of carbon fibers of constant quality.

【0007】しかしながら、炭化以前の条件を一定にす
る一方、運転費が極めて高くつく黒鉛化炉だけは速い速
度で通糸してコストを低減しようとする場合には、連続
処理は障害になる。
However, when the conditions before carbonization are kept constant, and only the graphitizing furnace, which requires a very high operating cost, is passed at a high speed to reduce the cost, the continuous treatment becomes an obstacle.

【0008】又黒鉛化処理時に延伸処理による引張強
度、引張弾性率の向上を図ったり、黒鉛化炉内での滞留
時間を長くすることにより、低温処理で黒鉛化度を高め
ようとする場合にも制限があった。
Further, when it is intended to increase the degree of graphitization at a low temperature treatment by improving the tensile strength and the tensile elastic modulus by the stretching treatment at the time of the graphitization treatment or by prolonging the residence time in the graphitization furnace. Was also limited.

【0009】従って、本発明の目的は、炭化工程のコス
トを大幅に安価にでき、且つ高引張強度、高引張弾性率
及び高熱伝導性の炭素繊維を容易に得ることを可能とし
た炭素繊維の製造方法を提供することである。
Therefore, an object of the present invention is to reduce the cost of the carbonization process significantly and to easily obtain carbon fibers having high tensile strength, high tensile modulus and high thermal conductivity. It is to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】上記目的は本発明に係る
ピッチ系炭素繊維の製造方法にて達成される。要約すれ
ば本発明は、テンション付与下でピッチ繊維を連続不融
化し、連続予備炭化し、連続炭化し、必要に応じて更に
連続黒鉛化するピッチ系炭素繊維の製造方法において、
連続予備炭化以前の工程と連続炭化以降の工程とを分離
することを特徴とするピッチ系炭素繊維の製造方法であ
る。
The above object can be achieved by the method for producing a pitch-based carbon fiber according to the present invention. In summary, the present invention is a method for producing a pitch-based carbon fiber in which pitch fibers are continuously infusibilized under tension, continuous pre-carbonization, continuous carbonization, and further continuous graphitization, if necessary.
A method for producing a pitch-based carbon fiber, characterized in that a step before continuous pre-carbonization and a step after continuous carbonization are separated.

【0011】本発明では、連続予備炭化以前の工程と連
続炭化以降の工程とを分離することにより、炭化(黒鉛
化を含む)処理時に引張強度、引張弾性率の向上を図る
延伸処理を可能とし、又炭化炉又は黒鉛化炉内での滞留
時間を長くして低温処理で炭化度又は黒鉛化度を高める
ことを可能として、高引張強度、高引張弾性率及び高熱
伝導性の炭素繊維を容易に得ることができ、然も炭化工
程のコストを大幅に安価にできるようにしたものであ
る。
In the present invention, by separating the process before the continuous pre-carbonization and the process after the continuous carbonization, it is possible to perform the stretching treatment for improving the tensile strength and the tensile elastic modulus during the carbonization (including graphitization) treatment. Also, it is possible to increase the degree of carbonization or graphitization by low temperature treatment by prolonging the residence time in the carbonization furnace or graphitization furnace, making it easy to obtain carbon fibers with high tensile strength, high tensile modulus and high thermal conductivity. The cost of the carbonization process can be significantly reduced.

【0012】[0012]

【実施例】本発明のピッチ系炭素繊維の製造方法の一実
施例について、図1及び図2に示す製造装置を参照して
説明する。
EXAMPLES An example of the method for producing pitch-based carbon fibers of the present invention will be described with reference to the production apparatus shown in FIGS.

【0013】図1及び図2に示すように、炭素繊維製造
装置は、少なくとも、紡糸されたピッチ繊維を収束しそ
して耐熱性油剤が付与されて合糸されたピッチ繊維束F
を不融化するための不融化炉10、該不融化炉10から
の不融化繊維束を予備炭化するための予備炭化炉30、
該予備炭化炉30からの予備炭化繊維束を炭化し必要に
応じて更に黒鉛化するための黒鉛化炉50を有してい
る。通常、これら不融化炉10、予備炭化炉30及び黒
鉛化炉50は、連続処理するために直列に配置される
が、本発明では、予備炭化以前の工程と炭化以降の工程
とを分離するために、予備炭化炉30と黒鉛化炉50と
は必ずしも直列に配置する必要がない。
As shown in FIG. 1 and FIG. 2, the carbon fiber manufacturing apparatus has at least a pitch fiber bundle F formed by converging the spun pitch fibers and adding a heat-resistant oil agent to the yarn.
An infusibilizing furnace 10 for infusibilizing the infusible material, a pre-carbonizing furnace 30 for pre-carbonizing the infusible fiber bundle from the infusibilizing furnace 10,
A graphitizing furnace 50 is provided for carbonizing the pre-carbonized fiber bundle from the pre-carbonizing furnace 30 and further graphitizing it as required. Usually, the infusibilization furnace 10, the preliminary carbonization furnace 30, and the graphitization furnace 50 are arranged in series for continuous treatment, but in the present invention, in order to separate the step before the preliminary carbonization and the step after the carbonization. In addition, the preliminary carbonization furnace 30 and the graphitization furnace 50 do not necessarily have to be arranged in series.

【0014】本実施例で、不融化炉10は5つの個室R
1〜R5を有し、入口に近接した室R1は例えば190
℃に、室R2は220℃に、室R3は250℃に、室R
4は280℃に、室R5は310℃に加熱し保持され
る。又、不融化炉10内には富酸素ガス(例えば混合比
50/50の酸素・窒素の混合ガス)が導入され、ファ
ンにより強制的に撹拌される。不融化炉10の上流に
は、ボビンB1 から不融化炉10及び予備炭化炉30に
連続的に送給される繊維束Fにテンションをかける繊維
束緊張手段12が設けられている。
In this embodiment, the infusible furnace 10 has five private chambers R.
The chamber R1 having 1 to R5 and close to the entrance is, for example, 190
℃, room R2 to 220 ℃, room R3 to 250 ℃, room R
4 is heated to 280 ° C., and the chamber R5 is heated to and held at 310 ° C. Further, an oxygen-rich gas (for example, a mixed gas of oxygen and nitrogen with a mixing ratio of 50/50) is introduced into the infusibilizing furnace 10 and is forcibly stirred by a fan. An upstream of the infusibilizing furnace 10 is provided with a fiber bundle tensioning means 12 for applying a tension to a fiber bundle F continuously fed from the bobbin B 1 to the infusibilizing furnace 10 and the preliminary carbonization furnace 30.

【0015】予備炭化炉30は入口部より温度が例えば
400、500、600、700、1100℃へと階段
状に上昇するように加熱保持される。炉30内は、窒素
ガスなどの不活性ガス雰囲気又は微量酸素含有雰囲気と
するために、微量の酸素を含有させた例えば窒素ガスが
炉30内に供給される。微量酸素含有雰囲気中の酸素濃
度は、100〜30000ppmに調製される。
The preliminary carbonization furnace 30 is heated and held so that the temperature rises stepwise from the inlet to 400, 500, 600, 700, 1100 ° C., for example. In order to make the inside of the furnace 30 an atmosphere of an inert gas such as nitrogen gas or an atmosphere containing a small amount of oxygen, for example, nitrogen gas containing a small amount of oxygen is supplied into the furnace 30. The oxygen concentration in the atmosphere containing a small amount of oxygen is adjusted to 100 to 30,000 ppm.

【0016】溶融紡糸し、集束して、1本から例えば5
00本の多数本のボビンB1 に巻かれたピッチ繊維束F
は、それぞれのボビンB1 から解除して、繊維束緊張手
段12によるテンションの付与下に不融化炉10に送給
され、炉10内を通糸される間に不融化される。次いで
不融化された繊維束Fは連続的に予備炭化炉30に入
り、そして上記の緊張手段12によるテンション付与下
にピッチ繊維束Fは炉30内を通糸される間に、微量酸
素含有雰囲気下で加熱されることにより、予備炭化され
ると同時に膠着が解除される。
Melt spinning, bundling and spinning from 1 to 5
Pitch fiber bundle F wound around a large number of 00 bobbins B 1
Are released from the respective bobbins B 1 and fed to the infusibilizing furnace 10 under tension by the fiber bundle tensioning means 12, and are infusibilized while being threaded in the furnace 10. Next, the infusibilized fiber bundle F continuously enters the pre-carbonization furnace 30, and while the pitch fiber bundle F is threaded in the furnace 30 while being tensioned by the tensioning means 12, the atmosphere containing a slight amount of oxygen is introduced. By being heated below, it is pre-carbonized and at the same time the gluing is released.

【0017】このようにしてピッチ繊維束を予備炭化し
て得られた予備炭化繊維束Fは、一旦、それぞれのボビ
ンB2 に巻取られる。この予備炭化繊維束Fの巻取り
は、ボビンB2 の外径が50〜1000mmとなるよう
に行なわれる。予備炭化繊維束Fの巻取りボビンB2
は、通常、紙管又は樹脂製のボビンが使用される。必要
に応じてボビン巻きのまま黒鉛化する場合は、黒鉛製ボ
ビンを使用することができる。
The pre-carbonized fiber bundles F obtained by pre-carbonizing the pitch fiber bundles in this manner are once wound on the respective bobbins B 2 . The preliminary winding of the carbonized fiber bundle F, the outer diameter of the bobbin B 2 is performed such that 50 to 1000 mm. As the winding bobbin B 2 of the pre-carbonized fiber bundle F, a paper tube or a resin bobbin is usually used. A graphite bobbin can be used when graphitizing the wound bobbin as needed.

【0018】次いで、ボビンB2 に巻取られた予備炭化
繊維束Fは、黒鉛化炉50の上流側に装備した図示しな
い解舒機構のボビンホルダーにセットして解除され、緊
張手段52によりテンションをかけながら、炉50内を
通糸して黒鉛化処理が行なわれる。
Next, the pre-carbonized fiber bundle F wound on the bobbin B 2 is set in a bobbin holder of an unwinding mechanism (not shown) mounted on the upstream side of the graphitizing furnace 50 to be released, and tensioned by the tensioning means 52. While drawing, the yarn is passed through the furnace 50 to be graphitized.

【0019】上記の黒鉛化炉50は温度勾配を付けずに
所定の黒鉛化温度、例えば2000〜3000℃に加熱
保持される。炉50内を不活性ガス雰囲気とするめに、
アルゴン、ヘリウム、窒素等の不活性ガスが炉50内に
供給される。尚、黒鉛化を行なわず炭化までに留めてお
くときは、黒鉛化炉に代えて炭化炉が設置されるが、そ
のときは炭化炉内は1500〜2000℃に加熱保持さ
れる。
The above graphitization furnace 50 is heated and maintained at a predetermined graphitization temperature, for example, 2000 to 3000 ° C. without a temperature gradient. In order to create an inert gas atmosphere in the furnace 50,
An inert gas such as argon, helium, or nitrogen is supplied into the furnace 50. When the carbonization is not performed and the carbonization is stopped, a carbonization furnace is installed in place of the graphitization furnace. At that time, the inside of the carbonization furnace is heated and maintained at 1500 to 2000 ° C.

【0020】本実施例によれば、上記した黒鉛化炉50
の解舒機構は、予備炭化炉30で予備炭化されボビンB
2 に巻取られた予備炭化繊維束Fを、黒鉛化炉50での
焼成時間が5秒〜30分にできるように解舒、巻取る変
速機構と、焼成時のテンションが50〜10000gに
なるように変更するテンション変更機能とを有してい
る。なお、上記の焼成時間とは、炉の加熱部(発熱体
部)を繊維が通過する時間をいう。
According to this embodiment, the graphitization furnace 50 described above is used.
The unwinding mechanism of the bobbin B is pre-carbonized in the pre-carbonization furnace 30.
The pre-carbonized fiber bundle F wound around 2 is unwound so that the firing time in the graphitization furnace 50 can be set to 5 seconds to 30 minutes, and the winding speed change mechanism and the tension during firing become 50 to 10000 g. It has a tension changing function for changing the above. The above firing time means the time for the fibers to pass through the heating part (heating element part) of the furnace.

【0021】解舒機構のボビンホルダーには、電動式、
クリール式等が用いられる。この解舒の際に、黒鉛化後
の繊維束の集束性を向上し羽毛を低減するために、予備
炭化繊維束Fに0.1〜50回/m程度の撚りをかける
ことも実施される。
The bobbin holder of the unwinding mechanism has an electric type,
A creel type or the like is used. At the time of unwinding, in order to improve the focusing property of the fiber bundle after graphitization and reduce the feathers, the pre-carbonized fiber bundle F is twisted at about 0.1 to 50 times / m. .

【0022】本実施例による黒鉛化処理では、黒鉛化炉
50内での滞留時間を長くして、低温処理で予備炭化繊
維束Fの黒鉛化を行なわせるために、又滞留時間を長く
して同一性状品を低コストで作るために、通糸速度が
0.05〜50m/分(変速比で0.1〜100)とす
る。又得られる黒鉛化繊維の引張強度、引張弾性率の向
上をするために、予備炭化繊維束Fに50〜5000g
のテンションを付与して、延伸比0〜50%の延伸処理
がなされる。
In the graphitization treatment according to this embodiment, the residence time in the graphitization furnace 50 is lengthened, and the residence time is lengthened in order to graphitize the preliminary carbonized fiber bundle F in the low temperature treatment. The threading speed is set to 0.05 to 50 m / min (gear ratio of 0.1 to 100) in order to produce an identical property product at low cost. Further, in order to improve the tensile strength and the tensile elastic modulus of the obtained graphitized fiber, the pre-carbonized fiber bundle F has 50 to 5000 g.
Is applied to perform a stretching treatment with a stretching ratio of 0 to 50%.

【0023】以上のように黒鉛化して得られた黒鉛繊維
束Fは、それぞれのボビンB3 に巻取られる。その巻取
り前に必要に応じて、黒鉛繊維束Fに表面処理及びサイ
ズ剤付与が行なわれる。
The graphite fiber bundles F obtained by graphitizing as described above are wound on the respective bobbins B 3 . Prior to the winding, the graphite fiber bundle F is subjected to surface treatment and sizing, if necessary.

【0024】以上のような炭素繊維の製造方法によれ
ば、連続予備炭化以前の工程と連続炭化以降の工程とを
分離して、予備炭化繊維の黒鉛化炉内滞留時間を長くし
て黒鉛化を行なっているので、低温処理で予備炭化繊維
を黒鉛化することができ、又その黒鉛化時に延伸処理を
行なっているので、得られる黒鉛繊維の引張強度、引張
弾性率を向上することができる。即ち、高引張強度、高
引張弾性率及び高熱伝導性の炭素繊維を容易に得ること
ができ、然も炭化工程のコストを大幅に安価にできる。
According to the method for producing carbon fibers as described above, the steps before the continuous pre-carbonization and the steps after the continuous carbonization are separated, and the residence time of the pre-carbonized fibers in the graphitization furnace is increased to graphitize. Since the pre-carbonized fiber can be graphitized by the low temperature treatment, and the drawing treatment is performed during the graphitization, the tensile strength and the tensile elastic modulus of the obtained graphite fiber can be improved. . That is, carbon fibers having high tensile strength, high tensile modulus and high thermal conductivity can be easily obtained, and the cost of the carbonization step can be significantly reduced.

【0025】以上の実施例では、予備炭化繊維束はその
まま黒鉛化炉50で黒鉛化処理したが、本発明はこれに
限定されず、必要に応じて黒鉛化炉50の代わりに炭化
炉を設けて炭化処理までで留める場合にも適用すること
ができ、同様な効果が得られる。
In the above examples, the pre-carbonized fiber bundle was graphitized in the graphitizing furnace 50 as it is, but the present invention is not limited to this, and a carbonizing furnace may be provided instead of the graphitizing furnace 50 if necessary. It can also be applied to the case where the carbonization treatment is performed and the same effect is obtained.

【0026】[0026]

【実施例】以下、本発明に係るピッチ系炭素繊維の製造
方法を具体的な実施例に即して説明する。
EXAMPLES The method for producing pitch-based carbon fibers according to the present invention will be described below with reference to specific examples.

【0027】実施例1 炭素繊維の製造に使用するピッチ繊維を製造するに当
り、光学的異方性相を約55%含有し、軟化点が232
℃である炭素質ピッチを前駆体ピッチとして使用した。
この前駆体ピッチを遠心分離により光学的異方性相の多
いピッチと光学的等方性相の多いピッチとを連続的に分
離し、それぞれ抜き出した。
Example 1 In the production of pitch fibers used in the production of carbon fibers, an optical anisotropic phase is contained in an amount of about 55% and a softening point is 232.
The carbonaceous pitch at 0 ° C was used as the precursor pitch.
This precursor pitch was continuously separated into a pitch having a large amount of optically anisotropic phase and a pitch having a large amount of optically isotropic phase by centrifugal separation, and extracted.

【0028】得られた光学的異方性相を多く含むピッチ
は、光学的異方性相を98%含み、軟化点は265℃、
キノリン不溶分は29.5%であった。該炭素繊維用ピ
ッチを500孔の紡糸口金を有する溶融紡糸機(ノズル
孔径:直径0.3mm)を用いて355℃で紡糸した。
The obtained pitch containing a large amount of the optically anisotropic phase contained 98% of the optically anisotropic phase and had a softening point of 265 ° C.
The quinoline insoluble content was 29.5%. The carbon fiber pitch was spun at 355 ° C. using a melt spinning machine (nozzle hole diameter: 0.3 mm) having a spinneret with 500 holes.

【0029】紡糸した500本のフィラメントはエアー
サッカーで略集束してオイリングローラに導き、糸に対
して約0.2重量%の割合で集束用油剤を供給し、50
0フィラメントから成るピッチ繊維束を形成した。油剤
としては、25℃における粘度が14cstのメチルフ
ェニルポリシロキサンを使用した。
The 500 spun filaments were substantially bundled by an air sucker and guided to an oiling roller, and a focusing oil agent was supplied at a ratio of about 0.2% by weight with respect to the yarn.
A pitch fiber bundle consisting of 0 filaments was formed. Methylphenylpolysiloxane having a viscosity of 14 cst at 25 ° C. was used as an oil agent.

【0030】該ピッチ繊維束は、ノズル下部に設けた高
速で回転する直径210mm、幅200mmのボビンに
巻き取り、約500m/分の巻き取り速度で10分間紡
糸した。ボビン1回転当たりのトラバースのピッチは1
0mm/1回転であった。紡糸の間に糸切れは発生しな
かった。
The pitch fiber bundle was wound on a bobbin having a diameter of 210 mm and a width of 200 mm, which was provided at the lower part of the nozzle and rotated at high speed, and was spun at a winding speed of about 500 m / min for 10 minutes. 1 traverse pitch per bobbin rotation
It was 0 mm / 1 rotation. No yarn breakage occurred during spinning.

【0031】次いで、ピッチ繊維束を巻いた前記ボビン
6個を解舒し、そしてオイリングローラを使用して耐熱
性油剤を付与しながら合糸し、3000フィラメントか
ら成るピッチ繊維束を形成し、他のステンレス製ボビン
に巻取った。
Then, the six bobbins wound with the pitch fiber bundle are unwound, and combined with a heat-resistant oil agent using an oiling roller to form a pitch fiber bundle of 3000 filaments, and the like. It was wound on a stainless steel bobbin.

【0032】合糸時に油剤としては25℃で40cst
のメチルフェニルポリシロキサン(フェニル基含有量4
5モル%)を使用した。付与量は糸に対し0.5%であ
った。
At the time of compounding, the oil agent is 40 cst at 25 ° C.
Methyl phenyl polysiloxane (phenyl group content 4
5 mol%) was used. The applied amount was 0.5% based on the yarn.

【0033】以上の如くにして製造したピッチ繊維束F
を、図1に示す不融化炉10および予備炭化炉30を使
用して、連続的に不融化および予備炭化をした。
Pitch fiber bundle F produced as described above
Was continuously infusibilized and pre-carbonized by using the infusibilizing furnace 10 and the pre-carbonizing furnace 30 shown in FIG.

【0034】本実施例で使用した不融化炉10は、5つ
の個室R1〜R5を有し、入口に近接した室R1は19
0℃に、室R2は220℃に、室R3は250℃に、室
R4は280℃に、室R5は310℃に加熱し保持され
た。又、不融化炉10内には富酸素ガス(酸素・窒素の
混合ガス:混合比50/50)を導入し、ファンにより
強制的に撹拌した。このときの風速は0.7m/sec
とされた。そして、毎分0.5回の割合で流通置換し炉
内の古いガスを排出した。
The infusible furnace 10 used in this embodiment has five individual chambers R1 to R5, and the chamber R1 adjacent to the inlet has 19 chambers.
The chamber R2 was heated to 220 ° C, the chamber R3 was heated to 250 ° C, the chamber R4 was heated to 280 ° C, and the chamber R5 was heated to 310 ° C. Further, an oxygen-rich gas (a mixed gas of oxygen and nitrogen: a mixing ratio of 50/50) was introduced into the infusible furnace 10 and was forcibly stirred by a fan. The wind speed at this time is 0.7 m / sec
Was taken. Then, the flow was replaced at a rate of 0.5 times per minute, and the old gas in the furnace was discharged.

【0035】ピッチ繊維束Fは不融化炉10内を0.3
m/分にて移動され、又該繊維束Fには繊維束緊張手段
12を調整して20gのテンションがかけられた。
The pitch fiber bundle F is 0.3 in the infusible furnace 10.
The fiber bundle F was moved at a speed of m / min, and a tension of 20 g was applied to the fiber bundle F by adjusting the fiber bundle tensioning means 12.

【0036】上記構成にてピッチ繊維束Fを不融化処理
するのに要した時間は15分であった。不融化中、ボビ
ンB1 からのピッチ繊維束Fの解舒は円滑に行なわれ
た。不融化炉内での繊維束の断糸もなく、円滑に不融化
処理が実施できた。
The time required for infusibilizing the pitch fiber bundle F with the above structure was 15 minutes. During the infusibilization, the unwinding of the pitch fiber bundle F from the bobbin B 1 was carried out smoothly. The infusibilization process could be carried out smoothly without breaking the fiber bundle in the infusibilization furnace.

【0037】このようにして不融化されたピッチ繊維束
Fは、連続して予備炭化炉30へ送給し、上記の20g
のテンション化に通糸して予備炭化された。
The pitch fiber bundle F infusibilized in this manner is continuously fed to the preliminary carbonization furnace 30 and the above-mentioned 20 g is fed.
Was pre-carbonized by threading to tension.

【0038】本実施例によれば、予備炭化炉30は入口
部より400、500、600、700、1100℃へ
と階段状に上昇する態様にて加熱保持され、且つ炉内を
本発明の範囲内の微量酸素含有雰囲気とするために10
00ppmの酸素を含有する窒素ガスが供給された。予
備炭化に要した時間は7分であった。
According to this embodiment, the preliminary carbonization furnace 30 is heated and held in a mode in which it rises stepwise from the inlet to 400, 500, 600, 700, 1100 ° C., and the inside of the furnace is within the scope of the present invention. 10 to create an atmosphere containing a trace amount of oxygen
Nitrogen gas was supplied containing 00 ppm oxygen. The time required for pre-carbonization was 7 minutes.

【0039】不融化ピッチ繊維束Fは、予備炭化炉30
内を通糸される間に微量酸素含有雰囲気下での加熱によ
り、予備炭化されると同時に膠着が解除された。
The infusibilized pitch fiber bundle F is used in the preliminary carbonization furnace 30.
While the yarn was being threaded, it was pre-carbonized and released from sticking by heating in an atmosphere containing a slight amount of oxygen.

【0040】該予備炭化繊維束Fは、強度1.5GP
a、弾性率120GPaであった。また予備炭化繊維束
Fは、膠着が除去(脱膠着)されており、綿状にふわふ
わとなっていて、しなやかなものであった。この予備炭
化繊維束Fの膠着度は9%であった。
The preliminary carbonized fiber bundle F has a strength of 1.5 GP.
The elastic modulus was 120 GPa. Further, the pre-carbonized fiber bundle F had gluing removed (de-glued), was fluffy like a cotton, and was supple. The degree of sticking of this preliminary carbonized fiber bundle F was 9%.

【0041】上記の予備炭化繊維束は、予備炭化後、直
径80mmのボビンB2 に長さが20kmになるまで巻
取った。予備炭化繊維束を巻取った後のボビンB2 の外
径は約200mmになった。
The above pre-carbonized fiber bundle was pre-carbonized and wound on a bobbin B 2 having a diameter of 80 mm until the length became 20 km. The outer diameter of the bobbin B 2 after winding the pre-carbonized fiber bundle was about 200 mm.

【0042】このボビンB2 に巻いた予備炭化繊維束F
を図2の黒鉛化炉50に送り、これに装備した解舒、巻
取りの変速機構及びテンション変更機能により、繊維束
Fを解除し所定のテンションを付与して、黒鉛炉50内
を通糸して焼成し、繊維束Fを黒鉛化した。
A preliminary carbonized fiber bundle F wound on this bobbin B 2.
2 is sent to the graphitization furnace 50 of FIG. 2, and the fiber bundle F is released and a predetermined tension is given by the unwinding and winding speed change mechanism and the tension changing function equipped therein, Then, the fiber bundle F was graphitized.

【0043】黒鉛化炉の温度は2500℃、焼成時間は
12秒(通糸速度5m/分)、焼成時のテンションは1
000gに設定した。
The temperature of the graphitizing furnace is 2500 ° C., the firing time is 12 seconds (threading speed 5 m / min), and the tension during firing is 1
It was set to 000 g.

【0044】このようにして得られた黒鉛繊維は、黒鉛
化前の予備炭化繊維と同様に、膠着の少ないふわふわし
たしなやかな繊維であり、膠着度は10%であった。
The graphite fiber thus obtained was a fluffy and supple fiber with little sticking, like the pre-carbonized fiber before graphitization, and the sticking degree was 10%.

【0045】この黒鉛繊維を引き続き表面処理装置にか
けて表面処理を行ない、その後サイズ剤付与装置でサイ
ズ剤を付与し、乾燥後、ボビンに500mに巻取った。
引き続き更に4本のボビンに500mずつ巻取った。
This graphite fiber was subsequently subjected to a surface treatment by a surface treatment device, and then a sizing agent was applied by a sizing agent applying device, dried and wound on a bobbin to a length of 500 m.
Subsequently, it was further wound on four bobbins 500 m each.

【0046】この黒鉛繊維についてJISR7601に
規定する樹脂含浸ストランド試験法によりストランド引
張強度を測定した結果、そのストランド引張強度は35
0kg/mm2 であり、引張弾性率は71ton/mm
2 であった。
The strand tensile strength of this graphite fiber was measured by the resin-impregnated strand test method specified in JIS R7601, and the strand tensile strength was found to be 35.
0 kg / mm 2 , tensile elastic modulus is 71 ton / mm
Was 2 .

【0047】本実施例によれば、後述する比較例1に比
べて20倍の通糸速度で同じ物性の黒鉛繊維が得られ
た。
According to this example, a graphite fiber having the same physical properties was obtained at a threading speed 20 times that of Comparative Example 1 described later.

【0048】実施例2 図2の黒鉛化炉50においてボビンB2 から予備炭化繊
維束Fを解除する際に、予備炭化繊維Fをクリールにか
けて解除しながら、4回/mの割合で繊維束に撚りをか
けた以外は、実施例1と同様にして黒鉛化処理した。
Example 2 When releasing the pre-carbonized fiber bundle F from the bobbin B 2 in the graphitizing furnace 50 of FIG. 2, the pre-carbonized fiber F was creeled and released, and the pre-carbonized fiber bundle F was turned into a fiber bundle at a rate of 4 times / m. Graphitization was performed in the same manner as in Example 1 except that twist was applied.

【0049】この場合、得られた黒鉛繊維は、融膠着度
が10%と融膠着が少ないふわふわした繊維束であるに
も拘わらず、繊維束は集束しており、引き続き表面処理
及びサイズ剤処理の2つを行なってボビンB3 に巻取っ
たが、2つの工程中、ローラーへの繊維束の巻き付き、
断糸は見られず、毛羽の発生も少なく、巻取り後の巻き
形状も良好であった。
In this case, although the obtained graphite fiber is a fluffy fiber bundle having a degree of fusion of 10% and little fusion, the fiber bundle is bundled, and the surface treatment and the sizing treatment are continued. Was wound on the bobbin B 3 by carrying out two of the above, and during the two steps, winding of the fiber bundle on the roller,
No yarn breakage was observed, less fluff was generated, and the wound shape after winding was good.

【0050】この黒鉛繊維のストランド強度は370k
g/mm2 であり、引張弾性率は71ton/mm2
あった。
The strand strength of this graphite fiber is 370 k.
a g / mm 2, a tensile modulus of 71ton / mm 2.

【0051】実施例3 図2の黒鉛化炉50での焼成時間を10分とし、テンシ
ョンを1000gとした以外は、実施例1と同様に処理
した。
Example 3 The same process as in Example 1 was carried out except that the firing time in the graphitization furnace 50 shown in FIG. 2 was 10 minutes and the tension was 1000 g.

【0052】この場合は、得られた黒鉛繊維の引張強度
は350kg/mm2 であり、引張弾性率は71ton
/mm2 、電気抵抗(体積抵抗率)は380μΩ・cm
であり、電気抵抗の低い電気伝導性の良好な繊維が得ら
れた。
In this case, the tensile strength of the obtained graphite fiber is 350 kg / mm 2 , and the tensile elastic modulus is 71 ton.
/ Mm 2 , electric resistance (volume resistivity) is 380 μΩ · cm
Thus, a fiber having low electric resistance and good electric conductivity was obtained.

【0053】比較例1図1及び図2の不融化炉10、予
備炭化炉30及び黒鉛化炉50を直列につないで、繊維
束Fを連続的に通糸して連続処理した。黒鉛化の焼成時
間は、黒鉛化炉50を予備炭化炉30と直列につないだ
ために、制約を受けて120秒と長くなり、又黒鉛化時
のテンションも不融化及び予備炭化時と同じ低い200
gであった。それ以外は実施例1と同様に処理した。
Comparative Example 1 The infusibilizing furnace 10, the preliminary carbonizing furnace 30 and the graphitizing furnace 50 shown in FIGS. 1 and 2 were connected in series, and the fiber bundle F was continuously threaded and continuously treated. The firing time for graphitization is limited to 120 seconds because the graphitization furnace 50 is connected in series with the pre-carbonization furnace 30, and the tension during graphitization is as low as during infusibilization and pre-carbonization. 200
It was g. Other than that was processed like Example 1.

【0054】このようにして得られた黒鉛繊維のストラ
ンド強度は、350kg/mm2 であり、引張弾性率は
70ton/mm2 であった。又電気抵抗(体積抵抗
率)は510μΩ・cmであった。
The graphite fiber thus obtained had a strand strength of 350 kg / mm 2 and a tensile modulus of 70 ton / mm 2 . The electric resistance (volume resistivity) was 510 μΩ · cm.

【0055】実施例4 黒鉛化処理時の焼成時間を比較例1と同じ120秒と
し、黒鉛化処理時のテンションを1000gとした以外
は、実施例1と同様に処理した。
Example 4 A treatment was carried out in the same manner as in Example 1 except that the firing time during graphitization was 120 seconds, which was the same as in Comparative Example 1, and the tension during graphitization was 1000 g.

【0056】このようにして得られた黒鉛繊維のストラ
ンド強度は380kg/mm2 であり、引張弾性率は7
8ton/mm2 であった。又電気抵抗(体積抵抗率)
は48μΩ・cmであった。
The graphite fiber thus obtained had a strand strength of 380 kg / mm 2 and a tensile modulus of 7
It was 8 ton / mm 2 . Also electrical resistance (volume resistivity)
Was 48 μΩ · cm.

【0057】焼成時のテンションを上げることにより、
得られる黒鉛繊維の引張強度、引張弾性率は明らかに増
加した。
By increasing the tension during firing,
The tensile strength and tensile modulus of the obtained graphite fiber increased obviously.

【0058】[0058]

【発明の効果】以上説明したように、本発明の炭素繊維
の製造方法では、連続予備炭化以前の工程と連続炭化以
降の工程とを分離して、炭化又は黒鉛化処理時に引張強
度、引張弾性率の向上を図る延伸処理を可能とし、又炭
化炉又は黒鉛化炉内での滞留時間を長くして低温処理で
炭化度又は黒鉛化度を高めることを可能としたので、高
引張強度、高引張弾性率及び高熱伝導性の炭素繊維を容
易に得ることができ、然も炭化工程のコストを大幅に安
価にできる。
As described above, in the method for producing carbon fiber of the present invention, the steps prior to the continuous pre-carbonization and the steps after the continuous carbonization are separated so that the tensile strength and the tensile elasticity during the carbonization or graphitization treatment are It is possible to perform stretching treatment to improve the rate, and to increase the carbonization degree or graphitization degree by low temperature treatment by increasing the residence time in the carbonization furnace or graphitization furnace, so that high tensile strength, high Carbon fibers having a tensile modulus and high thermal conductivity can be easily obtained, and the cost of the carbonization step can be significantly reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るピッチ系炭素繊維の製
造方法を実施するための製造装置の不融化炉及び予備炭
化炉を示す説明図である。
FIG. 1 is an explanatory view showing an infusible furnace and a preliminary carbonization furnace of a manufacturing apparatus for carrying out a method for manufacturing a pitch-based carbon fiber according to an embodiment of the present invention.

【図2】同じく製造装置の黒鉛化炉を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a graphitization furnace of the same manufacturing apparatus.

【符号の説明】[Explanation of symbols]

10 不融化炉 12 緊張手段 30 予備炭化炉 50 黒鉛化炉 52 緊張手段 10 Infusibilizing furnace 12 Tensioning means 30 Preliminary carbonization furnace 50 Graphitizing furnace 52 Tensioning means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 テンション付与下でピッチ繊維を連続不
融化し、連続予備炭化し、連続炭化し、必要に応じて更
に連続黒鉛化するピッチ系炭素繊維の製造方法におい
て、連続予備炭化以前の工程と連続炭化以降の工程とを
分離することを特徴とするピッチ系炭素繊維の製造方
法。
1. A method for producing a pitch-based carbon fiber, which comprises continuously infusibilizing pitch fibers under tension, continuously pre-carbonizing them, continuously carbonizing them, and, if necessary, further graphitizing them, prior to continuous pre-carbonization. And a step of continuous carbonization and subsequent steps are separated from each other.
JP19640092A 1992-06-30 1992-06-30 Production of pitch-based carbon fiber Pending JPH0617319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19640092A JPH0617319A (en) 1992-06-30 1992-06-30 Production of pitch-based carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19640092A JPH0617319A (en) 1992-06-30 1992-06-30 Production of pitch-based carbon fiber

Publications (1)

Publication Number Publication Date
JPH0617319A true JPH0617319A (en) 1994-01-25

Family

ID=16357242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19640092A Pending JPH0617319A (en) 1992-06-30 1992-06-30 Production of pitch-based carbon fiber

Country Status (1)

Country Link
JP (1) JPH0617319A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074468A (en) * 1996-05-24 2000-06-13 Hercules Incorporated Sizing composition
KR100412340B1 (en) * 1999-08-23 2003-12-31 주식회사 코로스 1 quasi-one-dimensional fiber semiconductor with linear carbon structure and process thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074468A (en) * 1996-05-24 2000-06-13 Hercules Incorporated Sizing composition
US6165320A (en) * 1996-05-24 2000-12-26 Hercules Incorporated Method of sizing
KR100412340B1 (en) * 1999-08-23 2003-12-31 주식회사 코로스 1 quasi-one-dimensional fiber semiconductor with linear carbon structure and process thereof

Similar Documents

Publication Publication Date Title
KR900004918B1 (en) Process for producing chopped strand of carbon fiber
JP4370034B2 (en) Pitch fiber bundle, pitch-based carbon fiber bundle and method for producing the same
EP0147005A2 (en) Oxidation of pitch fibers
JPH0617319A (en) Production of pitch-based carbon fiber
JPS6220281B2 (en)
WO2010021045A1 (en) Woven fabric of isotropic pitch carbon fiber and process for producing the same
JPH038808A (en) Production of pitch-based carbon fiber
JPS62231020A (en) Production of pitch carbon yarn
JP2930166B2 (en) Carbon fiber production method
JP2695355B2 (en) Carbon fiber production method
JPS60126324A (en) Method for producing carbon fiber bundle having high orientation of filament
JPH06146121A (en) Production of carbon fiber
JPH04119124A (en) Production of pitch-based carbon fiber and graphite fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPS6257932A (en) Production of carbon fiber and graphite fiber
JPH0491229A (en) Production of pitch-based carbon fiber
JPH05171519A (en) Production of pitch carbon fiber
JPH06166911A (en) Production of carbon fiber
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPH06166913A (en) Production of carbon fiber
JPH06166915A (en) Guide bar in infusibilizing furnace thereof for producing pitch-based carbon fiber
JPS59150115A (en) Production of carbon fiber
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH04272234A (en) Production of pitch-base carbon fiber and graphite fiber
JPH05295620A (en) Production of pitch-based carbon fiber