JPH05330915A - Production of carbon/carbon composite material - Google Patents

Production of carbon/carbon composite material

Info

Publication number
JPH05330915A
JPH05330915A JP4133504A JP13350492A JPH05330915A JP H05330915 A JPH05330915 A JP H05330915A JP 4133504 A JP4133504 A JP 4133504A JP 13350492 A JP13350492 A JP 13350492A JP H05330915 A JPH05330915 A JP H05330915A
Authority
JP
Japan
Prior art keywords
carbon
composite material
fiber
temperature
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4133504A
Other languages
Japanese (ja)
Inventor
Toshiaki Jinno
敏明 神野
Makoto Katsumata
信 勝亦
Hidenori Yamanashi
秀則 山梨
Hitoshi Ushijima
均 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP4133504A priority Critical patent/JPH05330915A/en
Publication of JPH05330915A publication Critical patent/JPH05330915A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a carbon/carbon composite material, capable of graphitizing at a high level and having excellent physical and mechanical characteristics by using monofilamentous or fine-cut carbon fiber. CONSTITUTION:The carbon/carbon composite material is obtained by dispersing carbon fiber having 10-1000 ratio of the length to the diameter of fiber (aspect ratio) in a solvent containing a readily graphitizable resin dispersed or dissolved therein, forming and providing sheets of carbonaceous paper having <=2mm thickness, hot-pressing the resultant carbonaceous paper, converting the carbonaceous paper into a composite material of the carbon fiber with the readily graphitizable resin, performing infusibilizing treatment or without carrying out the infusibilizing treatment, heat-treating the composite material at >=500 deg.C temperature or further Iaminating at least two or more sheets of the formed carbon/carbon composite materials, hot-pressing the laminate under reduced pressure, heat-treating the pressed laminate at >=500 deg.C temperature and, as necessary, graphitizing the heat-treated laminate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、補強部材、導電部材、
電池電極材等に使用するに適した炭素/炭素複合材およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a reinforcing member, a conductive member,
The present invention relates to a carbon / carbon composite material suitable for use as a battery electrode material and the like and a method for producing the same.

【0002】[0002]

【従来の技術】炭素材料が軽量で強度特性、導電性、耐
熱特性や耐放射線特性に優れることから、炭素繊維の織
布に樹脂を含浸して得たプリプレグを500℃以上の高
温熱処理して得た炭素/炭素複合材が、摺動部材、電池
電極材、宇宙分野の構造部材、原子炉隔壁材などに使用
されている。この炭素/炭素複合材の特性は、炭素材料
の黒鉛化度によって決定されることが知られており、高
度に黒鉛化された炭素材料ほど優れた強度特性、導電
性、耐熱特性や耐放射線特性を示すものである。
2. Description of the Related Art Since a carbon material is lightweight and excellent in strength characteristics, conductivity, heat resistance and radiation resistance, a prepreg obtained by impregnating a woven carbon fiber cloth with a resin is subjected to a high temperature heat treatment at 500 ° C. or higher. The obtained carbon / carbon composite material is used as a sliding member, a battery electrode material, a structural member in the space field, a reactor partition material, and the like. It is known that the properties of this carbon / carbon composite material are determined by the degree of graphitization of the carbon material, and the more highly graphitized carbon material is, the more excellent strength property, conductivity, heat resistance property, and radiation resistance property are. Is shown.

【0003】現在、炭素/炭素複合材の基材となる炭素
繊維は、ポリアクリルニトリルを紡糸したのち高温熱処
理して得られる高強度を特徴としたPAN系炭素繊維、
石油や石炭のピッチから紡糸し高温熱処理を経て得られ
る高弾性率を特徴としたピッチ系炭素繊維、またはこれ
らを組み合わせたものが使用されている。しかし、これ
ら高分子前駆体を用いた炭素繊維は高温熱処理を行って
も黒鉛化度に限界があるため、これらの炭素繊維を用い
た炭素/炭素複合材は黒鉛の持つ優れた特性を充分には
発揮していない。
Currently, the carbon fiber as the base material of the carbon / carbon composite material is a PAN-based carbon fiber characterized by high strength obtained by spinning polyacrylonitrile and then subjecting it to high temperature heat treatment.
Pitch-based carbon fibers characterized by high elastic modulus obtained by spinning from pitch of petroleum or coal and subjected to high-temperature heat treatment, or a combination thereof is used. However, since carbon fibers using these polymer precursors have a limited degree of graphitization even when subjected to high temperature heat treatment, carbon / carbon composite materials using these carbon fibers do not have the excellent properties of graphite. Is not working.

【0004】また、近年、鉄、ニッケル等の遷移金属の
微粒子あるいは硫黄や硫黄化合物等の触媒の存在下で炭
化水素を気相熱分解することにより、黒鉛構造が高温に
発達したいわゆる気相成長炭素繊維を得る方法が提案さ
れている(特公平3−61768、特公平4−1165
1)。しかし、このような方法によって製造された気相
成長炭素繊維は微細で嵩高いウイスカー状の単繊維であ
り、この気相成長炭素繊維を用いて炭素/炭素複合材を
製造する方法としては、減圧状態でプレスして溶融樹脂
を含浸させたのち高温熱処理を行う従来公知の方法、あ
るいは短繊維からなる炭素繊維を溶媒中で叩解処理して
この短繊維を溶媒中に均一分散させ、スクリーンで濾過
して炭素繊維集合体を得、その後樹脂を含浸させ、高温
プレスし、更に加熱炭素化する方法(特開昭62−96
364)などがある。しかしこれら従来の方法では、気
相成長炭素繊維が高弾性率で嵩高い為に樹脂が均一に含
浸し難く、炭素/炭素複合材がミクロポーラスな構造と
なるばかりでなく、炭素/炭素複合材中の気相成長炭素
繊維の配向が3次元的にランダムな状態となり、必要な
特性が得られないという問題がある。
In recent years, the so-called vapor phase growth in which the graphite structure has grown to a high temperature by vapor phase pyrolysis of hydrocarbons in the presence of fine particles of transition metals such as iron and nickel or catalysts such as sulfur and sulfur compounds Methods for obtaining carbon fibers have been proposed (Japanese Patent Publication No. 3-61768, Japanese Patent Publication No. 4-1165).
1). However, the vapor-grown carbon fiber produced by such a method is a fine and bulky whisker-like single fiber, and a method for producing a carbon / carbon composite material using this vapor-grown carbon fiber is as follows: Conventionally known method of pressing in the state and impregnating with molten resin and then performing high temperature heat treatment, or beating treatment of carbon fibers made of short fibers in a solvent to uniformly disperse the short fibers in the solvent, and filter with a screen To obtain a carbon fiber aggregate, which is then impregnated with a resin, hot pressed and carbonized by heating (JP-A-62-96).
364) and so on. However, in these conventional methods, since the vapor grown carbon fiber has a high elastic modulus and is bulky, it is difficult to uniformly impregnate the resin, and not only the carbon / carbon composite material has a microporous structure but also the carbon / carbon composite material. There is a problem that the orientation of the vapor-grown carbon fibers in the inside becomes three-dimensionally random and the required characteristics cannot be obtained.

【0005】[0005]

【発明が解決しようとする課題】このような炭素/炭素
複合材における問題を解決するために、本発明は、単繊
維状又は微細な炭素繊維を用いて、高度に黒鉛化が可能
であってかつ優れた物理的ならびに機械的特性を有する
炭素/炭素複合材を製造する方法を提供しようとするも
のである。
In order to solve the problems in the carbon / carbon composite material, the present invention is capable of highly graphitizing using single-fiber-shaped or fine carbon fibers. And, it is an object of the present invention to provide a method for producing a carbon / carbon composite material having excellent physical and mechanical properties.

【0006】[0006]

【課題を解決するための手段】このような本発明の目的
は、易黒鉛化性樹脂を分散または溶解した溶剤中に繊維
の長さと直径の比(アスペクト比)が10〜1000の
炭素繊維を分散し抄紙して厚さ2mm以下の炭素質紙を
得、該炭素質紙を加熱プレスして炭素繊維と易黒鉛化性
樹脂との複合材に転換し、不融化処理を行うか又は行う
ことなく500℃以上の温度で熱処理すること、又は更
にこうして得られた炭素/炭素複合素材を少なくとも2
枚以上積層し減圧下で加熱プレスし、500℃以上の温
度で熱処理することにより達成される。
The object of the present invention is to provide a carbon fiber having a fiber length to diameter ratio (aspect ratio) of 10 to 1000 in a solvent in which a graphitizable resin is dispersed or dissolved. Dispersion and papermaking to obtain a carbonaceous paper having a thickness of 2 mm or less, and heat-pressing the carbonaceous paper to convert it into a composite material of carbon fiber and graphitizable resin, or to perform infusibilization treatment Without heat treatment at a temperature of 500 ° C. or higher, or at least 2 times the carbon / carbon composite material thus obtained.
It is achieved by stacking one or more sheets, hot pressing under reduced pressure, and heat-treating at a temperature of 500 ° C. or more.

【0007】本発明の炭素/炭素複合材の基材となる炭
素繊維としては、気相成長炭素繊維やその黒鉛化物が好
ましく用いられる。かかる気相成長炭素繊維は、例えば
メタン、エタン、プロパン、プロピレン等の脂肪族炭化
水素類、エチレン、プロピレン、アレン、アセチレン等
の不飽和脂肪族炭化水素類、ベンゼン、トルエン等の芳
香族炭化水素類、シクロヘキサン、シクロオクタン等の
脂環族炭化水素類、エタノール、ブタノール、オクタノ
ール等のアルコール類、ラウリン酸やフタル酸等の有機
酸類ならびに、フタル酸ブチル等のエステル類、エチル
イソブチルケトンやシクロヘキサノン等のケトン類、そ
の他ヘキシルアミン等の含窒素有機化合物、オクルメル
カプタン等の含イオウ有機化合物、四塩化炭素等の含塩
素有機化合物などを炭素供給源として用い、かかる原料
をガス化して水素などのキャリアガスと共に900〜1
500℃の反応帯域中で超微粒金属または金属有機化合
物からなる触媒(鉄、ニッケル、コバルトなどの遷移金
属からなるものであり、金属単体であるときは粒径が3
00Å以下超微粒子、また金属有機化合物であるときは
液状または溶液状として用いることができるもの、その
中でもたとえばメタロセンなどの気化可能なものなど)
と接触させ、分解することにより得られる炭素繊維であ
る。
As the carbon fiber which is the base material of the carbon / carbon composite material of the present invention, vapor grown carbon fiber and its graphitized product are preferably used. Such vapor-grown carbon fibers are, for example, methane, ethane, propane, propylene and other aliphatic hydrocarbons, ethylene, propylene, allene, acetylene and other unsaturated aliphatic hydrocarbons, benzene, toluene and other aromatic hydrocarbons. Alicyclic hydrocarbons such as cyclohexane and cyclooctane, alcohols such as ethanol, butanol and octanol, organic acids such as lauric acid and phthalic acid, and esters such as butyl phthalate, ethyl isobutyl ketone and cyclohexanone Ketones, other nitrogen-containing organic compounds such as hexylamine, sulfur-containing organic compounds such as occlumercaptan, chlorine-containing organic compounds such as carbon tetrachloride, etc. are used as a carbon source, and these raw materials are gasified to be carriers such as hydrogen. 900-1 with gas
In a reaction zone of 500 ° C., a catalyst composed of an ultrafine metal or a metal organic compound (made of a transition metal such as iron, nickel and cobalt, and having a particle size of 3 when the metal is a simple substance)
Ultrafine particles of 00 Å or less, and those that can be used in liquid or solution form when they are metal organic compounds, of which vaporizable substances such as metallocene etc.)
It is a carbon fiber obtained by contacting with and decomposing.

【0008】またこうして得られた気相成長炭素繊維
を、1500〜3500℃、好ましくは2500℃以上
の温度で、3〜120分間、好ましくは30分以上、ア
ルゴン等の不活性ガスの雰囲気下で熱処理することによ
り得られる黒鉛構造が高度に発達した黒鉛繊維が特に好
適である。かかる高温熱処理は、後の炭素/炭素複合材
の炭素化熱処理において、基材である気相成長炭素繊維
からの炭素以外の元素の離脱の防止と、バインダーであ
る易黒鉛化性樹脂の炭素化および黒鉛化に際して黒鉛化
助長の効果をもたらす。
The vapor-grown carbon fiber thus obtained is heated at a temperature of 1500 to 3500 ° C., preferably 2500 ° C. or higher for 3 to 120 minutes, preferably 30 minutes or longer in an atmosphere of an inert gas such as argon. Graphite fibers having a highly developed graphite structure obtained by heat treatment are particularly suitable. This high-temperature heat treatment prevents the release of elements other than carbon from the vapor-grown carbon fiber as the base material and the carbonization of the graphitizable resin as the binder in the subsequent carbonization heat treatment of the carbon / carbon composite material. Also, the effect of promoting graphitization is brought about in graphitization.

【0009】また、ポリアクリロニトリル、レーヨン、
石油ピッチ、石炭ピッチ等の有機化合物を紡糸し、酸化
性雰囲気にて加熱して不融化し、高温熱処理して炭素
化、黒鉛化して得たPAN系炭素繊維、レーヨン系炭素
繊維、ピッチ系炭素繊維、ならびにこれらの黒鉛繊維な
どを100〜5000μmの長さに切断したミルドファ
イバー、チョップドファイバー等も用いる事ができる。
またこれらの炭素繊維は、必要に応じて抄紙における親
水性、親油性の向上のため、硝酸等の酸処理、フッ素化
処理、ガスプラズマ処理等の表面処理を行っても良い。
Further, polyacrylonitrile, rayon,
PAN-based carbon fibers, rayon-based carbon fibers, pitch-based carbon obtained by spinning organic compounds such as petroleum pitch and coal pitch, heating them in an oxidizing atmosphere to infusibilize them, and heat-treating them at high temperatures to carbonize and graphitize them. Fibers, milled fibers, chopped fibers, etc. obtained by cutting these graphite fibers and the like into lengths of 100 to 5000 μm can also be used.
Further, these carbon fibers may be subjected to a surface treatment such as an acid treatment with nitric acid, a fluorination treatment, a gas plasma treatment or the like in order to improve hydrophilicity and lipophilicity in papermaking, if necessary.

【0010】本発明の炭素/炭素複合材におけるバイン
ダーである易黒鉛化性樹脂としては光学異方性を有する
石炭系あるいは石油系のメソフェースピッチが好ましく
用いられ、中でも90%以上、好ましくは100%に近
い光学異方性を有し、400℃以下の温度領域、好まし
くは370℃以下の温度の軟化点を有するものが好適で
ある。
As the graphitizable resin which is the binder in the carbon / carbon composite material of the present invention, coal-based or petroleum-based mesophase pitch having optical anisotropy is preferably used, of which 90% or more, preferably 100. %, And those having a softening point in the temperature range of 400 ° C. or lower, preferably 370 ° C. or lower are suitable.

【0011】これらの嵩高い短繊維炭素繊維と易黒鉛化
性樹脂とを水、有機溶剤等の溶媒にミキサー等を用いて
分散させるが、樹脂は溶解させてもよい。そしてこれを
抄紙することによって、厚さ2mm以下、好ましくは1
mm以下の炭素繊維と易黒鉛化性樹脂とからなるフェル
トを得る。ここで、炭素繊維と易黒鉛化性樹脂との混合
比は重量で10:90〜90:10であるのがよい。炭
素繊維がこの範囲より少ないと得られる炭素/炭素複合
材における特性改善の効果が少なくなり、この範囲より
大きいとバインダー不足による成形不良が発生する。ま
た、フェルトの厚さが2mm以上になると複合材中の樹
脂の分散が不十分となり、炭素/炭素複合材がミクロポ
ーラスな状態となったり、炭素化、黒鉛化の高温熱処理
においてクラックの発生や割れが発生し、炭素/炭素複
合材の性能が低下する。従って、厚さが2mm以上の炭
素/炭素複合材を製造しようとするときは、厚さ2mm
以下のフェルトを2枚以上積み重ねて用いるのがよい。
The bulky short-fiber carbon fiber and the graphitizable resin are dispersed in a solvent such as water or an organic solvent using a mixer or the like, but the resin may be dissolved. And by making this paper, a thickness of 2 mm or less, preferably 1
A felt composed of carbon fibers having a size of not more than mm and a graphitizable resin is obtained. Here, the mixing ratio of the carbon fiber and the graphitizable resin is preferably 10:90 to 90:10 by weight. If the amount of carbon fibers is less than this range, the effect of improving the properties of the resulting carbon / carbon composite material is reduced, and if it is more than this range, defective molding occurs due to insufficient binder. Further, when the felt thickness is 2 mm or more, the resin in the composite material is insufficiently dispersed, and the carbon / carbon composite material becomes in a microporous state, or cracks occur during high temperature heat treatment of carbonization and graphitization. Cracking occurs and the performance of the carbon / carbon composite material deteriorates. Therefore, when manufacturing a carbon / carbon composite material having a thickness of 2 mm or more, a thickness of 2 mm
It is recommended to stack two or more of the following felts.

【0012】フェルトの製造において、基材を溶媒に分
散させる前に遊星ボールミル等を用いて炭素繊維と樹脂
をプレミキシングしてもよい。かかるプレミキシング
は、炭素繊維に関しては相互に絡み合った集合体をほぐ
すために、また樹脂に関しては粒径を細かくすることに
より炭素繊維集合体の中に均一に分散させるために、そ
れぞれ有用である。得られたフェルトは必要に応じてプ
レスする。かかるプレス工程は必ずしも必須ではない
が、フェルト中の炭素繊維を面に対して平行方向に配向
させる効果があり、得られる炭素/炭素複合材の特性に
異方性が発現する。フェルト中に残留する溶媒は、自然
気化、加熱、真空または真空加熱等により除去する。ま
た、前記プレス工程と溶媒除去工程は同時に行っても良
い。得られた炭素繊維と易黒鉛化性樹脂とのフェルト状
混合物を金型内に装入し、減圧または常圧にてフェルト
を圧縮しながら樹脂の溶融温度以上の温度に加熱して、
炭素繊維に易黒鉛化性樹脂が均一に分散した複合材を得
る。ここで複合材は、使用する金型によって板状、円筒
状等種々の形状とすることができる。
In the production of felt, carbon fibers and resin may be premixed by using a planetary ball mill or the like before the base material is dispersed in the solvent. Such premixing is useful for the carbon fibers to loosen the intertwined aggregates, and for the resin, it is useful to uniformly disperse the aggregates in the carbon fiber aggregates by reducing the particle size. The obtained felt is pressed if necessary. Although such a pressing step is not always essential, it has the effect of orienting the carbon fibers in the felt in a direction parallel to the plane, and anisotropy appears in the properties of the resulting carbon / carbon composite material. The solvent remaining in the felt is removed by natural vaporization, heating, vacuum or vacuum heating. Further, the pressing step and the solvent removing step may be performed at the same time. The felt-like mixture of the obtained carbon fiber and the graphitizable resin is charged into a mold and heated to a temperature above the melting temperature of the resin while compressing the felt under reduced pressure or normal pressure,
A composite material in which a graphitizable resin is uniformly dispersed in carbon fibers is obtained. Here, the composite material can have various shapes such as a plate shape and a cylindrical shape depending on the mold used.

【0013】得られた複合材を非酸化性雰囲気中、5〜
25MPa程度の加圧下にて0.5〜50℃/分程度の
昇温速度で500〜2000℃の温度で炭素化し、さら
に必要に応じて最大1時間程度までそのまま保持する。
ここで昇温速度は1000℃以下の温度では5〜10℃
/分程度が好ましい。また、炭素化熱処理において50
0〜800℃にて第1段階の熱処理を行い、この後80
0〜2000℃の第2段階の熱処理を行う等、炭素化熱
処理を幾つかの段階に分けて行っても良い。また、炭素
化後の炭素/炭素複合材に開気孔が存在して所望の物性
が得られない場合には、この炭素/炭素複合材に易黒鉛
化性樹脂を含浸し更に炭化する操作を1回〜複数回行う
ことによって物性を改善することができる。
The obtained composite material is treated in a non-oxidizing atmosphere for 5 to 5 minutes.
It is carbonized at a temperature of 500 to 2000 ° C. at a temperature rising rate of about 0.5 to 50 ° C./minute under a pressure of about 25 MPa, and if necessary, held as it is for up to about 1 hour.
Here, the temperature rising rate is 5 to 10 ° C at a temperature of 1000 ° C or less.
/ Minute is preferable. Also, in the carbonization heat treatment, 50
The first stage heat treatment is performed at 0 to 800 ° C., and then 80
The carbonization heat treatment may be performed in several stages, such as performing the second stage heat treatment at 0 to 2000 ° C. When the carbon / carbon composite material after carbonization has open pores and desired physical properties cannot be obtained, the carbon / carbon composite material is impregnated with a graphitizable resin and further carbonized. The physical properties can be improved by repeating the process once or several times.

【0014】ここで、炭素/炭素複合材の厚さを増加す
るために、得られる炭素/炭素複合材を2枚〜数枚積み
重ね、易黒鉛化性樹脂の含浸、炭素化を繰り返すことも
可能である。また得られた炭素/炭素複合材を、更に不
活性ガス雰囲気中、5〜50℃/分程度の昇温速度で2
500〜3200℃程度まで加熱し、必要ならば更に1
0分程度保持することにより、黒鉛繊維/黒鉛複合材を
得ることもできる。この黒鉛化熱処理は、特に高黒鉛化
性を有する気相成長炭素繊維を基材として用いた炭素/
炭素複合材に有効である。
Here, in order to increase the thickness of the carbon / carbon composite material, it is possible to stack two to several obtained carbon / carbon composite materials, repeat impregnation with a graphitizable resin, and repeat carbonization. Is. Further, the obtained carbon / carbon composite material is further heated in an inert gas atmosphere at a heating rate of about 5 to 50 ° C./min for 2
Heat to about 500-3200 ° C, and further 1 if necessary
A graphite fiber / graphite composite material can also be obtained by holding it for about 0 minutes. This heat treatment for graphitization is performed by using carbon / carbon using a vapor-grown carbon fiber having high graphitization as a base material.
Effective for carbon composite materials.

【0015】[0015]

【実施例】【Example】

(第1実施例)炭素繊維の炭素供給源としてベンゼン、
キャリアガスとして水素、また触媒としてフェロセンを
用いて1100℃の温度で接触分解させて生成した長さ
50μm以下、直径0.01〜0.5μmの気相成長炭
素繊維を、アルゴンガス中で3000℃で熱処理して黒
鉛化気相成長炭素繊維を得た。この気相成長炭素繊維1
0重量部と軟化点280℃、光学的異方性相100%の
メソフェースピッチ10重量部とを、常温で遊星ボール
ミルにて粉砕、混合して気相成長炭素繊維とメソフェー
スピッチとの粉体混合物を得た。なお、この時のメソフ
ェースピッチの粒径は0.01〜0.1mmであった。
得られた混合物をトルエンに分散させて150mm×1
50mm、厚さ約1mmの寸法に抄紙し、40℃で2M
Paの圧力で30分間プレスして厚さ0.5mmのフェ
ルトを得た。次いで残留トルエンを常温にて減圧除去し
た。
(First Example) Benzene as a carbon source of carbon fiber,
Hydrogen was used as a carrier gas, and ferrocene was used as a catalyst. A vapor-grown carbon fiber having a length of 50 μm or less and a diameter of 0.01 to 0.5 μm produced by catalytic decomposition at a temperature of 1100 ° C. was 3000 ° C. in an argon gas. Was heat treated in order to obtain graphitized vapor grown carbon fiber. This vapor grown carbon fiber 1
0 parts by weight and 10 parts by weight of a mesophase pitch having a softening point of 280 ° C. and an optically anisotropic phase of 100% were pulverized and mixed in a planetary ball mill at room temperature and mixed to form a powder of vapor grown carbon fiber and mesophase pitch. A body mixture was obtained. The particle size of the mesophase pitch at this time was 0.01 to 0.1 mm.
Disperse the obtained mixture in toluene, 150 mm x 1
Paper is made to a size of 50 mm and a thickness of about 1 mm, and 2M at 40 ° C.
The felt was pressed at a pressure of Pa for 30 minutes to obtain a felt having a thickness of 0.5 mm. Then, the residual toluene was removed under reduced pressure at room temperature.

【0016】得られたフェルトを金型にセットし、15
0MPaの圧力でプレスしながら10℃/分の昇温速度
で330℃まで加熱し、1時間保持して、気相成長炭素
繊維とピッチの重量比が50:50である気相成長炭素
繊維とピッチとの複合材を得た。次いで複合材を電気炉
内に入れ、窒素ガス雰囲気中1℃/分の速度で1000
℃まで昇温し、そのまま30分間保持して炭素/炭素複
合材A1を得た。
The felt thus obtained is set in a mold, and 15
A vapor-grown carbon fiber having a weight ratio of vapor-grown carbon fiber and pitch of 50:50, which was heated to 330 ° C. at a temperature rising rate of 10 ° C./min while being pressed at a pressure of 0 MPa and held for 1 hour. A composite with pitch was obtained. Then, the composite material is put into an electric furnace and the mixture is heated to 1000 at a rate of 1 ° C./min in a nitrogen gas atmosphere.
The temperature was raised to 0 ° C. and kept for 30 minutes to obtain carbon / carbon composite material A1.

【0017】(第2実施例)第1実施例で得た炭素/炭
素複合材A1を電気炉内に入れ、アルゴンガス雰囲気中
で30℃/分の速度で3000℃まで昇温し、そのまま
30分間保持して黒鉛繊維/黒鉛複合材A2を得た。
(Second Embodiment) The carbon / carbon composite material A1 obtained in the first embodiment is placed in an electric furnace, heated to 3000 ° C. at a rate of 30 ° C./min in an argon gas atmosphere, and kept as it is. After holding for a minute, a graphite fiber / graphite composite material A2 was obtained.

【0018】(第3実施例)黒鉛化グレードのピッチ系
炭素繊維のチョップドファイバー(長さ0.5mm、径
10μm)10重量部と第1実施例で用いたと同じメソ
フェースピッチ10重量部とを常温で遊星ボールミルに
て粉砕、混合してピッチ系炭素繊維とメソフェースピッ
チとの粉体混合物を得た。得られた混合物を第1実施例
と同様にして抄紙、プレス、及び溶媒除去をおこない、
厚さ0.5mmのフェルトを得た。得られたフェルトを
第1実施例と同様に熱処理して炭素/炭素複合材を得、
更にこれを第2実施例と同様に熱処理して、黒鉛繊維/
黒鉛複合材Bを得た。
(Third Example) 10 parts by weight of graphitized grade pitch-based carbon fiber chopped fiber (length: 0.5 mm, diameter: 10 μm) and 10 parts by weight of the same mesophase pitch as used in the first embodiment were used. The mixture was pulverized and mixed with a planetary ball mill at room temperature to obtain a powder mixture of pitch-based carbon fiber and mesophase pitch. The obtained mixture was subjected to papermaking, pressing, and solvent removal in the same manner as in Example 1,
A felt having a thickness of 0.5 mm was obtained. The obtained felt was heat treated in the same manner as in Example 1 to obtain a carbon / carbon composite material,
Further, this is heat treated in the same manner as in the second embodiment to obtain graphite fiber /
A graphite composite material B was obtained.

【0019】(第1比較例)第1実施例で用いたと同じ
気相成長炭素繊維をトルエンに分散させ、150mm×
150mm、厚さ約1mmの寸法に抄紙し、40℃で2
MPaの圧力で30分間プレスして厚さ0.5mmのフ
ェルトを得た。次いで残留トルエンを常温にて減圧除去
した。
(First Comparative Example) The same vapor-grown carbon fiber used in the first example was dispersed in toluene to obtain 150 mm ×
Paper is made to a size of 150 mm and a thickness of about 1 mm, and 2
The felt was pressed at a pressure of MPa for 30 minutes to obtain a felt having a thickness of 0.5 mm. Then, the residual toluene was removed under reduced pressure at room temperature.

【0020】得られた気相成長炭素繊維のフェルトを金
型にセットし、第1実施例で用いたと同じメソフェース
ピッチをフェルトに対し等重量加えて減圧状態で330
℃、150MPaの圧力を金型に加えながら含浸し、重
量比が50:50である気相成長炭素繊維とメソフェー
スピッチとの複合材を得た。次いで、この複合材を第1
実施例と同様に熱処理して炭素/炭素複合材C1を得
た。
The felt of the vapor-grown carbon fiber thus obtained was set in a mold, and the same mesophase pitch as used in the first embodiment was added to the felt in an equal weight to 330 in a reduced pressure state.
Impregnation was performed while applying a pressure of 150 MPa to the mold at 50 ° C. to obtain a composite material of vapor grown carbon fiber and mesophase pitch having a weight ratio of 50:50. This composite is then first
Heat treatment was performed in the same manner as in the example to obtain a carbon / carbon composite material C1.

【0021】(第2比較例)第1比較例で得た炭素/炭
素複合材C1を第2実施例と同様に高温で熱処理して、
黒鉛繊維/黒鉛複合材C2を得た。
(Second Comparative Example) The carbon / carbon composite material C1 obtained in the first comparative example was heat-treated at a high temperature as in the second example,
Graphite fiber / graphite composite material C2 was obtained.

【0022】(第3比較例)第3実施例で用いたと同じ
ピッチ系炭素繊維のチョップドファイバーを用いて、第
1比較例と同様にして炭素/炭素複合材を得、ピッチの
含浸および1000℃の熱処理を2回繰り返した後、3
000℃の熱処理を行い、黒鉛繊維/黒鉛複合材Dを得
た。
(Third Comparative Example) Using the same pitch-based carbon fiber chopped fibers used in the third example, a carbon / carbon composite material was obtained in the same manner as in the first comparative example, impregnation of pitch and 1000 ° C. After repeating the heat treatment of 2 times, 3
Heat treatment was performed at 000 ° C. to obtain graphite fiber / graphite composite material D.

【0023】(第4比較例)第1実施例で用いたと同じ
気相成長炭素繊維10重量部を抄紙することなく粉体状
態のままで金型内にセットした他は第1比較例と同様の
方法で、第1実施例で用いたと同じメソフェースピッチ
10重量部を含浸させた。次いで、この複合材を第1実
施例と同様に熱処理して炭素/炭素複合材を得たが、こ
の炭素/炭素複合材がポーラスな状態であるため、再び
ピッチの含浸および1000℃熱処理を行って炭素/炭
素複合材Eを得た。
(Fourth Comparative Example) The same as the first comparative example except that 10 parts by weight of the same vapor-grown carbon fiber as that used in the first example was set in a mold in a powder state without making a paper. In the same manner, 10 parts by weight of the same mesophase pitch used in the first example was impregnated. Next, this composite material was heat treated in the same manner as in Example 1 to obtain a carbon / carbon composite material. However, since this carbon / carbon composite material was in a porous state, pitch impregnation and 1000 ° C. heat treatment were performed again. To obtain a carbon / carbon composite material E.

【0024】以上の各実施例及び各比較例で得た炭素/
炭素複合材および黒鉛繊維/黒鉛複合材について物性を
測定した結果を表1に示した。この結果を見ると、本発
明の複合材は優れた特性を有していることがわかる。
Carbon obtained in each of the above Examples and Comparative Examples
The results of measuring the physical properties of the carbon composite material and the graphite fiber / graphite composite material are shown in Table 1. From these results, it can be seen that the composite material of the present invention has excellent properties.

【0025】[0025]

【表1】 ──────────────────────────────────── 複合材 かさ密度(g/cm3) 曲げ強さ(MPa) 体積抵抗率 (μΩ・cm) ──────────────────────────────────── A1 1.7 110 850 A2 2.0 170 200 B 2.0 170 500 C1 1.5 75 3200 C2 1.7 90 2800 D 2.0 110 1500 E 1.5 55 3300 ──────────────────────────────────── 複合材A1,A2,Bは本発明の実施例 複合材C1,C2,D,Eは比較例TABLE 1 ──────────────────────────────────── composite bulk density (g / cm 3) Bending strength (MPa) Volume resistivity (μΩcm) ───────────────────────────────────── A1 1.7 110 850 A2 2.0 170 170 200 B 2.0 170 500 C1 1.5 75 75 200 C2 1.7 90 2800 D 2.0 110 110 1500 E 1.5 55 3300 ───────── ──────────────────────────── Composite materials A1, A2 and B are examples of the present invention Composite materials C1, C2, D and E Is a comparative example

【0026】[0026]

【発明の効果】本発明の炭素/炭素複合材の製造方法に
よれば、導電部材、補強部材、電池電極部材、原子炉隔
壁材、或いは黒鉛層間化合物のホスト材料等として利用
するに適した高機能性の炭素/炭素複合材が得られる。
EFFECTS OF THE INVENTION According to the method for producing a carbon / carbon composite material of the present invention, it is suitable for use as a conductive member, a reinforcing member, a battery electrode member, a reactor partition wall material, or a host material for a graphite intercalation compound. A functional carbon / carbon composite is obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 牛島 均 静岡県御殿場市川島田252 矢崎部品株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hitoshi Ushijima 252 Kawashimada, Gotemba City, Shizuoka Prefecture Yazaki Parts Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 易黒鉛化性樹脂を分散または溶解した溶
剤中に繊維の長さと直径の比(アスペクト比)が10〜
1000の炭素繊維を分散し抄紙して厚さ2mm以下の
炭素質紙を得、該炭素質紙を加熱プレスして炭素繊維と
易黒鉛化性樹脂との複合材に転換し、不融化処理を行う
か又は行うことなく500℃以上の温度で熱処理するこ
とを特徴とする炭素/炭素複合材の製造方法。
1. The ratio of fiber length to diameter (aspect ratio) is 10 to 10 in a solvent in which a graphitizable resin is dispersed or dissolved.
1000 carbon fibers are dispersed and paper-made to obtain a carbonaceous paper having a thickness of 2 mm or less, and the carbonaceous paper is hot-pressed to be converted into a composite material of carbon fibers and a graphitizable resin, followed by infusibilization treatment. A method for producing a carbon / carbon composite material, which is performed with or without heat treatment at a temperature of 500 ° C. or higher.
【請求項2】 易黒鉛化性樹脂を分散または溶解した溶
剤中に繊維の長さと直径の比(アスペクト比)が10〜
1000の炭素繊維を分散し抄紙して厚さ2mm以下の
炭素質紙を得、該炭素質紙を加熱プレスして炭素繊維と
易黒鉛化性樹脂との複合材に転換し、不融化処理を行う
か又は行うことなく500℃以上の温度で熱処理するこ
とによって炭素/炭素複合素材を得、該炭素/炭素複合
素材を少なくとも2枚以上積層し減圧下で加熱プレス
し、500℃以上の温度で熱処理することを特徴とする
炭素/炭素複合材の製造方法。
2. The ratio of fiber length to diameter (aspect ratio) is 10 to 10 in a solvent in which a graphitizable resin is dispersed or dissolved.
1000 carbon fibers are dispersed and paper-made to obtain a carbonaceous paper having a thickness of 2 mm or less, and the carbonaceous paper is hot-pressed to be converted into a composite material of carbon fibers and a graphitizable resin, followed by infusibilization treatment. With or without heat treatment at a temperature of 500 ° C. or higher, a carbon / carbon composite material is obtained. At least two carbon / carbon composite materials are laminated and hot-pressed under reduced pressure at a temperature of 500 ° C. or higher. A method for producing a carbon / carbon composite material, which comprises heat treatment.
【請求項3】 炭素繊維が高温帯域中に浮遊した超微粒
金属触媒と炭化水素化合物とを接触させて得た気相成長
炭素繊維または該気相成長炭素繊維を1000℃以上の
温度で熱処理して得た黒鉛繊維であることを特徴とする
請求項1又は2記載の炭素/炭素複合材の製造方法。
3. A vapor-grown carbon fiber obtained by contacting an ultrafine metal catalyst in which carbon fiber is suspended in a high temperature zone with a hydrocarbon compound, or heat-treated at a temperature of 1000 ° C. or higher. The method for producing a carbon / carbon composite material according to claim 1 or 2, wherein the graphite fiber is obtained.
JP4133504A 1992-05-26 1992-05-26 Production of carbon/carbon composite material Pending JPH05330915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4133504A JPH05330915A (en) 1992-05-26 1992-05-26 Production of carbon/carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4133504A JPH05330915A (en) 1992-05-26 1992-05-26 Production of carbon/carbon composite material

Publications (1)

Publication Number Publication Date
JPH05330915A true JPH05330915A (en) 1993-12-14

Family

ID=15106320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4133504A Pending JPH05330915A (en) 1992-05-26 1992-05-26 Production of carbon/carbon composite material

Country Status (1)

Country Link
JP (1) JPH05330915A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820486A (en) * 1985-04-05 1989-04-11 Kabushiki Kaisha Kobe Seiko Sho Low alloy steel having good stress corrosion cracking resistance
EP0684216A1 (en) * 1993-03-15 1995-11-29 Across Co., Ltd. Spring members and processes for the production thereof
JP2002020179A (en) * 2000-06-28 2002-01-23 Mitsubishi Pencil Co Ltd Combined carbon-molded body and its manufacturing method
JP2005060150A (en) * 2003-08-08 2005-03-10 Jfe Chemical Corp Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005289661A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Carbon material, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2011093758A (en) * 2009-10-30 2011-05-12 Ibiden Co Ltd Carbonaceous material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242A (en) * 1985-06-25 1987-01-06 Karupisu Shokuhin Kogyo Kk Production of suspendible fine milk protein particle
JPH03150266A (en) * 1989-11-07 1991-06-26 Akechi Ceramics Kk Production of carbon/carbon composite material
JPH03174359A (en) * 1989-11-30 1991-07-29 Nkk Corp Production of carbon fiber reinforced carbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62242A (en) * 1985-06-25 1987-01-06 Karupisu Shokuhin Kogyo Kk Production of suspendible fine milk protein particle
JPH03150266A (en) * 1989-11-07 1991-06-26 Akechi Ceramics Kk Production of carbon/carbon composite material
JPH03174359A (en) * 1989-11-30 1991-07-29 Nkk Corp Production of carbon fiber reinforced carbon

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4820486A (en) * 1985-04-05 1989-04-11 Kabushiki Kaisha Kobe Seiko Sho Low alloy steel having good stress corrosion cracking resistance
EP0684216A1 (en) * 1993-03-15 1995-11-29 Across Co., Ltd. Spring members and processes for the production thereof
JP2002020179A (en) * 2000-06-28 2002-01-23 Mitsubishi Pencil Co Ltd Combined carbon-molded body and its manufacturing method
JP2005060150A (en) * 2003-08-08 2005-03-10 Jfe Chemical Corp Method of producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP2005289661A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Carbon material, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP4628007B2 (en) * 2004-03-31 2011-02-09 Jfeケミカル株式会社 Carbon material manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2011093758A (en) * 2009-10-30 2011-05-12 Ibiden Co Ltd Carbonaceous material

Similar Documents

Publication Publication Date Title
US4849200A (en) Process for fabricating carbon/carbon composite
JPS6118951B2 (en)
JP3151580B2 (en) Manufacturing method of carbon material
JP3142587B2 (en) Carbonaceous composition, carbon material for fuel cell and method for producing the same
CN113774720B (en) Carbon fiber paper and preparation method thereof
Yang et al. Effect of coal tar pitch modification on the structure and char yield of pyrolysis epoxy resin carbons
US5556608A (en) Carbon thread and process for producing it
JPH05330915A (en) Production of carbon/carbon composite material
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
EP4179135A2 (en) Systems and methods for manufacturing carbon fiber from coal
JPH07100629B2 (en) Method for manufacturing carbon / carbon composite material
Inagaki Structure and texture of carbon materials
JP2635634B2 (en) Method for producing carbon fiber reinforced carbon material
KR102544810B1 (en) Carbon fiber and method of manufacturing the same
JP3138937B2 (en) Manufacturing method of carbon / carbon composite material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH01234367A (en) Production of carbon/carbon composite material
JP3138939B2 (en) Method for producing carbon / carbon composite material
JPS63248770A (en) Manufacture of carbon/carbon composite material
JP2005163229A (en) Carbon nanofiber and method for producing the same
JP2004091256A (en) Method for producing carbon fiber reinforced carbon composite material
JP3138938B2 (en) Manufacturing method of carbon / carbon composite material
JP2529148B2 (en) Method for manufacturing carbon / carbon composite material
JPH01212276A (en) Production of carbon/carbon compound material
Inagaki 2 Structure and Texture