JPH04119124A - Production of pitch-based carbon fiber and graphite fiber - Google Patents

Production of pitch-based carbon fiber and graphite fiber

Info

Publication number
JPH04119124A
JPH04119124A JP23195690A JP23195690A JPH04119124A JP H04119124 A JPH04119124 A JP H04119124A JP 23195690 A JP23195690 A JP 23195690A JP 23195690 A JP23195690 A JP 23195690A JP H04119124 A JPH04119124 A JP H04119124A
Authority
JP
Japan
Prior art keywords
furnace
inert gas
fibers
fiber
gas supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23195690A
Other languages
Japanese (ja)
Inventor
Yoshimasa Chiba
千葉 喜政
Tomoya Otani
大谷 知也
Yoshiaki Masuda
増田 義明
Kiyotoshi Mase
間瀬 清年
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen General Sekiyu KK
Original Assignee
Tonen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Corp filed Critical Tonen Corp
Priority to JP23195690A priority Critical patent/JPH04119124A/en
Publication of JPH04119124A publication Critical patent/JPH04119124A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To prevent fluffing and yarn breakage of fiber on the inside and outside of a carbonization furnace and obtain the subject fiber of high quality by forming the flow of an inert gas directing from the upstream to the downstream sides in a precarbonizing furnace for precarbonizing infusibilized fiber. CONSTITUTION:The flow of an inert gas from the upstream to the downstream sides is initially formed in the interior of a precarbonizing furnace 30. Infusibilized fiber prepared by infusibilizing carbonaceous pitch fiber is then continuously threaded through the inert gas atmosphere of the precarbonizing furnace at a prescribed temperature, heat-treated and precarbonized. The aforementioned fiber is carbonized and further, as necessary, graphitized to afford the objective fiber. Furthermore, the inert gas is preferably fed from gas feed ports (32b) to (32d) provided at plural places in the longitudinal direction, directing from the upstream to the downstream sides of the precarbonizing furnace 30, a gas feed port (32a) provided in an inlet part (30a) of the furnace and a gas feed port (32e) formed in an outlet part (30b) of the furnace.

Description

【発明の詳細な説明】 の1 本発明は、炭素質ピッチから製造されるピッチ系炭素繊
維及び黒鉛繊維の製造方法に関し、特にピッチ繊維を不
融化して得た不融化繊維の糸切れ、毛羽立ちを防止した
予備炭化方法に特徴を有する製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION 1. The present invention relates to a method for producing pitch-based carbon fibers and graphite fibers produced from carbonaceous pitch, and particularly to methods for producing pitch-based carbon fibers and graphite fibers that are produced by infusible pitch fibers. The present invention relates to a manufacturing method characterized by a preliminary carbonization method that prevents.

本明細書にて「炭素繊維」とは、特に明記しない場合に
は炭素繊維のみならず黒鉛繊維を含めて使用する。
In this specification, the term "carbon fiber" includes not only carbon fiber but also graphite fiber, unless otherwise specified.

LL立立型 1在、レーヨン系やPAN系の炭素繊維並びにピッチ系
炭素繊維は、種々の技術分野にて広く使用されるに至り
、特に、石油系ピッチ、石炭系ピッチ、芳香族炭化水素
類を原料とするピッチ等の炭素質ピッチから製造される
ピッチ系炭素繊維は、レーヨン系やPAN系の炭素繊維
に比較して炭化収率が高く、弾性率等の物理的特性も優
れており、更に低コストにて製造し得るという利点を有
しているために近年注目を浴びている。
Rayon-based and PAN-based carbon fibers, as well as pitch-based carbon fibers, have come to be widely used in various technical fields, especially for petroleum-based pitch, coal-based pitch, and aromatic hydrocarbons. Pitch-based carbon fibers manufactured from carbonaceous pitch such as pitch made from rayon-based and PAN-based carbon fibers have a higher carbonization yield and superior physical properties such as elastic modulus compared to rayon-based and PAN-based carbon fibers. Furthermore, it has attracted attention in recent years because it has the advantage of being able to be manufactured at low cost.

現在、ピッチ系炭素繊維は、 (1)石油系ピッチ、石炭系ピッチ、芳香族炭化水素類
を原料とするピッチ等から炭素繊維に適した炭素質ピッ
チを調製し、該炭素質ピッチを加熱溶融して紡糸機にて
紡糸し、集束してピッチ繊維束を製造し、 (2)前記ピッチ繊維束を不融化炉で酸化性雰囲気下に
て温度150〜400℃まで加熱して不融化し、 (3)引き続いて、該不融化により得られた不融化繊維
束を予備炭化炉で不活性ガス雰囲気下にて最高温度50
0−1500℃まで加熱して予備炭化し、 (4)次いで、予備炭化された繊維束を炭化炉で不活性
ガス雰囲気下にて3200℃以下の温度まで加熱して炭
素化或いは黒鉛化すること、により製造されている。
Currently, pitch-based carbon fibers are manufactured using the following methods: (1) Carbon pitch suitable for carbon fiber is prepared from petroleum pitch, coal pitch, pitch made from aromatic hydrocarbons, etc., and the carbon pitch is heated and melted. (2) heating the pitch fiber bundle to a temperature of 150 to 400° C. in an oxidizing atmosphere in an infusible furnace to infusible it; (3) Subsequently, the infusible fiber bundle obtained by the infusibility is heated in a pre-carbonization furnace at a maximum temperature of 50°C under an inert gas atmosphere.
(4) Next, the pre-carbonized fiber bundle is heated to a temperature of 3200°C or less in a carbonization furnace under an inert gas atmosphere to carbonize or graphitize it. Manufactured by .

上記の予備炭化工程において、不融化繊維は加熱の過程
で顕著な重量減(通常的10〜30%)を生じ、雰囲気
の不活性ガス中に多量の熱分解生成物が含有される。こ
の熱分解の結果、発生する水蒸気などの酸素含有物を含
む分解ガス及びタール状物質が、より高温である予備炭
化炉の下流領域に持ち込まれると繊維と反応し、目的で
ある炭素繊維の品質を低下させる。
In the above preliminary carbonization step, the infusible fibers undergo a significant weight loss (usually 10 to 30%) during the heating process, and a large amount of thermal decomposition products are contained in the inert gas atmosphere. As a result of this thermal decomposition, the decomposed gas containing oxygen-containing substances such as water vapor and tar-like substances are brought into the downstream region of the pre-carbonization furnace where the temperature is higher and react with the fibers, resulting in the quality of the carbon fibers that are the goal. decrease.

従って予備炭化炉の下流領域をできるだけクリーンな状
態に保って予備炭化する必要があると考えられ、予備炭
化炉内の不活性ガスの流れは、基本的には、炉の下流か
ら上流に向けて(即ち繊維の進行方向に対して向流方向
に)流れるように形成されてきた。
Therefore, it is considered necessary to keep the downstream area of the pre-carbonization furnace as clean as possible during pre-carbonization, and the flow of inert gas within the pre-carbonization furnace is basically from downstream to upstream of the furnace. It has been formed to flow (ie, in a countercurrent direction to the direction in which the fibers travel).

このような不活性ガスの流れの形成は、ポリアクリロニ
トリルを原料とする炭素繊維の製造方法にも見出される
ものである(特開昭57−25419号、特開昭58−
115119号及び特開昭59−106519号を参照
)。
Formation of such an inert gas flow is also found in a method for manufacturing carbon fiber using polyacrylonitrile as a raw material (Japanese Patent Application Laid-open Nos. 57-25419 and 1983-1989).
115119 and JP-A-59-106519).

が  しよ とする しかしながら、上記のように、予備炭化炉内の不活性ガ
スの流れを下流から上流に向かって流す方法では、不融
化繊維は引張強度が約0.01GPaと極めて脆弱なた
め、炉の低温部、特に入り口付近でタール状物質が繊維
に付着して、糸切れ、毛羽立ちが多発し、通糸時に不融
化繊維束そのものの切断が起こるなどの欠点があった。
However, as mentioned above, in the method of flowing inert gas from downstream to upstream in the pre-carbonization furnace, the infusible fibers have a tensile strength of about 0.01 GPa, which is extremely weak. There were disadvantages such as tar-like substances adhering to the fibers in the low-temperature part of the furnace, especially near the entrance, resulting in frequent thread breakage and fuzzing, and the infusible fiber bundle itself being cut during threading.

又炉の低温部でタール状物質を付着した不融化繊維束は
、より温度の高い炉の下流領域に進行するに伴ない繊維
同士の融膠着が生じ、これが原因で予備炭化繊維の糸切
れ、毛羽立ちが誘発され、予備炭化工程以降の下流工程
においても、融膠着が原因でガイドローラ等との接触時
のダメージにより、糸切れが誘発されてきた。
In addition, as the infusible fiber bundles with tar-like substances attached to them in the low-temperature part of the furnace progress to the downstream region of the furnace where the temperature is higher, the fibers become fused and stuck to each other, which causes thread breakage of the pre-carbonized fibers, Fuzzing has been induced, and yarn breakage has also been induced in downstream processes after the preliminary carbonization step due to damage caused by fusion and agglutination during contact with guide rollers and the like.

更にこれらの繊維から製造された炭素繊維を用いて複合
材を製造した場合、その複合材の物性が低下するなどの
問題が生じることも判った。
Furthermore, it has been found that when a composite material is manufactured using carbon fibers manufactured from these fibers, problems such as deterioration of the physical properties of the composite material occur.

従って本発明の目的は、ピッチ繊維束を不融化して得ら
れる不融化繊維束の予備炭化方法を改善して、予備炭化
炉内での不融化繊維の加熱により発生したタール状物質
が繊維に付着して繊維同士が融膠着するのを防ぎ、予備
炭化炉内での繊維の糸切れ、毛羽立ち及びそれ以降の炭
化工程等の炭化炉内外での繊維の糸切れを防止し、これ
により高品質の炭素繊維及び黒鉛繊維を得ることを可能
とじたピッチ系炭素繊維及び黒鉛繊維の製造方法を提供
することである。
Therefore, it is an object of the present invention to improve the method for pre-carbonizing an infusible fiber bundle obtained by infusible pitch fiber bundles, and to prevent tar-like substances generated by heating the infusible fibers in a pre-carbonization furnace into fibers. It prevents the fibers from adhering and fusing together, and prevents fiber breakage and fluffing in the pre-carbonization furnace, as well as fiber breakage inside and outside the carbonization furnace during the subsequent carbonization process, resulting in high quality. An object of the present invention is to provide a method for producing pitch-based carbon fibers and graphite fibers, which makes it possible to obtain carbon fibers and graphite fibers.

を  するための 上記目的は本発明に係るピッチ系炭素繊維及び黒鉛繊維
の製造方法にて達成される。要約すれば本発明は、不活
性ガス雰囲気に保持された所定温度の予備炭化炉内に、
炭素質ピッチ繊維を不融化して得た不融化繊維を連続的
に通糸して熱処理することにより予備炭化し、然る後に
炭化し、必要に応じて黒鉛化することからなるピッチ系
炭素繊維及び黒鉛繊維の製造方法において、前記予備炭
化炉内に上流から下流に向けた不活性ガスの流れを形成
したことを特徴とするピッチ系炭素繊維及び黒鉛繊維の
製造方法である。
The above objects are achieved by the method for producing pitch-based carbon fibers and graphite fibers according to the present invention. In summary, the present invention provides a pre-carbonization furnace at a predetermined temperature maintained in an inert gas atmosphere.
A pitch-based carbon fiber obtained by infusible fiber obtained by infusible carbonaceous pitch fiber, which is pre-carbonized by continuous threading and heat treatment, then carbonized, and optionally graphitized. and a method for producing pitch-based carbon fibers and graphite fibers, characterized in that a flow of inert gas is formed in the preliminary carbonization furnace from upstream to downstream.

本発明では、前記予備炭化炉の上流から下流に向けた長
手方向上の複数箇所と前記炉の入口部及び出口部とに設
けたガス供給口から不活性ガスを供給することにより、
前記炉内に前記不活性ガス雰囲気を形成することが好ま
しい。
In the present invention, by supplying inert gas from gas supply ports provided at multiple locations in the longitudinal direction from upstream to downstream of the preliminary carbonization furnace and at the inlet and outlet of the furnace,
Preferably, the inert gas atmosphere is formed within the furnace.

本発明の好ましい一態様によれば、前記予備炭化炉内へ
の前記ガス供給口からの不活性ガスの供給量を、該炉の
長手方向上の複数箇所のガス供給口の各々よりも出口部
のガス供給口で大とし、且つ出口部のガス供給口よりも
入口部のガス供給口で更に大とすることにより、前記炉
内に前記不活性ガスの流れが形成される。本発明の好ま
しい他の態様によれば、前記予備炭化炉の出口部のスリ
ット開度を入口部のスリット開度よりも大とすることに
より、好ましい更に他の態様によれば、前記予備炭化炉
の長手方向上の複数箇所のガス供給口と反対側の位置で
且つこれよりも下流寄りの位置にガス排出口を設けて、
該ガス排出口を通って該炉内の不活性ガスを部分的に排
出することにより、それぞれ前記炉内に前記不活性ガス
の流れが形成される。
According to a preferred aspect of the present invention, the amount of inert gas supplied from the gas supply port into the pre-carbonization furnace is set to be smaller at the outlet than at each of the gas supply ports at a plurality of locations in the longitudinal direction of the furnace. A flow of the inert gas is formed in the furnace by making the gas supply port at the inlet section larger and the gas supply port at the inlet section larger than the gas supply port at the outlet section. According to another preferred aspect of the present invention, the slit opening at the outlet of the pre-carbonization furnace is made larger than the slit opening at the inlet. A gas discharge port is provided at a position opposite to the gas supply ports at multiple locations in the longitudinal direction and at a position closer to the downstream side,
By partially discharging the inert gas in the furnace through the gas outlet, a flow of inert gas is formed in the respective furnace.

以下、本発明の好ましい実施態様を図面に従って詳細に
説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の炭素繊維の製造方法の一実施態様を
示す説明図である。
FIG. 1 is an explanatory diagram showing one embodiment of the method for producing carbon fibers of the present invention.

第1図において、30は予備炭化炉で、本発明は、予備
炭化炉30内に所定方向の不活性ガスの流れ36を形成
することにより、不融化された不融化繊維束Fの予備炭
化を改善したことが特徴である。
In FIG. 1, 30 is a pre-carbonization furnace, and the present invention pre-carbonizes the infusible fiber bundle F by forming an inert gas flow 36 in a predetermined direction in the pre-carbonization furnace 30. It is characterized by improvements.

ピッチ繊維を紡糸し、合糸して得られたピッチ繊維束は
、図示しない不融化炉で不融化され、この不融化により
得られた不融化繊維束Fは、連続して予備炭化炉30で
予備炭化され、その後図示しない炭化炉で炭化され、必
要に応じて黒鉛化されて、炭素繊維とされる。
The pitch fiber bundle obtained by spinning and doubling pitch fibers is infusible in an infusible furnace (not shown), and the infusible fiber bundle F obtained by this infusibility is continuously passed through a preliminary carbonization furnace 30. The carbon fiber is preliminarily carbonized, then carbonized in a carbonization furnace (not shown), and graphitized if necessary to obtain carbon fiber.

予備炭化炉30は、上下一対の加熱ヒータ31を類30
内に上流から下流に向けた長手方向上に沿って例えば3
対設置して、類30内の温度を上流から下流に向けて例
えば450℃、600℃、1100℃へと段階的に高く
なるように保持されている。
The preliminary carbonization furnace 30 includes a pair of upper and lower heaters 31.
For example, along the longitudinal direction from upstream to downstream within
The temperature in the group 30 is maintained so as to increase stepwise from upstream to downstream, for example, to 450°C, 600°C, and 1100°C.

又予備炭化炉30の下部には、上流から下流に向けた長
手方向上に沿ってガス供給口32b、32c、32dが
下の加熱ヒータ31の位置に設けられ、類30内を不活
性ガス雰囲気にするために、ガス供給口32b〜32d
から不活性ガスが供給されている。又炉30の入口部3
0a及び出口部30bの下部にもガス供給口32a、3
2eが設けられ、入口部30a及び出口部30bからの
外気の洩れ込みを防ぐために、ガス供給口32a及び3
2eから供給された不活性ガスにより入口部30a及び
出口部30bにエアーカーテンが形成され、且つ入口部
30a及び出口部30bの端部に設けられたスリット3
4a及び34bの開度が所定量に調節されている。これ
により類30内が不活性ガス雰囲気に保持されている。
Further, gas supply ports 32b, 32c, and 32d are provided in the lower part of the preliminary carbonization furnace 30 along the longitudinal direction from upstream to downstream at the positions of the lower heaters 31, and the inside of the furnace 30 is filled with an inert gas atmosphere. In order to
Inert gas is supplied from Also, the inlet part 3 of the furnace 30
Gas supply ports 32a and 3 are also provided at the lower part of the outlet part 30b and the outlet part 30b.
2e are provided, and gas supply ports 32a and 3 are provided to prevent outside air from leaking from the inlet portion 30a and the outlet portion 30b.
An air curtain is formed at the inlet part 30a and the outlet part 30b by the inert gas supplied from the inert gas 2e, and the slit 3 provided at the end of the inlet part 30a and the outlet part 30b
The opening degrees of 4a and 34b are adjusted to a predetermined amount. As a result, the inside of the casing 30 is maintained in an inert gas atmosphere.

さて、本発明は、予備炭化炉30内での不融化繊維束F
を構成する繊維の熱処理により発生したタール状物質が
入口部30aに向かうのを防ぐために、類30内に不活
性ガスの流れ36を繊維束Fの通糸方向と同方向の上流
から下流へ向けた並流の態様に形成するものである。
Now, in the present invention, the infusible fiber bundle F in the preliminary carbonization furnace 30 is
In order to prevent tar-like substances generated by the heat treatment of the fibers constituting the fiber bundle from flowing toward the inlet portion 30a, an inert gas flow 36 is directed from upstream to downstream in the same direction as the threading direction of the fiber bundle F. It is formed in a parallel flow mode.

本実施態様では、類30内へのガス供給口328〜32
eからの不活性ガスの供給量を、炉30の長手方向上の
複数箇所のガス供給口32b〜32dの各々での供給量
Ib〜Idよりも出口部30bのガス供給口32eでの
供給量Ieを大とし、その供給量工eよりも入口部30
aのガス供給口32aでの供給量Iaを更に大とするこ
とにより、即ちIa>Ie>Ib、Ic、Idとするこ
とにより、類30内に上記の不活性ガスの流れ36を形
成した。
In this embodiment, gas supply ports 328 to 32 into class 30
The amount of inert gas supplied from e is set to be smaller than the amount of inert gas supplied at the gas supply port 32e of the outlet portion 30b than the amount of supply Ib to Id at each of the gas supply ports 32b to 32d at multiple locations in the longitudinal direction of the furnace 30. Ie is made larger, and the inlet portion 30 is larger than the supply amount e.
By further increasing the supply amount Ia at the gas supply port 32a, that is, by setting Ia>Ie>Ib, Ic, and Id, the above-mentioned inert gas flow 36 was formed in the group 30.

一般に、入口部30aでのガス供給量Iaを他の箇所で
のガス供給量Ib〜Ieの各々よりも十分に大きくすれ
ば、類30内に上流から下流へ向けた不活性ガスの流れ
36を形成し、且つ入口部30aからの外気の洩れ込み
を防ぐことができるが、それだけだと出口部30bから
の外気の洩れ込みを防ぐことが確実でない。そこで出口
部30bからの外気の洩れ込みの確実な防止を図るため
に、上記したように、出口部30bでのガス供給量Ie
は、入口部30aのでのガス供給量Iaに次ぐ大きさと
する。
Generally, if the gas supply amount Ia at the inlet portion 30a is made sufficiently larger than each of the gas supply amounts Ib to Ie at other locations, the inert gas flow 36 from upstream to downstream can be created in the group 30. Although it is possible to prevent the leakage of outside air from the inlet portion 30a by forming the hole, it is not possible to reliably prevent the leakage of outside air from the outlet portion 30b. Therefore, in order to reliably prevent outside air from leaking from the outlet portion 30b, as described above, the gas supply amount Ie at the outlet portion 30b is
is assumed to be the second largest after the gas supply amount Ia at the inlet portion 30a.

入口部30a、出口部30b以外でのガス供給量Ib、
Ic、Idは、Ia>Ie>Ib、Ic、Idでありさ
えすれば、そのガス供給量より、Ic、Idの大小を適
宜に選択できるが、類30内に形成される上流から下流
へ向けた不活性ガスの流れ36をより整然とした流れと
する観点からは、Ib>Ic>Idと上流側はど大きく
することが好ましい。
Gas supply amount Ib other than the inlet part 30a and the outlet part 30b,
As long as Ia>Ie>Ib, Ic, Id, the magnitude of Ic, Id can be selected as appropriate based on the gas supply amount. From the viewpoint of making the inert gas flow 36 more orderly, it is preferable that Ib>Ic>Id and the upstream side be larger.

これらのガス供給量Ia、Ib、Ic、Id、Ieは、
入口部30a及び出口部30bのスリット34a、34
bの開度、並びに入口部30a及び出口部30bにガス
排出口35a、35eを設けたときにはそこからのガス
の排出の有無又そのダンパ開度を考慮して、Ia>Ie
>Ib、IC1Idの範囲内で類30内に上流から下流
に向けた不活性ガスの流れ36を形成するのに必要な量
として、具体的に決定すればよい。
These gas supply amounts Ia, Ib, Ic, Id, and Ie are:
Slits 34a, 34 in the inlet section 30a and outlet section 30b
Ia>Ie, taking into account the opening degree of b, whether or not gas is discharged from there when gas discharge ports 35a and 35e are provided at the inlet part 30a and the outlet part 30b, and the damper opening degree.
>Ib, IC1Id may be specifically determined as the amount necessary to form an inert gas flow 36 from upstream to downstream within class 30.

類30内に上流から下流に向けて不活性ガスの流れ36
が形成されていることを確認するには、類30内で不融
化繊維束Fの繊維から発生したガスが白煙になるので、
炉30に内部を観察できる箇所を設けて、上記の白煙の
流れを目視で観察することにより確認すればよい。或い
は入口部30a及び出口部30bのスリット34a、3
4bの箇所にアネモメータ等の流速計を設置して測定す
ることもできる。
Flow 36 of inert gas from upstream to downstream within class 30
To confirm that is formed, the gas generated from the fibers of the infusible fiber bundle F in class 30 turns into white smoke, so
This can be confirmed by providing a location in the furnace 30 where the inside can be observed and visually observing the flow of the white smoke. Or the slits 34a, 3 of the inlet part 30a and the outlet part 30b
It is also possible to measure by installing a current meter such as an anemometer at the location 4b.

本実施態様では、以上のように、予備炭化炉30内への
不活性ガスの供給量Ia〜reを、Ia> I e> 
I b、  I c、  I dとすることにより、類
30内に上流から下流に向けた並流の不活性ガスの流れ
36を形成しているので、類30内で不融化繊維束Fを
構成する繊維の加熱により発生したタール状物質が不活
性ガスの流れ36により下流方向へ運び去られ、従来の
ように、タール状物質が温度の低い炉30の上流領域へ
向かって、繊維に付着するということがなく、このため
脆弱な不融化繊維の糸切れがなく、又繊維同士の間が融
膠着することもない曇 又炉30の下流方向へ運び去られたタール状物質が、温
度の高い炉30の下流領域で分解し、部が固形化して繊
維に付着することはあるが、タール状物質そのものの付
着ではないので、繊維同士の間は融着することはなく、
単に弱い膠着状態となるだけで繊維同士が強(結合する
わけではない。驚いたことに、本発明の方法を用いて不
融化繊維束Fを予備炭化した場合には、これから得られ
た炭素繊維には、分解ガスと繊維との反応による引張強
度等の物性の低下がほとんど認めらないことが判った。
In this embodiment, as described above, the inert gas supply amounts Ia to Ire into the preliminary carbonization furnace 30 are set as Ia>Ie>
By setting I b, I c, and I d, a parallel inert gas flow 36 from upstream to downstream is formed within class 30, so that infusible fiber bundle F is configured within class 30. The tar-like substances generated by the heating of the fibers are carried away downstream by the inert gas flow 36, and as in the past, the tar-like substances adhere to the fibers toward the upstream region of the furnace 30 where the temperature is lower. Therefore, there is no breakage of the fragile infusible fibers, and there is no melting and sticking between the fibers. Although it may decompose in the downstream region of the furnace 30 and solidify and adhere to the fibers, the tar-like substance itself is not attached, so the fibers will not fuse together.
Just a weak adhesion state does not mean that the fibers are strongly bonded to each other. Surprisingly, when the infusible fiber bundle F is pre-carbonized using the method of the present invention, the carbon fibers obtained from it It was found that there was almost no decrease in physical properties such as tensile strength due to the reaction between the cracked gas and the fibers.

従って予備炭化炉30内で繊維同士の融膠着が原因で誘
発されていた不融化繊維の糸切れを防止でき、又それ以
降の炭化炉内外での炭化工程等でガイドローラ等との接
触によるダメージにより糸切れが発生するこも防止でき
、このため糸切れの少ない強度等を十分に発揮させた炭
素繊維を製造することができる。
Therefore, it is possible to prevent thread breakage of the infusible fibers, which was caused by the fusion and aggregation of fibers in the pre-carbonization furnace 30, and damage caused by contact with guide rollers, etc. during the subsequent carbonization process inside and outside the carbonization furnace. This also prevents the occurrence of yarn breakage, making it possible to produce carbon fibers that exhibit sufficient strength, etc. with less yarn breakage.

以上の実施態様では、予備炭化炉30の底部に長手方向
上の複数箇所に設けたガス供給口32b〜32d及び入
口部30a、出口部30bの下部に設けたガス供給口3
2a、32eからの不活性ガスの供給量を制御すること
により、類30内に上流から下流に向けた不活性ガスの
流れ36を形成したが、本発明はこれに限られない。
In the embodiment described above, the gas supply ports 32b to 32d are provided at multiple locations in the longitudinal direction at the bottom of the preliminary carbonization furnace 30, and the gas supply ports 3 are provided at the bottom of the inlet section 30a and the outlet section 30b.
Although the inert gas flow 36 from upstream to downstream is formed within the group 30 by controlling the amount of inert gas supplied from 2a and 32e, the present invention is not limited thereto.

即ち、出口部30bのスリット34bの開度を入口部3
0aのスリット34aの開度よりも大として、出口部3
0bがらの不活性ガスの排出量を大きくすることにより
、類3o内に上流から下流に向けた不活性ガスの流れ3
6を形成してもよい。
That is, the opening degree of the slit 34b of the outlet portion 30b is
The opening degree of the slit 34a of 0a is larger than that of the exit part 3.
By increasing the amount of inert gas discharged from 0b, the flow of inert gas from upstream to downstream within class 3o is increased.
6 may be formed.

この場合、不活性ガスの供給量Ia〜Idは、必ずしも
Ia>Ie>Ib、Ic、Idである必要がなく同一で
もよい。
In this case, the inert gas supply amounts Ia to Id do not necessarily have to satisfy Ia>Ie>Ib, Ic, and Id, and may be the same.

本発明では、更に、先の第1図に示すように、炉30の
ガス供給口32b〜32dと反対側の炉30の上部の、
これよりも下流寄りの位置にガス排出口35b〜35d
を設けて、これらガス排出口32b〜35dがら類3o
内の不活性ガスを部分的に排出することにより、類3o
内に上流から下流に向けて不活性ガスの流れ36を形成
するようにしてもよい。
In the present invention, as shown in FIG.
Gas exhaust ports 35b to 35d are located downstream from this.
These gas exhaust ports 32b to 35d are provided with
By partially discharging the inert gas in the
An inert gas flow 36 may be formed within the chamber from upstream to downstream.

上記炉30のガス排出口35b〜35dがらの不活性ガ
スの抜出し量は、炉の下流側はど大き(する。
The amount of inert gas extracted from the gas discharge ports 35b to 35d of the furnace 30 is larger on the downstream side of the furnace.

又入口部30a及び出口部30bにガス排出口35a及
び35eを設けて、そこから不活性ガスの抜出しを行な
ってもよい、この場合は、入り口部30a及び出口部3
0bにエアーカーテンが良好に形成され、外気の漏れ込
み防止と不活性ガスの排出を同時に行えるので好ましい
Further, gas exhaust ports 35a and 35e may be provided at the inlet portion 30a and the outlet portion 30b, and the inert gas may be extracted from there. In this case, the inlet portion 30a and the outlet portion 3
This is preferable because an air curtain is well formed at 0b, and leakage of outside air can be prevented and inert gas can be discharged at the same time.

排出口35 a、 35 b、 35 c、 35 d
、 35eでのガス排出量は、それらのガス排出ポンプ
の吸引量を変えることで行なっても、排出口にダンパを
設けて、ダンパ開度を変えることで行なってもよい。
Discharge ports 35a, 35b, 35c, 35d
, 35e may be determined by changing the suction amount of these gas discharge pumps, or by providing a damper at the discharge port and changing the opening degree of the damper.

以上では、いずれも、不活性ガス雰囲気とされた予備炭
化炉30で不融化繊維束Fの予備炭化を行なうに際し、
炉30内に上流から下流に向けて不活性ガスの流れ36
を形成しながら行なったが、先頃、本出願人が特願平1
−137233号で提案したように、この不活性ガスに
は30000ppm以下の微量ならば酸素を含有させて
、予備炭化を実施することも可能である。
In all of the above, when performing preliminary carbonization of the infusible fiber bundle F in the preliminary carbonization furnace 30 in an inert gas atmosphere,
A flow of inert gas 36 from upstream to downstream within the furnace 30
Recently, the applicant filed a patent application for
As proposed in No. 137233, it is also possible to carry out preliminary carbonization by making the inert gas contain oxygen in a trace amount of 30,000 ppm or less.

本発明で用いる原料炭素質ピッチは、公知の原料、例え
ば石油系の各種重質油、熱分解タール、接触分解タール
、石炭の乾留によって得られる重質油、タールなどを出
発原料として、その熱分解重縮合によって得られるメソ
フェースピッチ(光学的異方性ピッチ)、芳香族炭化水
素類を原料とするメソフェースピッチ、光学的異方性相
と光学的等方性相を含有するピッチ或いは光学的等方性
ピッチであってもよい。例えば、超高強度の高性能炭素
繊維を、熱分解重縮によって得られたメソフェースピッ
チから製造する場合、メソフェース含有量70〜100
%のメンフェースピッチが好ましく、特に実質的に10
0%のメンフェースを含有するメンフェースピッチが最
も好ましい。
The raw material carbonaceous pitch used in the present invention is made from known raw materials such as various petroleum-based heavy oils, pyrolysis tar, catalytic cracking tar, heavy oil and tar obtained by carbonization of coal, etc. Mesophase pitch (optically anisotropic pitch) obtained by decomposition polycondensation, mesophase pitch made from aromatic hydrocarbons, pitch or optical pitch containing an optically anisotropic phase and an optically isotropic phase It may be an isotropic pitch. For example, when producing ultrahigh-strength, high-performance carbon fiber from mesoface pitch obtained by pyrolysis polycondensation, the mesoface content is 70 to 100%.
% membrane pitch is preferred, especially substantially 10
Most preferred is a memface pitch containing 0% memface.

次に、本発明に係る炭素繊維の製造方法を具体的な実施
例に即して更に説明する。
Next, the method for manufacturing carbon fiber according to the present invention will be further explained based on specific examples.

K皿j 光学的異方性相を98%含み、軟化点が265℃、キノ
リンネ溶分が29.5%の炭素繊維製造用の炭素質ピッ
チを500孔の紡糸口金を有する溶融紡糸機(ノズル孔
径:直径0.3mm)に通し、355℃で200mmH
gの窒素ガス圧で押し出して紡糸した。
K plate j A melt spinning machine with a 500-hole spinneret (nozzle Hole size: 0.3 mm in diameter) and heated to 200 mmH at 355°C.
The fibers were extruded and spun at a nitrogen gas pressure of 1.5 g.

紡糸した500本のフィラメントはエアーサッカーで略
集束してオイリングローラに導き、集束剤を糸に対して
約0.2重量%の割合で供給して集束し、500フイラ
メントから成るピッチ繊維束を形成した。
The 500 spun filaments are roughly converged by an air sucker and guided to an oiling roller, and a sizing agent is supplied at a ratio of approximately 0.2% by weight to the yarn to converge them to form a pitch fiber bundle consisting of 500 filaments. did.

次いで、ピッチ繊維束を巻いた前記ボビン6個を解舒し
、そしてオイリングローラを使用して耐熱性合糸剤を付
与しながら合糸し、3000フイラメントから成るピッ
チ繊維束を形成し、他のボビンに巻取った。
Next, the six bobbins wound with pitch fiber bundles are unwound, and the yarns are doubled using an oiling roller while applying a heat-resistant doubling agent to form a pitch fiber bundle consisting of 3000 filaments. Wind it onto a bobbin.

合糸時に油剤として25℃で400stのメチルフェニ
ルポリシロキサン(フェニル基含有量45モル%)を使
用した。付与量は糸に対し0.5%であった。
At the time of yarn doubling, 400st methylphenylpolysiloxane (phenyl group content: 45 mol %) was used at 25° C. as an oil agent. The amount applied was 0.5% based on the yarn.

このようにして得た、ボビン巻きのピッチ繊維束なボビ
ンから解舒しつつ、炉入り口温度180℃、最高温度2
95℃の温度勾配を持つ富酸素雰囲気(酸素/窒素=6
0/40)の連続不融化炉に線状で連続的に導入した。
While unwinding the thus obtained bobbin-wound pitch fiber bundle from the bobbin, the furnace entrance temperature was 180°C, and the maximum temperature was 2.
Oxygen-rich atmosphere with a temperature gradient of 95°C (oxygen/nitrogen = 6
0/40) was continuously introduced in a linear manner into a continuous infusibility furnace.

昇温速度は6℃/分であり、不融化時間は19分であっ
た。繊維束にかけた張力は1フイラメント当たり0.0
07g(3000フイラメントの繊維束に対して20g
)であった。不融化繊維の酸素濃度は90.5重量%で
あった。
The temperature increase rate was 6° C./min, and the infusibility time was 19 minutes. The tension applied to the fiber bundle is 0.0 per filament.
07g (20g for a fiber bundle of 3000 filaments)
)Met. The oxygen concentration of the infusible fibers was 90.5% by weight.

このようにして得られた不融化繊維束Fは、連続して予
備炭化炉30へ送給した。
The thus obtained infusible fiber bundle F was continuously fed to the preliminary carbonization furnace 30.

本実施例によれば、予備炭化炉30は加熱ヒータ31に
より、炉30内が上流から下流に向けて400℃、60
0℃、1100℃へと段階的に高くなるように加熱保持
され、且つ炉30下部のガス供給口32b〜32d及び
入口部30a、出口部30b下部のガス供給口32a、
32eから不活性ガスとして窒素ガスを供給して、炉3
0内が不活性ガス雰囲気に保持された。
According to this embodiment, the preliminary carbonization furnace 30 is heated at 400° C. and 60° C. from upstream to downstream by the heater 31.
The furnace 30 is heated and maintained so as to increase in stages from 0°C to 1100°C, and the gas supply ports 32b to 32d and the inlet section 30a at the bottom of the furnace 30, the gas supply port 32a at the bottom of the outlet section 30b,
Furnace 3 is supplied with nitrogen gas as an inert gas from 32e.
0 was maintained in an inert gas atmosphere.

本発明に従い、予備炭化炉30内に不活性ガスの流れ3
6を上流から下流に向けて並流の態様に形成して、不融
化繊維束Fを炉30内を通糸し、不活性ガス雰囲気下で
の加熱により予備炭化した。
In accordance with the invention, a flow of inert gas 3 is provided within the pre-carbonization furnace 30.
6 was formed in parallel flow from upstream to downstream, the infusible fiber bundle F was passed through the furnace 30, and pre-carbonized by heating under an inert gas atmosphere.

炉30内の不活性ガスの流れ36は、ガス供給口32b
〜32d及び入口部30a、出口部30bのガス供給口
32a、32eからの不活性ガスの供給量Ib−Id及
びIa、Ieを、Ia=200、Ib=15、Ic=6
、Id=3、Ie=30(以上相対値)として、本発明
の条件の範囲内のIa>Ie>Ib、Ic、Idとする
ことにより形成した。
The inert gas flow 36 within the furnace 30 is connected to the gas supply port 32b.
~32d and the inert gas supply amount Ib-Id from the gas supply ports 32a and 32e of the inlet part 30a and outlet part 30b, Ia, and Ie, Ia=200, Ib=15, Ic=6
, Id=3, Ie=30 (these are relative values), and Ia>Ie>Ib, Ic, and Id were formed within the range of the conditions of the present invention.

予備炭化の間、不融化繊維束Fにはlフィラメント当た
り0.007gのテンションが付与された。予備炭化時
間は5分であった。
During pre-carbonization, a tension of 0.007 g per 1 filament was applied to the infusible fiber bundle F. Pre-carbonization time was 5 minutes.

予備炭化炉30の出口で予備炭化時に糸切れし、毛羽立
ちした毛羽数を目視で測定したところ、毛羽の本数は、
繊維束1m当たり1本と極めて少なかった。
When the number of fluffs that were broken and fluffed during preliminary carbonization at the exit of the preliminary carbonization furnace 30 was visually measured, the number of fluffs was as follows.
The number of fiber bundles was extremely small at one per meter of fiber bundle.

又上記の予備炭化で得られた予備炭化繊維束なアルゴン
ガス雰囲気の温度2500℃の黒鉛化炉に通糸して、黒
鉛化し黒鉛繊維を得た。
Further, the pre-carbonized fiber bundle obtained by the above pre-carbonization was passed through a graphitization furnace at a temperature of 2500° C. in an argon gas atmosphere to graphitize and obtain graphite fibers.

黒鉛化炉の出口において、繊維上の毛羽の数を目視で測
定したところ、繊維束1m当たり2本の毛羽が認められ
た。
When the number of fluffs on the fibers was visually measured at the exit of the graphitization furnace, two fluffs were observed per 1 m of the fiber bundle.

得られた黒鉛繊維の糸径は約9.8μmであり、引張強
度は3.6GPa、引張弾性率は705GPaであった
。黒鉛繊維の融膠着度は40%であった。
The obtained graphite fiber had a thread diameter of about 9.8 μm, a tensile strength of 3.6 GPa, and a tensile modulus of 705 GPa. The fusing degree of graphite fiber was 40%.

尚、融膠着度(%)は、3000フイラメントからなる
繊維束を3mm幅に切り取り、これをエタノールに浸漬
して30秒間エアーを拭込み5その後顕微鏡下で20倍
の倍率で融膠着しているフィラメントの総本数(N)を
数えることにより、次の式にて求めた。
The degree of fusion and adhesion (%) was determined by cutting a fiber bundle consisting of 3000 filaments to a width of 3 mm, immersing it in ethanol, wiping it with air for 30 seconds, and then fusion and adhesion under a microscope at 20x magnification. By counting the total number of filaments (N), it was determined using the following formula.

融膠着度= (N/3000)X100 (%)工数1 不活性ガスの供給量1ayIeの条件を、本発明の範囲
外のIa=30、I b=5、Ic=10、Id=20
、Ie=180 (以上相対値)として、炉30内に不
活性ガスの流れを下流から上流に向けた向流の態様で形
成した下で、不融化繊維束Fの予備炭化を行ない、予備
炭化炉30の出口で毛羽の本数を目視で測定した。繊維
束1用当たりの毛羽本数は50本と非常に多かった。
Degree of fusion adhesion = (N/3000) x 100 (%) Man-hour 1 The conditions for the inert gas supply amount 1ayIe were set outside the scope of the present invention, Ia = 30, I b = 5, Ic = 10, Id = 20
, Ie=180 (the above relative values), the infusible fiber bundle F is pre-carbonized under the condition that an inert gas flow is formed in the furnace 30 in a counter-current manner from downstream to upstream. The number of fuzz was visually measured at the exit of the furnace 30. The number of fluffs per fiber bundle was as large as 50.

又上記予備炭化繊維を実施例と同じ条件で黒鉛下傾に通
糸して、黒鉛繊維を得た。予備炭化炉の出口において繊
維上の毛羽の数を目視で測定したところ、繊維束1用当
たり80本と非常に多(の毛羽が認められた。
Further, the above-mentioned pre-carbonized fiber was threaded under the same conditions as in the example with the graphite tilting downward to obtain a graphite fiber. When the number of fluffs on the fibers was visually measured at the exit of the pre-carbonization furnace, a very large number of fluffs were observed, 80 per fiber bundle.

又得られた黒鉛繊維の糸径は9.8μm、引張強度は3
.5GPa、引張弾性率は705GPaであった。黒鉛
繊維の融膠着度は36%で若干低かった。
The graphite fibers obtained had a thread diameter of 9.8 μm and a tensile strength of 3.
.. 5 GPa, and the tensile modulus was 705 GPa. The degree of fusion adhesion of graphite fiber was 36%, which was slightly low.

及1と肱呈 以上説明したように、本発明の製造方法によれば、予備
炭化炉の長手方向上の複数箇所のガス供給口及び炉の入
口部、出口部のガス供給口からの不活性ガスの供給量等
を制御することにより、炉内に不活性ガスの流れを上流
から下流に向けた並流に形成して、ピッチ繊維束を不融
化した不融化繊維束を予備炭化しているので、炉内で繊
維の加熱により発生したタール状物質が炉の上流領域に
向かって繊維に付着して繊維同士が融膠着するというこ
とを防ぐことができ、このため予備炭化炉内及びそれ以
降の炭化炉内外での繊維束の糸切れを防止して、強度を
十分に発揮させた高強度の炭素繊維を製造することがで
きる。
As explained above, according to the manufacturing method of the present invention, inert gas is supplied from the gas supply ports at multiple locations in the longitudinal direction of the pre-carbonization furnace and from the gas supply ports at the inlet and outlet of the furnace. By controlling the gas supply amount, etc., a flow of inert gas is formed in the furnace in a parallel flow from upstream to downstream, and the infusible pitch fiber bundle is pre-carbonized. Therefore, it is possible to prevent tar-like substances generated by heating the fibers in the furnace from adhering to the fibers toward the upstream region of the furnace and causing the fibers to fuse and stick to each other. It is possible to prevent fiber bundles from breaking inside and outside the carbonization furnace, and to produce high-strength carbon fibers that exhibit sufficient strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造方法の一実施態様を示す説明図
である。 0a 0b 32a〜32e 34a、  34b 35a〜35e 二予備炭化炉 :入口部 :出口部 :ガス供給口 :スリット :ガス排出口 :繊維束 復代理人
FIG. 1 is an explanatory diagram showing one embodiment of the manufacturing method of the present invention. 0a 0b 32a~32e 34a, 34b 35a~35e Two preliminary carbonization furnace: Inlet part: Outlet part: Gas supply port: Slit: Gas discharge port: Fiber bundle subagent

Claims (1)

【特許請求の範囲】 1)不活性ガス雰囲気に保持された所定温度の予備炭化
炉内に、炭素質ピッチ繊維を不融化して得た不融化繊維
を連続的に通糸して熱処理することにより予備炭化し、
然る後に炭化し、必要に応じて黒鉛化することからなる
ピッチ系炭素繊維及び黒鉛繊維の製造方法において、前
記予備炭化炉内に上流から下流に向けた不活性ガスの流
れを形成したことを特徴とするピッチ系炭素繊維及び黒
鉛繊維の製造方法。 2)前記予備炭化炉の上流から下流に向けた長手方向上
の複数箇所と前記炉の入口部及び出口部とに設けたガス
供給口から不活性ガスを供給することにより、前記炉内
に前記不活性ガス雰囲気を形成する請求項1記載の方法
。 3)前記予備炭化炉内への前記ガス供給口からの不活性
ガスの供給量を、該炉の長手方向上の複数箇所のガス供
給口の各々よりも出口部のガス供給口で大とし、且つ出
口部のガス供給口よりも入口部のガス供給口で更に大と
することにより、前記炉内に前記不活性ガスの流れを形
成した請求項1又は2記載の方法。 4)前記予備炭化炉の出口部のスリット開度を入口部の
スリット開度よりも大とすることにより、前記炉内に前
記不活性ガスの流れを形成した請求項1又は2記載の方
法。 5)前記予備炭化炉の長手方向上の複数箇所のガス供給
口と反対側の位置で且つこれよりも下流寄りの位置にガ
ス排出口を設けて、該ガス排出口を通って該炉内の不活
性ガスを部分的に排出することにより、前記炉内に前記
不活性ガスの流れを形成した請求項1又は2記載の方法
[Claims] 1) Infusible fibers obtained by infusible carbonaceous pitch fibers are continuously passed through a pre-carbonization furnace at a predetermined temperature maintained in an inert gas atmosphere and subjected to heat treatment. Pre-carbonized by
In the method for producing pitch-based carbon fibers and graphite fibers, which comprises carbonizing the fibers and graphitizing the fibers if necessary, a flow of inert gas is formed from upstream to downstream in the preliminary carbonization furnace. A method for producing pitch-based carbon fiber and graphite fiber. 2) By supplying inert gas from gas supply ports provided at multiple locations in the longitudinal direction from upstream to downstream of the preliminary carbonization furnace and at the inlet and outlet of the furnace, the 2. The method of claim 1, further comprising forming an inert gas atmosphere. 3) The amount of inert gas supplied from the gas supply port into the pre-carbonization furnace is set larger at the gas supply port at the outlet than at each of the gas supply ports at a plurality of locations in the longitudinal direction of the furnace; 3. The method according to claim 1, wherein the flow of the inert gas is formed in the furnace by making the gas supply port at the inlet part larger than the gas supply port at the outlet part. 4) The method according to claim 1 or 2, wherein the flow of the inert gas is formed in the furnace by making the slit opening at the outlet of the preliminary carbonization furnace larger than the slit opening at the inlet. 5) A gas exhaust port is provided at a position opposite to the gas supply ports at a plurality of locations in the longitudinal direction of the preliminary carbonization furnace and at a position closer to the downstream side thereof, and the gas inside the furnace is discharged through the gas exhaust port. 3. A method as claimed in claim 1 or 2, characterized in that the flow of inert gas is formed in the furnace by partially venting the inert gas.
JP23195690A 1990-08-31 1990-08-31 Production of pitch-based carbon fiber and graphite fiber Pending JPH04119124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23195690A JPH04119124A (en) 1990-08-31 1990-08-31 Production of pitch-based carbon fiber and graphite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23195690A JPH04119124A (en) 1990-08-31 1990-08-31 Production of pitch-based carbon fiber and graphite fiber

Publications (1)

Publication Number Publication Date
JPH04119124A true JPH04119124A (en) 1992-04-20

Family

ID=16931697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23195690A Pending JPH04119124A (en) 1990-08-31 1990-08-31 Production of pitch-based carbon fiber and graphite fiber

Country Status (1)

Country Link
JP (1) JPH04119124A (en)

Similar Documents

Publication Publication Date Title
US4975262A (en) Three dimensional woven fabrics of pitch-derived carbon fibers
JP4370034B2 (en) Pitch fiber bundle, pitch-based carbon fiber bundle and method for producing the same
KR900004918B1 (en) Process for producing chopped strand of carbon fiber
EP0297702B1 (en) Pitch-based carbon or graphite fibre
JPH04119124A (en) Production of pitch-based carbon fiber and graphite fiber
US5595720A (en) Method for producing carbon fiber
JPH038808A (en) Production of pitch-based carbon fiber
JPH0617319A (en) Production of pitch-based carbon fiber
JPS6021911A (en) Manufacture of carbon fiber product
JP2695355B2 (en) Carbon fiber production method
JPH06146121A (en) Production of carbon fiber
JP2930166B2 (en) Carbon fiber production method
JPS62289617A (en) Production of carbon and graphite fiber
US5407614A (en) Process of making pitch-based carbon fibers
JPH038807A (en) Production of pitch-based carbon fiber
JPS63303123A (en) Pitch-based carbon fiber and production thereof
JPH0674528B2 (en) Method for producing carbon fiber and graphite fiber
JPS59150115A (en) Production of carbon fiber
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPH04245923A (en) Production of pitch-based carbon fiber and graphite fiber
JPH04257323A (en) Production of pitch carbon fiber and graphite fiber
JPH06166915A (en) Guide bar in infusibilizing furnace thereof for producing pitch-based carbon fiber
EP0163339A2 (en) Carbon fibers and methods for producing the same
JPH05247730A (en) High-strength and high-modulus pitch-based carbon fiber with excellent openability and its production
JPH06166911A (en) Production of carbon fiber