JPH0825815B2 - Method for producing carbon-carbon composite material - Google Patents

Method for producing carbon-carbon composite material

Info

Publication number
JPH0825815B2
JPH0825815B2 JP1011030A JP1103089A JPH0825815B2 JP H0825815 B2 JPH0825815 B2 JP H0825815B2 JP 1011030 A JP1011030 A JP 1011030A JP 1103089 A JP1103089 A JP 1103089A JP H0825815 B2 JPH0825815 B2 JP H0825815B2
Authority
JP
Japan
Prior art keywords
carbon
composite material
pitch
fiber
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1011030A
Other languages
Japanese (ja)
Other versions
JPH02192461A (en
Inventor
喜照 中川
悟 中谷
宏久 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP1011030A priority Critical patent/JPH0825815B2/en
Priority to EP90300422A priority patent/EP0379328B1/en
Priority to DE1990629209 priority patent/DE69029209T2/en
Publication of JPH02192461A publication Critical patent/JPH02192461A/en
Priority to US07/892,481 priority patent/US5202293A/en
Publication of JPH0825815B2 publication Critical patent/JPH0825815B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素−炭素複合材の製造方法に関する。TECHNICAL FIELD The present invention relates to a method for producing a carbon-carbon composite material.

従来技術とその問題点 炭素−炭素複合材(C−Cコンポジットとも称され
る)は、従来の炭素材に比して、強度が大きく、耐熱
性、耐摩耗性、耐酸化性などに優れているため、航空機
のブレーキ材、ロケットノズルなどの航空機ならびに宇
宙航空機器用材料;ホットプレスのダイス材、高温用軸
受けなどの機械部品用材料;生体材料などに使用され、
或いは使用されようとしている。
Conventional technology and its problems Carbon-carbon composite materials (also referred to as C-C composites) have higher strength, superior heat resistance, wear resistance, and oxidation resistance than conventional carbon materials. Therefore, it is used as materials for aircraft brakes, rocket nozzles and other aircraft and aerospace equipment; hot press dies, mechanical parts such as high temperature bearings, biomaterials, etc.
Or it is about to be used.

従来の炭素−炭素複合材は、例えば、炭素繊維の駆体
にピッチ或いは熱硬化性樹脂を加圧下に含浸し、焼成
し、さらに必要な回数の含浸および焼成を繰返し行なう
ことにより、得られている。この方法では、焼成工程で
ピッチ或いは熱硬化性樹脂の分解により発生する揮発成
分が気泡を形成するので、この気泡部分にピッチ若しく
は熱硬化性樹脂を含浸し、焼成するという繁雑な操作を
繰返し行なう必要がある。しかしながら、この様な繁雑
な工程を必要とするにもかかわらず、得られる製品は、
ポーラスなもので、密度的にも不満足なものであり、ま
た大型品では、均一性に欠けるという欠点もある。
A conventional carbon-carbon composite material is obtained, for example, by impregnating a carbon fiber precursor with a pitch or a thermosetting resin under pressure, firing, and repeating impregnation and firing a necessary number of times. There is. In this method, since the volatile component generated by the decomposition of the pitch or the thermosetting resin in the firing step forms bubbles, the complicated operation of impregnating the pitch portion or the thermosetting resin in the bubble portion and firing is repeated. There is a need. However, despite the need for such a complicated process, the product obtained is
It is porous and unsatisfactory in terms of density, and it has the drawback of lacking uniformity in large products.

また、炭化水素ガスを高温炉内で分解させ、炭素繊維
の表面に分解生成物を沈積させる方法(CVD法)も行な
われている。しかしながら、この方法では、ススの発生
しない条件下に均一な熱分解を長時間行なう必要があ
り、条件の設定に高度の技術を必要とするので、実用性
に欠ける難点がある。
Further, a method (CVD method) of decomposing a hydrocarbon gas in a high-temperature furnace and depositing decomposition products on the surface of carbon fibers is also performed. However, this method requires uniform thermal decomposition for a long time under the condition that soot is not generated, and requires a high level technique for setting the conditions, so that it is difficult to be practically used.

問題点を解決するための手段 本発明者は、上記の如き従来技術の現状に鑑みて鋭意
研究を重ねた結果、原料ピッチを紡糸した不融化処理前
のピッチ繊維またはピッチ繊維を不融化して得た不融化
繊維をそのまま或いはこれらの繊維を粘結成分により処
理した繊維と自己焼結性を有する炭素質粉とを混合し、
成形し、炭化・黒鉛化する場合には、従来技術の問題点
が大巾に軽減されることを見出した。
Means for Solving the Problems The present inventor has made extensive studies in view of the current state of the art as described above, and infusibilizes the pitch fibers before the infusibilization treatment in which the raw material pitch is spun, or the pitch fibers. The obtained infusible fibers as they are or by mixing these fibers with a caking component and a carbonaceous powder having self-sinterability,
It has been found that the problems of the prior art can be greatly reduced when molding, carbonizing and graphitizing.

すなわち、本発明は、下記の炭素−炭素複合材の製造
方法を 不融化ピッチ繊維とメソカーボンマイクロビーズ、バ
ルクメソフェーズ粉砕品、低温か焼コークス粉砕品の群
から選ばれた少なくとも1つの炭素質粉とを、混合し、
成形し、炭化・黒鉛化することを特徴とする炭素−炭素
複合材の製造方法(以下本願第一発明という)。
That is, the present invention provides the following method for producing a carbon-carbon composite material by using at least one carbonaceous powder selected from the group consisting of infusibilized pitch fiber, mesocarbon microbeads, bulk mesophase crushed product, and low temperature calcined coke crushed product. And mixed,
A method for producing a carbon-carbon composite material, which comprises molding, carbonizing and graphitizing (hereinafter referred to as the first invention of the present application).

炭素質粉がメソカーボンマイクロビーズである本願第
一発明。
The first invention of the present application, wherein the carbonaceous powder is mesocarbon microbeads.

不融化ピッチ繊維を、粘結成分含有材料により表面処
理し、有機溶媒により洗浄し、乾燥した後、メソカーボ
ンマイクロビーズ、バルクメソフェーズ粉砕品、低温か
焼コークス粉砕品の群から選ばれた少なくとも1つの炭
素質粉とを、混合し、成形し、炭化・黒鉛化することを
特徴とする炭素−炭素複合材の製造方法(以下本願第二
発明という)。
At least one selected from the group consisting of mesocarbon microbeads, bulk mesophase crushed products, and low temperature calcined coke crushed products after surface treatment of infusible pitch fibers with a material containing a caking component, washing with an organic solvent, and drying. A method for producing a carbon-carbon composite material, which comprises mixing two carbonaceous powders, molding, carbonizing and graphitizing (hereinafter referred to as the second invention of the present application).

炭素質粉がメソカーボンマイクロビーズである本願第
二発明。
The second invention of the present application in which the carbonaceous powder is mesocarbon microbeads.

下記に本願第一発明および第二発明についてそれぞれ
詳述する。下記において、単に“本発明”という場合に
は、両発明に共通な事項を示すものとする。
The first invention and the second invention of the present application will be described below in detail. In the following, when simply referred to as “the present invention”, the items common to both inventions are shown.

I.本願第一発明 本発明で紡糸材料として使用する原料ピッチは、石炭
系、石油系などの原料による由来の如何を問わない。ま
た、ピッチ自身としても、光学的等方性のものでも、光
学的異方性のものでも良い。
I. First Invention of the Present Invention The raw material pitch used as the spinning material in the present invention may be derived from a raw material such as a coal-based or petroleum-based material. Also, the pitch itself may be either optically isotropic or optically anisotropic.

原料ピッチの紡糸および不融化は、常法に従って行な
えば良く、条件などは特に制限されない。本発明で繊維
成分として使用するものは、通常原料ピッチを紡糸器に
供給し、300〜400℃程度に加熱した状態で不活性ガスに
よる加圧下にノズルから押出して得たピッチ繊維、また
はこの様なピッチ繊維をさらに酸化性雰囲気中150〜500
℃程度で0.5〜5時間程度保持して不融化した、通常の
炭化処理を施す前の不融化繊維である(以下ピッチ繊維
および不融化繊維を未炭化繊維と総称する)。未炭化繊
維としては、糸長0.01〜30mm程度、糸径5〜25μm程度
のものが好ましい。
Spinning and infusibilization of the raw material pitch may be performed according to a conventional method, and the conditions are not particularly limited. What is used as a fiber component in the present invention is usually a pitch fiber obtained by supplying a raw material pitch to a spinning machine and extruding from a nozzle under pressure with an inert gas in a state of being heated to about 300 to 400 ° C, or Pitch fiber in an oxidizing atmosphere 150-500
It is an infusibilized fiber that has been infusibilized by being held at about 0 ° C. for about 0.5 to 5 hours before being subjected to the usual carbonization treatment (hereinafter, pitch fiber and infusibilized fiber are collectively referred to as uncarbonized fiber). The uncarbonized fiber preferably has a yarn length of about 0.01 to 30 mm and a yarn diameter of about 5 to 25 μm.

本願第一発明では、上記の様にして得られた未炭化繊
維と自己焼結性を有する炭素質粉とをそのまま混合し、
成形し、炭化・黒鉛化する。
In the first invention of the present application, the uncarbonized fiber obtained as described above and the carbonaceous powder having self-sinterability are mixed as they are,
Mold, carbonize and graphitize.

本発明で使用する自己焼結性を有する炭素質粉として
は、石油系および石炭系のいずれであっても良く、具体
的には、メソカーボンマイクロビーズ、バルクメソフェ
ーズ粉砕品、低温か焼コークス粉砕品などが例示され
る。なお、生コークスと称されているもの粉砕品も使用
できるが、生コークスは低温か焼コークスに包含され
る。これらの中では、粒径および組成の均一性、安定性
などの観点から、石油系および石炭系のメソカーボンマ
イクロビーズが好ましく、炭化歩留まりの点からは、石
炭系のものがより好ましい。自己焼結性を有する炭素質
粉としては、粒系30μm以下、β−レジン量3〜50%程
度のものが好ましい。自己焼結性を有する炭素質粉と未
炭化繊維との配合割合は、通常前者100部(重量部を表
わす:以下同じ)に対し、後者1〜200部程度であり、
より好ましくは前者100部に対し、後者1〜100部程度で
ある。
The self-sintering carbonaceous powder used in the present invention may be either petroleum-based or coal-based, and specifically, mesocarbon microbeads, bulk mesophase pulverized products, low temperature calcined coke pulverized. Goods etc. are illustrated. It should be noted that a crushed product referred to as raw coke can also be used, but raw coke is included in low temperature calcined coke. Among these, petroleum-based and coal-based mesocarbon microbeads are preferable from the viewpoints of particle size and composition uniformity, stability, and the like, and coal-based mesocarbon microbeads are more preferable from the viewpoint of carbonization yield. As the carbonaceous powder having self-sinterability, it is preferable that the carbonaceous powder has a grain size of 30 μm or less and a β-resin amount of about 3 to 50%. The compounding ratio of the carbonaceous powder having self-sinterability and the uncarbonized fiber is usually about 1 to 200 parts for the former 100 parts (representing parts by weight: the same hereinafter),
More preferably, the former is about 100 parts and the latter is about 1 to 100 parts.

混合手段は、自己焼結性を有する炭素質粉と未炭化繊
維とが均一に混合される限り、特に限定されない。
The mixing means is not particularly limited as long as the carbonaceous powder having self-sinterability and the uncarbonized fiber are uniformly mixed.

かくして得られた混合物は、次いで成形される。成形
方法および条件は、公知の自己焼結性を有する炭素質粉
の成形に際して採用されているものと変わるところはな
く、通常1〜10トン/cm2程度の加圧下に所定の寸法に成
形すれば良い。或いは、CIP法等によって成形を行なっ
ても良い。成形は、常温で若しくは不活性雰囲気下500
℃程度までの加熱下に行なうことが出来る。
The mixture thus obtained is then shaped. The molding method and conditions are the same as those used in the molding of known carbon powder having self-sintering property, and the molding is usually performed under a pressure of about 1 to 10 ton / cm 2 to a predetermined size. Good. Alternatively, the molding may be performed by the CIP method or the like. Molded at room temperature or in an inert atmosphere 500
It can be performed under heating up to about ℃.

焼成も、公知の自己焼結性を有する炭素質粉の成形体
の焼結と同様の条件下に行なえば良く、特に限定されな
いが、通常非酸化性雰囲気中0.1〜300℃/時間程度の速
度で常温から1300℃程度の温度まで昇温し、0.5〜10時
間程度保持すれば良い。
The firing may be performed under the same conditions as the known sintering of the carbonaceous powder compact having self-sintering property, and is not particularly limited, but usually in a non-oxidizing atmosphere, a rate of about 0.1 to 300 ° C./hour. The temperature may be raised from room temperature to about 1300 ° C and held for about 0.5 to 10 hours.

得られた焼結体は、次いで黒鉛化される。黒鉛化の条
件も、特に限定されず、非酸化性雰囲気中で焼結時の温
度から0.1〜500℃/時間程度の速度で1500〜3000℃程度
の温度まで昇温し、0.5〜10時間程度保持すれば良い。
The obtained sintered body is then graphitized. The conditions for graphitization are also not particularly limited, and the temperature is raised from the temperature at the time of sintering in a non-oxidizing atmosphere to a temperature of about 1500 to 3000 ° C at a rate of about 0.1 to 500 ° C / hour for about 0.5 to 10 hours. Just keep it.

II.本願第二発明 本願第二発明で紡糸材料として使用する原料ピッチ
は、本願第一発明で使用するものと同様であり、その紡
糸によるピッチ繊維の製造およびピッチ繊維の不融化
も、本願第一発明と同様にして行なわれる。
II. Second invention of the present application The raw material pitch used as the spinning material in the second invention of the present application is the same as that used in the first invention of the present application, and the production of pitch fibers by the spinning and the infusibilization of pitch fibers are also the same as those of the present invention. It is carried out in the same manner as one invention.

本願第二発明においては、得られた未炭化繊維をター
ル、ピッチ、有機高分子などの粘結成分を含有する材料
により表面処理し、有機溶媒により洗浄し、乾燥する。
In the second invention of the present application, the obtained uncarbonized fiber is surface-treated with a material containing a caking component such as tar, pitch and organic polymer, washed with an organic solvent, and dried.

粘結成分含有材料による表面処理は、未炭化繊維100
部に100〜1000部程度の粘結成分含有材料を加え、撹拌
して行なう。この表面処理に使用するタールおよびピッ
チも、石油系および石炭系のいずれであっても良い。ピ
ッチを使用する場合には、撹拌時に加熱が必要となるの
で、処理材としては、タールの方がより好ましく、また
後続の焼成および炭化工程での炭化歩留まりの点から
は、石炭系のものがより好ましい。有機高分子として
は、フェノール樹脂、ポリ塩化ビニル、ポリビニルアル
コールなどが挙げられる。
The surface treatment with the binder-containing material is 100% uncarbonized fiber.
Add about 100 to 1000 parts of the caking ingredient-containing material to each part and stir. The tar and pitch used for this surface treatment may be either petroleum-based or coal-based. When pitch is used, since heating is required during stirring, tar is more preferable as the treating material, and from the viewpoint of carbonization yield in the subsequent firing and carbonization steps, a coal-based material is preferable. More preferable. Examples of the organic polymer include phenol resin, polyvinyl chloride, polyvinyl alcohol and the like.

次いで、上記の撹拌工程で得られた混合物100部に有
機溶媒100〜1000部程度を加え、撹拌し、洗浄を行な
う。この洗浄により、揮発成分が多く含まれる軽質油分
が除去される。洗浄に使用する有機溶媒としては、トル
エン、キシレンなどの芳香族系溶媒などが例示される。
Next, about 100 to 1000 parts of an organic solvent is added to 100 parts of the mixture obtained in the above stirring step, stirred and washed. By this washing, the light oil containing a large amount of volatile components is removed. Examples of the organic solvent used for washing include aromatic solvents such as toluene and xylene.

洗浄を終えた表面処理未炭化繊維は、例えば、N2、ア
ルゴンなどの非酸化性雰囲気中で、加熱および/または
減圧などの条件下に乾燥処理される。乾燥処理は、洗浄
に使用した有機溶媒が除去される限り、これらの方法に
限定されるものではない。
The surface-treated uncarbonized fiber that has been washed is dried under conditions such as heating and / or reduced pressure in a non-oxidizing atmosphere such as N 2 or argon. The drying treatment is not limited to these methods as long as the organic solvent used for washing is removed.

乾燥を終えた表面処理未炭化繊維は、必要に応じて、
分散処理される。すなわち、乾燥させた表面処理未炭化
繊維が、塊状化乃至凝集していることがあるので、この
様な混合には、通常の粉体ミル、アトマイザー、パルベ
ライザーなどの任意の手段により、分散を行なう。
The surface-treated uncarbonized fiber that has been dried can be
Distributed processing. That is, since the dried surface-treated uncarbonized fiber may be agglomerated or aggregated, in such mixing, dispersion is carried out by any means such as a usual powder mill, atomizer, and pulverizer. .

必要に応じて分散処理された表面処理未炭化繊維は、
以後本願第一発明の場合と同様にして、自己焼結性を有
する炭素質粉と混合され、成形され、炭化・黒鉛化処理
されて、所望の炭素−炭素複合材となる。
Surface-treated uncarbonized fiber that has been subjected to dispersion treatment as necessary,
Thereafter, in the same manner as in the case of the first invention of the present application, a desired carbon-carbon composite material is obtained by mixing with a carbonaceous powder having self-sinterability, molding, and carbonizing / graphitizing.

発明の効果 本発明方法によれば、樹脂、ピッチなどの含浸を行な
うことなく、成形、炭化、黒鉛化という簡単な工程によ
り、緻密且つ均一な組織を有する、高強度で、高密度の
炭素−炭素複合材を安価に製造することが出来る。すな
わち、従来法が主として行っている固体(繊維)に液状
物(液体)を加圧含浸させるという頻雑な方法ではな
く、混合粉体を単に加圧成形するという簡単な工程によ
り、高密度の炭素−炭素複合材が製造できる点に大きな
利点がある。
EFFECTS OF THE INVENTION According to the method of the present invention, a high-strength, high-density carbon having a dense and uniform structure can be obtained by simple steps of molding, carbonization, and graphitization without impregnation of resin, pitch, and the like. The carbon composite material can be manufactured at low cost. That is, the high density of the high density is achieved by the simple process of simply press-molding the mixed powder, rather than the frequent method of pressure-impregnating a solid (fiber) with a liquid (liquid), which is mainly performed by the conventional method. There is a great advantage in that a carbon-carbon composite material can be manufactured.

また、原料として、未炭化の繊維と炭素質粉とを使用
するので、焼成時の収縮が繊維部分とマトリックスとで
ほぼ均等に起こる。そのため、通常の炭素−炭素複合材
においてみられる様な繊維とマトリックス間の界面での
隙間などは、発生しないので、このことも、高密度の炭
素−炭素複合材が得られる一つの理由となっている。
Further, since uncarbonized fibers and carbonaceous powder are used as raw materials, shrinkage during firing occurs almost uniformly in the fiber portion and the matrix. Therefore, the gaps at the interface between the fiber and the matrix, which are found in ordinary carbon-carbon composite materials, do not occur, which is also one reason for obtaining a high-density carbon-carbon composite material. ing.

実 施 例 以下に実施例および比較例を示し、本発明の特徴とす
るところをより一層明確にする。
Examples Examples and comparative examples will be shown below to further clarify the characteristics of the present invention.

実施例1 石炭系の光学的等方性ピッチから常法により得られた
不融化繊維(糸径15μm、糸長0.5mm)100部に中心粒径
7μmのコールタール系メソカーボンマイクロビーズ90
0部を加え、均一に混合した。
Example 1 Coal tar-based mesocarbon microbeads 90 having a central particle size of 7 μm per 100 parts of infusible fibers (yarn diameter 15 μm, yarn length 0.5 mm) obtained from a coal-based optically isotropic pitch by a conventional method 90
0 parts was added and mixed uniformly.

得られた混合物を成形圧力2トン/cm2の成形圧力で直
径50mm×長さ10mmの大きさに成形し、150℃/時間の速
度で1000℃まで昇温し、同温度で1時間保持して焼成し
た後、500℃/時間の速度で2800℃まで加熱し、20分間
保持した。
The obtained mixture was molded into a size of 50 mm in diameter and 10 mm in length with a molding pressure of 2 tons / cm 2 , heated to 1000 ° C. at a rate of 150 ° C./hour, and kept at the same temperature for 1 hour. After firing, it was heated to 2800 ° C at a rate of 500 ° C / hour and held for 20 minutes.

かくして、密度1.89g/cm3、曲げ強度890kg/cm2の炭素
−炭素複合材が得られた。
Thus, a carbon-carbon composite material having a density of 1.89 g / cm 3 and a bending strength of 890 kg / cm 2 was obtained.

実施例2 石炭系の光学的異方性ピッチから常法により得られた
不融化繊維(糸径10μm、糸長0.5mm)100部に中心粒径
7μmのコールタール系メソカーボンマイクロビーズ90
0部を加え、均一に混合した。
Example 2 Coal tar-based mesocarbon micro beads 90 having a central particle size of 7 μm per 100 parts of infusible fiber (thread diameter 10 μm, thread length 0.5 mm) obtained from a coal-based optically anisotropic pitch by a conventional method 90
0 parts was added and mixed uniformly.

以後実施例1と同様にして得られた炭素−炭素複合材
の物性は、密度1.87g/cm3、曲げ強度665kg/cm2であっ
た。
Thereafter, the physical properties of the carbon-carbon composite material obtained in the same manner as in Example 1 were a density of 1.87 g / cm 3 and a bending strength of 665 kg / cm 2 .

実施例3 石炭系の光学的等方性ピッチから常法により得られた
不融化繊維(糸径15μm、糸長6mm)100部に中心粒径7
μmのコールタール系メソカーボンマイクロビーズ900
部を加え、均一に混合した。
Example 3 100 parts of infusible fibers (yarn diameter 15 μm, yarn length 6 mm) obtained from a coal-based optically isotropic pitch by a conventional method had a central particle size of 7
μm Coal Tar Mesocarbon Micro Bead 900
Parts were added and mixed uniformly.

以後実施例1と同様にして得られた炭素−炭素複合材
の物性は、密度1.82g/cm3、曲げ強度791kg/cm2であっ
た。
Thereafter, the physical properties of the carbon-carbon composite material obtained in the same manner as in Example 1 were a density of 1.82 g / cm 3 and a bending strength of 791 kg / cm 2 .

実施例4 石炭系の光学的等方性ピッチから常法により得られた
不融化繊維(糸径15μm、糸長6mm)100部にタール500
部を加え、常温で15分間撹拌した後、濾過し、さらに50
0部のトルエンを加えて、30分間撹拌し、濾過し、N2
流中150℃で3時間乾燥した。
Example 4 100 parts of infusible fibers (fiber diameter 15 μm, yarn length 6 mm) obtained from a coal-based optically isotropic pitch by a conventional method and tar 500
Parts, stir at room temperature for 15 minutes, then filter, and further 50
0 parts of toluene was added, the mixture was stirred for 30 minutes, filtered, and dried in an N 2 stream at 150 ° C. for 3 hours.

次いで、得られたタール処理不融化繊維30部に中心粒
径7μmのコールタール系メソカーボンマイクロビーズ
70部を加えた後、均一に混合した。
Next, 30 parts of the obtained tar-treated infusible fiber was added to coal tar-based mesocarbon microbeads having a central particle size of 7 μm.
After adding 70 parts, they were mixed uniformly.

得られた混合物を実施例1と同様にして成形し、焼成
し、黒鉛化して、所望の炭素−炭素複合材を得た。
The obtained mixture was molded, fired, and graphitized in the same manner as in Example 1 to obtain a desired carbon-carbon composite material.

得られた炭素−炭素複合材の物性は、密度1.85g/c
m3、曲げ強度850kg/cm2であった。
The physical properties of the obtained carbon-carbon composite material have a density of 1.85 g / c.
It was m 3 , and the bending strength was 850 kg / cm 2 .

実施例5 中心粒径5μmのコールタール系メソカーボンマイク
ロビーズを使用する以外は実施例4と同様にして、密度
1.87g/cm3、曲げ強度860kg/cm2の炭素−炭素複合材を得
た。
Example 5 The density was the same as in Example 4 except that coal tar-based mesocarbon microbeads having a central particle size of 5 μm were used.
A carbon-carbon composite material with a bending strength of 1.87 g / cm 3 and a bending strength of 860 kg / cm 2 was obtained.

実施例6 オイルコークス(中国大慶産、熱処理温度約600℃)
をコーヒーミルで微粉砕し、235メッシュの篩で分級し
て篩下の微粉末(平均粒子径14.7μm)を得た。
Example 6 Oil coke (produced in Daqing, China, heat treatment temperature about 600 ° C.)
Was pulverized with a coffee mill and classified with a 235 mesh sieve to obtain a fine powder (average particle diameter 14.7 μm) under the sieve.

得られた微粉末700重量部と、石炭系の等方性の不融
化ピッチ繊維(糸径15μm、糸長0.5mm)300重量部とを
コーヒーミルで均一に混合した。
700 parts by weight of the obtained fine powder and 300 parts by weight of coal-based isotropic infusible pitch fiber (thread diameter 15 μm, thread length 0.5 mm) were uniformly mixed in a coffee mill.

混合した粉末を直径37.5mmの金型に充填し、2000Kg/c
m2の圧力で成形し、直径37.5mm×厚さ10mmの成形体を作
成した。成形体の密度は1.19g/cm3であった。
Fill the mixed powder into a mold with a diameter of 37.5 mm, 2000 Kg / c
Molding was performed at a pressure of m 2 to prepare a molded body having a diameter of 37.5 mm and a thickness of 10 mm. The density of the molded body was 1.19 g / cm 3 .

成形体をN2雰囲気で150℃/hで1000℃まで昇温し、1
時間保持した後、冷却し密度が1.54g/cm3の焼成体を得
た。続いて、焼成体を500℃/hで2000℃まで昇温し、20
分保持した後冷却した。
The molded body is heated up to 1000 ° C at 150 ° C / h in an N 2 atmosphere, and 1
After holding for a time, it was cooled to obtain a fired body having a density of 1.54 g / cm 3 . Subsequently, the temperature of the fired body was increased to 2000 ° C at 500 ° C / h, and 20
After holding for minutes, it was cooled.

得られた炭素−炭素複合材は外観が緻密で、肉眼で出
は観察する限り気孔もなく、密度が1.80g/cm3で、曲げ
強度が820Kg/cm2であった。
The obtained carbon-carbon composite material was dense in appearance, had no pores as long as it could be visually observed, and had a density of 1.80 g / cm 3 and a bending strength of 820 kg / cm 2 .

比較例1 石炭系の光学的等方性ピッチから常法により得られた
炭化繊維(糸径15μm、糸長0.5mm)100部に中心粒径7
μmのコールタール系メソカーボンマイクロビーズ900
部を加え、均一に混合した。
Comparative Example 1 100 parts of carbonized fiber (yarn diameter 15 μm, yarn length 0.5 mm) obtained by a conventional method from coal-based optically isotropic pitch and a center particle size of 7
μm Coal Tar Mesocarbon Micro Bead 900
Parts were added and mixed uniformly.

以後実施例1と同様にして炭素−炭素複合材を得た
が、その物性は均一なものであったが、密度1.71g/c
m3、曲げ強度444kg/cm2であり、本発明品に比して劣る
ものであった。
Thereafter, a carbon-carbon composite material was obtained in the same manner as in Example 1. The physical properties were uniform, but the density was 1.71 g / c.
It was m 3 and had a bending strength of 444 kg / cm 2 , which was inferior to the product of the present invention.

比較例2 石炭系の光学的等方性ピッチから常法により得られた
黒鉛化繊維(糸径15μm、糸長0.5mm)100部に中心粒径
7μmのコールタール系メソカーボンマイクロビーズ90
0部を加え、均一に混合した。
Comparative Example 2 100 parts of graphitized fiber (yarn diameter 15 μm, yarn length 0.5 mm) obtained from a coal-based optically isotropic pitch by a conventional method, and a coal tar-based mesocarbon microbead 90 having a central particle size of 7 μm 90
0 parts was added and mixed uniformly.

以後実施例1と同様にして炭素−炭素複合材を得た
が、その物性は、極めて低く、密度および曲げ強度を測
定することは、不可能であった。
Thereafter, a carbon-carbon composite material was obtained in the same manner as in Example 1, but the physical properties thereof were extremely low, and it was impossible to measure the density and bending strength.

比較例3 石炭系の光学的異方性ピッチから常法により得られた
炭化繊維(糸径10μm、糸長3mm)100部に中心粒径7μ
mのコールタール系メソカーボンマイクロビーズ900部
を加え、均一に混合した。
Comparative Example 3 100 parts of carbonized fiber (yarn diameter 10 μm, yarn length 3 mm) obtained from a coal-based optically anisotropic pitch by a conventional method had a central particle size of 7 μm.
900 parts of coal tar type mesocarbon microbeads of m were added and mixed uniformly.

以後実施例1と同様にして炭素−炭素複合材を得た
が、その物性は均一であったが、密度1.51g/cm3、曲げ
強度95kg/cm2であり、本発明品に比して著るしく劣るも
のであった。
Thereafter, a carbon-carbon composite material was obtained in the same manner as in Example 1. The physical properties were uniform, but the density was 1.51 g / cm 3 , and the bending strength was 95 kg / cm 2 , which was higher than that of the product of the present invention. It was extremely inferior.

比較例4 Aerocarb−80(米国アッシュランド石油製:軟化点25
8℃、酸素含有量0.38重量%の等方性ピッチ)をコーヒ
ーミルで粉砕し、平均粒径27μmの粉末ピッチを得た。
この粉末ピッチを空気流通下で室温から350℃まで10℃
/分の昇温速度で加熱し、酸素含有量4.1重量%の酸化
ピチを得た。
Comparative Example 4 Aerocarb-80 (manufactured by Ashland Petroleum, USA: softening point 25
An isotropic pitch having an oxygen content of 0.38% by weight at 8 ° C.) was crushed with a coffee mill to obtain a powder pitch having an average particle size of 27 μm.
This powder pitch is 10 ℃ from room temperature to 350 ℃ under air flow.
The mixture was heated at a temperature rising rate of / min to obtain oxidized Pichi with an oxygen content of 4.1% by weight.

石炭系の光学的等方性ピッチから常法により得られた
不融化繊維(糸径15μm、糸長0.5mm)100部に、上記で
得られた酸化ピッチ900部を加え、均一に混合した。
To 100 parts of infusible fiber (yarn diameter 15 μm, thread length 0.5 mm) obtained from a coal-based optically isotropic pitch by a conventional method, 900 parts of the above-obtained oxidized pitch was added and mixed uniformly.

得られた混合物を成形圧力2トン/cm2の成形圧力で直
径50mm×厚み3mmの大きさに成形した。成形体は緻密で
きれいな外観をしており、密度は1.04g/cm3であった。
得られた成形体を窒素雰囲気下で150℃/時間の昇温速
度で1000℃まで昇温し、同温度で1時間保持した後冷却
した。
The obtained mixture was molded into a size of 50 mm in diameter and 3 mm in thickness with a molding pressure of 2 ton / cm 2 . The molded body had a dense and clean appearance and had a density of 1.04 g / cm 3 .
The obtained molded body was heated to 1000 ° C. at a temperature rising rate of 150 ° C./hour in a nitrogen atmosphere, kept at the same temperature for 1 hour, and then cooled.

得られた成形体はスポンジ状で且つ形くずれしており
原形をとどめていなかった。このため密度および曲げ強
度を測定することは、不可能であった。
The obtained molded product had a sponge-like shape and was deformed, and did not retain its original shape. Therefore, it was impossible to measure the density and bending strength.

また、280℃での高温処理は、実施しなかった。 Further, the high temperature treatment at 280 ° C was not carried out.

比較例5 石炭系の光学的等方性ピッチから常法により得られた
不融化繊維(糸径15μm、糸長0.5mm)50部に、比較例
4で得られた酸化ピッチ900部を加え、均一に混合し
た。
Comparative Example 5 To 50 parts of infusible fiber (yarn diameter 15 μm, thread length 0.5 mm) obtained from a coal-based optically isotropic pitch by a conventional method, 900 parts of the oxidized pitch obtained in Comparative Example 4 was added, Mix evenly.

得られた混合物を成形圧力2トン/cm2の成形圧力で直
径50mm×厚み3.7mmの大きさに成形した。成形体の密度
は0.95g/cm3であった。得られた成形体を窒素雰囲気下
で150℃/時間の昇温速度で1000℃まで昇温し、同温度
で1時間保持した後冷却した。得られた成形体を500℃
/時間の昇温速度で2800℃まで加熱し、20分間保持し
た。
The obtained mixture was molded into a size of 50 mm in diameter and 3.7 mm in thickness under a molding pressure of 2 ton / cm 2 . The density of the molded body was 0.95 g / cm 3 . The obtained molded body was heated to 1000 ° C. at a temperature rising rate of 150 ° C./hour in a nitrogen atmosphere, kept at the same temperature for 1 hour, and then cooled. The obtained molded body is 500 ° C
The sample was heated to 2800 ° C. at a heating rate of / hour and held for 20 minutes.

得られた成形体はポーラスであり密度1.23g/cm3、曲
げ強度219kg/cm2といずれも本発明品に比して劣るもの
であった。
The obtained molded product was porous and had a density of 1.23 g / cm 3 and a bending strength of 219 kg / cm 2 , which were inferior to the product of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三浦 宏久 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 (56)参考文献 特開 昭61−111963(JP,A) 特開 昭61−122110(JP,A) 特開 昭60−200867(JP,A) 特開 昭63−248770(JP,A) 特開 昭61−197466(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hirohisa Miura 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation (56) References JP 61-111963 (JP, A) JP 61-122110 (JP, A) JP 60-200867 (JP, A) JP 63-248770 (JP, A) JP 61-197466 (JP, A)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】不融化ピッチ繊維とメソカーボンマイクロ
ビーズ、バルクメソフェーズ粉砕品、低温か焼コークス
粉砕品の群から選ばれた少なくとも1つの炭素質粉と
を、混合し、成形し、炭化・黒鉛化することを特徴とす
る炭素−炭素複合材の製造方法。
1. Infusible pitch fibers and at least one carbonaceous powder selected from the group consisting of mesocarbon microbeads, bulk mesophase crushed products, and low temperature calcined coke crushed products are mixed, molded, and carbonized / graphite. A method for producing a carbon-carbon composite material, comprising:
【請求項2】炭素質粉がメソカーボンマイクロビーズで
ある請求項1記載の炭素−炭素複合材の製造方法。
2. The method for producing a carbon-carbon composite material according to claim 1, wherein the carbonaceous powder is mesocarbon microbeads.
【請求項3】不融化ピッチ繊維を、粘結成分含有材料に
より表面処理し、有機溶媒により洗浄し、乾燥した後、
メソカーボンマイクロビーズ、バルクメソフェーズ粉砕
品、低温か焼コークス粉砕品の群から選ばれた少なくと
も1つの炭素質粉とを、混合し、成形し、炭化・黒鉛化
することを特徴とする炭素−炭素複合材の製造方法。
3. The infusible pitch fiber is surface-treated with a binder-containing material, washed with an organic solvent, and dried,
Carbon-carbon characterized by mixing, molding, and carbonizing / graphitizing with at least one carbonaceous powder selected from the group of mesocarbon microbeads, bulk mesophase crushed product, low temperature calcined coke crushed product Manufacturing method of composite material.
【請求項4】炭素質粉がメソカーボンマイクロビーズで
ある請求項3記載の炭素−炭素複合材の製造方法。
4. The method for producing a carbon-carbon composite material according to claim 3, wherein the carbonaceous powder is mesocarbon microbeads.
JP1011030A 1989-01-17 1989-01-19 Method for producing carbon-carbon composite material Expired - Lifetime JPH0825815B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP1011030A JPH0825815B2 (en) 1989-01-19 1989-01-19 Method for producing carbon-carbon composite material
EP90300422A EP0379328B1 (en) 1989-01-17 1990-01-15 Carbon fiber reinforced carbon
DE1990629209 DE69029209T2 (en) 1989-01-17 1990-01-15 Carbon fiber reinforced carbon
US07/892,481 US5202293A (en) 1989-01-17 1992-06-03 Carbon fiber reinforced carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011030A JPH0825815B2 (en) 1989-01-19 1989-01-19 Method for producing carbon-carbon composite material

Publications (2)

Publication Number Publication Date
JPH02192461A JPH02192461A (en) 1990-07-30
JPH0825815B2 true JPH0825815B2 (en) 1996-03-13

Family

ID=11766687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011030A Expired - Lifetime JPH0825815B2 (en) 1989-01-17 1989-01-19 Method for producing carbon-carbon composite material

Country Status (1)

Country Link
JP (1) JPH0825815B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005281100A (en) * 2004-03-30 2005-10-13 Jfe Chemical Corp Method for manufacturing carbon material, negative electrode material for rechargeable lithium-ion battery, negative electrode for rechargeable lithium-ion battery, and rechargeable lithium-ion battery
KR102192302B1 (en) * 2019-03-13 2020-12-18 한국에너지기술연구원 Carbon-Carbon Composites and Method for Producing the Same
CN115256927B (en) * 2022-09-30 2023-01-31 北京壹碳氢源科技有限公司 Carbon/carbon composite thermal insulation material prepared by 3D printing and preparation method thereof
CN117524746B (en) * 2024-01-04 2024-04-05 西安科技大学 Heavy residual oil-based capacitor carbon microsphere and preparation method and application thereof

Also Published As

Publication number Publication date
JPH02192461A (en) 1990-07-30

Similar Documents

Publication Publication Date Title
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
JPH0825815B2 (en) Method for producing carbon-carbon composite material
KR100213315B1 (en) Manufacturing method of carbon-sintered body
JPH0768064B2 (en) Carbon fiber reinforced composite material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPH05330915A (en) Production of carbon/carbon composite material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH02192462A (en) Fiber material for carbon-carbon composite material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH07215775A (en) Production of carbon-carbon composite material
JPH0323207A (en) Production of carbon compact
EP0379328A1 (en) Carbon fiber reinforced carbon
JPS61251504A (en) Production of formed graphite
JP3060450B2 (en) Raw material powder for high density carbon material and method for producing carbon material
JP2918008B2 (en) Self-fusing carbonaceous powder and high density carbon material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH06199577A (en) Production of carbon-carbon composite material
JPH068213B2 (en) Sliding member
EP4426662A1 (en) Method for producing carbonised or graphitised 3d objects
JPH0475819A (en) Composite electrode for electric discharge machining
JPH038769A (en) Production of carbon fiber-reinforced carbonaceous material
JPH03258880A (en) Highly durable coating agent for carbonaceous molded heat insulating material
JPH04104954A (en) Production of oxidation resistant high-density carbon material