JPH06199577A - Production of carbon-carbon composite material - Google Patents

Production of carbon-carbon composite material

Info

Publication number
JPH06199577A
JPH06199577A JP2418140A JP41814090A JPH06199577A JP H06199577 A JPH06199577 A JP H06199577A JP 2418140 A JP2418140 A JP 2418140A JP 41814090 A JP41814090 A JP 41814090A JP H06199577 A JPH06199577 A JP H06199577A
Authority
JP
Japan
Prior art keywords
carbon
mixture
pitch
composite material
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2418140A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nakagawa
喜照 中川
Takayuki Azuma
隆行 東
Norio Murakami
典男 村上
Hirohisa Miura
宏久 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Toyota Motor Corp
Original Assignee
Osaka Gas Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Toyota Motor Corp filed Critical Osaka Gas Co Ltd
Priority to JP2418140A priority Critical patent/JPH06199577A/en
Publication of JPH06199577A publication Critical patent/JPH06199577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To produce a carbon-carbon composite material having a dense structure and excellent in mechanical characteristics by an easy method at a low cost. CONSTITUTION:Pitch fibers obtd. by spinning pitch as starting material or infusible fibers obtd. by making the pitch fibers infusible are mixed with inorg. powder or inorg. fibers, carbon powder having self-sinterability and an org. solvent to prepare a liq. mixture and this mixture is freed of the solvent, compacted, carbonized and graphitized. Pitch fibers obtd. by spinning pitch as starting material or infusible fibers obtd. by making the pitch fibers infusible are mixed with inorg. powder or inorg. fibers, carbon powder having self- sinterability, a material contg. a caking component and an org. solvent to prepare a liq. mixture and this mixture is freed of the solvent, compacted, carbonized and graphitized. The objective carbon-carbon composite material is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素−炭素複合材の製
造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a carbon-carbon composite material.

【0002】[0002]

【従来技術とその問題点】炭素−炭素複合材(C−Cコ
ンポジットとも称される)は、従来の炭素材に比して、
強度が大きく、耐熱性、耐摩耗性、耐酸化性などに優れ
ているため、航空機のブレーキ材、ロケットノズルなど
の航空機ならびに宇宙航空機器用材料;ホットプレスの
ダイス材、高温用軸受けなどの機械部品用材料;生体材
料などに使用され、或いは使用されようとしている。
2. Description of the Related Art Carbon-carbon composite materials (also referred to as C-C composites) are more conventional than conventional carbon materials.
Due to its high strength and excellent heat resistance, wear resistance, and oxidation resistance, it is a material for aircraft brakes, rocket nozzles and other aircraft and aerospace equipment; hot press die materials, high temperature bearings and other mechanical parts. Materials: Used or about to be used as biomaterials.

【0003】従来の炭素−炭索複合材は、例えば、炭素
繊維の駆体にピッチ或いは熱硬化性樹脂を加圧下に含浸
し、焼成し、さらに必要な回数の含浸および焼成を繰返
し行なうことにより、得られている。この方法では、焼
成工程でピッチ或いは熱硬化性樹脂の分解により発生す
る揮発成分が気泡を形成するので、この気泡部分にピッ
チ若しくは熱硬化性樹脂を含浸し、焼成するという繁雑
な操作を繰返し行なう必要がある。この様な繁雑な工程
を必要とするにもかかわらず、得られる製品は、ポーラ
スなもので、密度的にも不満足なものであり、また大型
品では、均一性に欠けるという欠点もある。
A conventional carbon-carbon cord composite material is obtained, for example, by impregnating a carbon fiber precursor with a pitch or a thermosetting resin under pressure, firing it, and repeating impregnation and firing a necessary number of times. Has been obtained. In this method, since the volatile component generated by the decomposition of the pitch or the thermosetting resin in the firing step forms bubbles, the complicated operation of impregnating the pitch portion or the thermosetting resin in the bubble portion and firing is repeated. There is a need. Despite the need for such complicated steps, the products obtained are porous and unsatisfactory in terms of density, and large products lack the uniformity.

【0004】また、炭化水素ガスを高温炉内で分解さ
せ、炭素繊維の表面に分解生成物を沈積させる方法(C
VD法)も行なわれている。しかしながら、この方法で
は、ススの発生しない条件下に均一な熱分解を長時間行
なう必要があり、条件の設定に高度の技術を必要とする
ので、実用性に欠ける難点がある。
Further, a method of decomposing a hydrocarbon gas in a high temperature furnace to deposit a decomposition product on the surface of carbon fiber (C
VD method) is also performed. However, this method requires uniform thermal decomposition for a long time under the condition that soot is not generated, and requires a high level technique for setting the conditions, so that it is difficult to be practically used.

【0005】[0005]

【問題点を解決するための手段】本発明者は、上記の如
き従来技術の現状に鑑みて鋭意研究を重ねた結果、原料
ピッチを紡糸した不融化処理前のピッチ繊維またはピッ
チ繊維を不融化して得た不融化繊維、無機粉末または無
機繊維および有機溶媒を少なくとも含む液状混合物を成
形するか、或いは原料ピッチを紡糸した不融化処理前の
ピッチ繊維またはピッチ繊維を不融化して得た不融化繊
維と無機粉末または無機繊維とを少なくとも含む混合物
を特定の温度条件下に成形し、炭化・黒鉛化する場合に
は、従来技術の問題点が大巾に軽減されることを見出し
た。
DISCLOSURE OF THE INVENTION As a result of earnest studies in view of the above-mentioned conventional state of the art, the present inventor has found that the pitch fibers before being infusibilized by spinning the raw material pitch are infusibilized. The infusible fiber obtained by shaping the liquid mixture containing at least the inorganic powder or the inorganic fiber and the organic solvent, or obtained by infusibilizing the pitch fiber before the infusibilization process in which the raw material pitch is spun or the pitch fiber It has been found that when the mixture containing at least the fused fiber and the inorganic powder or the inorganic fiber is molded under a specific temperature condition and then carbonized and graphitized, the problems of the prior art are greatly reduced.

【0006】すなわち、本発明は、下記の炭素−炭素複
合材の製造方法を提供するものである: 1.原料ピッチを紡糸して得たピッチ繊維またはこれを
不融化して得た不融化繊維、無機粉末または無機繊維、
自己焼結性を有する炭素粉および有機溶媒を混合して液
状混合物を調製し、これを脱溶媒した後、成形し、炭化
・黒鉛化することを特徴とする炭素−炭素複合材の製造
方法(以下本願第一発明という)。 2.原料ピッチを紡糸して得たピッチ繊維またはこれを
不融化して得た不融化繊維、無機粉末または無機繊維お
よび自己焼結性を有する炭素粉を混合して混合物を調製
し、これを金型に入れて該混合物の収縮率がその最大収
縮率の10〜70%となるまで常温乃至500℃の温度
で圧縮することによって成形を行ない、次いで炭化・黒
鉛化することを特徴とする炭素−炭素複合材の製造方法
(以下本願第二発明という)。 3.原料ピッチを紡糸して得たピッチ繊維またはこれを
不融化して得た不融化繊維、自己焼結性を有する炭素粉
および有機溶媒を混合して液状混合物を調製し、これを
脱溶媒した後、成形し、炭化・黒鉛化することを特徴と
する炭素−炭素複合材の製造方法(以下本願第三発明と
いう)。 4.原料ピッチを紡糸して得たピッチ繊維またはこれを
不融化して得た不融化繊維、無機粉末または無機繊維お
よび自己焼結性を有する炭素粉からなる混合物を金型に
入れて該混合物の収縮率がその最大収縮率の10〜70
%となるまで常温乃至500℃の温度で圧縮することに
よって成形を行ない、次いで炭化・黒鉛化することを特
徴とする炭素−炭素複合材の製造方法(以下本願第四発
明という)。
That is, the present invention provides the following method for producing a carbon-carbon composite material: Pitch fiber obtained by spinning the raw material pitch or infusible fiber obtained by making it infusible, inorganic powder or inorganic fiber,
A method for producing a carbon-carbon composite material comprising mixing a carbon powder having self-sinterability and an organic solvent to prepare a liquid mixture, desolvating the liquid mixture, molding, and carbonizing / graphitizing ( Hereinafter referred to as the first invention of the present application). 2. Pitch fiber obtained by spinning the raw material pitch or infusible fiber obtained by making it infusible, inorganic powder or inorganic fiber and carbon powder having self-sintering property are mixed to prepare a mixture, which is used as a mold. The carbon-carbon is characterized in that it is subjected to molding by compressing the mixture at room temperature to 500 ° C. until the shrinkage ratio of the mixture reaches 10 to 70% of its maximum shrinkage ratio, and then carbonization / graphitization. A method for manufacturing a composite material (hereinafter referred to as the second invention of the present application). 3. Pitch fiber obtained by spinning the raw material pitch or infusible fiber obtained by making it infusible, carbon powder having self-sinterability and an organic solvent are mixed to prepare a liquid mixture, which is then desolvated A method for producing a carbon-carbon composite material, which comprises molding, carbonizing and graphitizing (hereinafter referred to as the third invention of the present application). 4. Pitch fiber obtained by spinning the raw material pitch or infusible fiber obtained by making it infusible, inorganic powder or a mixture of inorganic fiber and carbon powder having self-sinterability is put in a mold and the mixture shrinks. The rate is 10 to 70 of the maximum contraction rate
A method for producing a carbon-carbon composite material, which comprises performing compression at a temperature of room temperature to 500 ° C. until the content reaches 0.1%, and then carbonizing and graphitizing (hereinafter referred to as the fourth invention of the present application).

【0007】下記に本願第一発明乃至第四発明について
それぞれ詳述する。下記において、単に“本発明”とい
う場合には、四発明に共通な事項を示すものとする。
The first invention to the fourth invention of the present application will be described in detail below. In the following, when simply referred to as “the present invention”, the items common to the four inventions are shown.

【0008】(1).本願第一発明 本発明で紡糸材料として使用する原料ピッチは、石炭
系、石油系などの原料による由来の如何を問わない。ま
た、ピッチ自身としても、光学的等方性のものでも、光
学的異方性のものでも良い。
(1). First Invention of the Present Application The raw material pitch used as the spinning material in the present invention may be derived from a raw material such as a coal-based or petroleum-based material. Also, the pitch itself may be either optically isotropic or optically anisotropic.

【0009】原料ピッチの紡糸および不融化は、常法に
従って行なえば良く、条件などは特に制限されない。本
発明で繊維成分として使用するものは、通常原料ピッチ
を紡糸器に供給し、300〜400℃程度に加熱した状
態で不活性ガスによる加圧下にノズルから押出して得た
ピッチ繊維、またはこの様なピッチ繊維をさらに酸化性
雰囲気中150〜500℃程度で0.5〜5時間程度保
持して不融化した、通常の炭化処理を施す前の不融化繊
維である(以下この様なピッチ繊維および不融化繊維を
未炭化繊維と総称する)。未炭化繊維としては、繊維長
0.01〜30mm程度、繊維径5〜25μm程度のも
のが好ましい。
Spinning and infusibilization of the raw material pitch may be carried out according to a conventional method, and the conditions are not particularly limited. What is used as a fiber component in the present invention is usually pitch fiber obtained by feeding raw material pitch to a spinning machine and extruding from a nozzle under pressure with an inert gas in a state of being heated to about 300 to 400 ° C, or Pitch fibers are further infusible by being held in an oxidizing atmosphere at about 150 to 500 ° C. for about 0.5 to 5 hours before being subjected to the usual carbonization treatment (hereinafter referred to as such pitch fibers and Infusible fibers are collectively referred to as uncarbonized fibers). The uncarbonized fiber preferably has a fiber length of about 0.01 to 30 mm and a fiber diameter of about 5 to 25 μm.

【0010】本発明で使用する無機粉末としては、アル
ミナ、シリカ、ホウ化チタン、酸化チタン、窒化チタ
ン、窒化クロムなどが例示される。粉末の粒径は、特に
限定されるものではないが、通常0.01〜1000μ
m程度であり、より好ましくは0.1〜1μm程度であ
る。または無機繊維としては、アルミナ、ホウ化チタ
ン、酸化チタン、窒化チタン、窒化クロムなどの繊維が
例示される。無機繊維の繊維径および繊維長も、特に限
定されるものではないが、通常それぞれ1〜30μmお
よび0.01〜40mm程度であり、より好ましくはそ
れぞれ5〜20μm程度および0.1〜30mm程度で
ある。
Examples of the inorganic powder used in the present invention include alumina, silica, titanium boride, titanium oxide, titanium nitride and chromium nitride. The particle size of the powder is not particularly limited, but is usually 0.01 to 1000 μm.
It is about m, and more preferably about 0.1 to 1 μm. Alternatively, examples of the inorganic fiber include fibers such as alumina, titanium boride, titanium oxide, titanium nitride, and chromium nitride. The fiber diameter and fiber length of the inorganic fiber are not particularly limited, but are usually about 1 to 30 μm and 0.01 to 40 mm, respectively, and more preferably about 5 to 20 μm and 0.1 to 30 mm, respectively. is there.

【0011】本発明で使用する自己焼結性を有する炭素
粉としては、石油系および石炭系のいずれであっても良
く、具体的には、メソカーボンマイクロビーズ、バルク
メソフェーズ粉砕品、低温か焼コークス粉砕品、生コー
クス粉砕品などが例示される。これらの中では、粒径お
よび組成の均一性、安定性などの観点から、石油系およ
び石炭系のメソカーボンマイクロビーズが好ましく、炭
化歩留まりの点からは、石炭系のものがより好ましい。
自己焼結性を有する炭素粉としては、粒径30μm以
下、β−レジン量3〜50%程度のものが好ましい。
The self-sintering carbon powder used in the present invention may be either petroleum-based or coal-based carbon powder, and specifically, mesocarbon microbeads, bulk mesophase crushed products, low temperature calcination. Examples include crushed coke and crushed raw coke. Among these, petroleum-based and coal-based mesocarbon microbeads are preferable from the viewpoint of particle size and composition uniformity, stability, and the like, and from the viewpoint of carbonization yield, coal-based mesocarbon microbeads are more preferable.
The self-sintering carbon powder preferably has a particle size of 30 μm or less and a β-resin amount of about 3 to 50%.

【0012】本願第一発明における成形用混合物中の各
成分の混合割合は、自己焼結性を有する炭素粉100部
(重量部を表わす:以下同じ)に対し、未炭化繊維1〜
200部程度(より好ましくは5〜100部程度)、無
機粉末または無機繊維1〜200部程度(より好ましく
は5〜50部程度)である。
The mixing ratio of each component in the molding mixture in the first invention of the present application is such that 1 part of uncarbonized fiber is added to 100 parts of carbon powder having self-sinterability (parts by weight: the same hereinafter).
About 200 parts (more preferably about 5 to 100 parts), 1 to about 200 parts of inorganic powder or inorganic fibers (more preferably about 5 to 50 parts).

【0013】本願第一発明では、上記の割合の自己焼結
性を有する炭素粉、未炭化繊維および無機粉末または無
機繊維をアセトン、トルエン、エタノール、メタノール
などの有機溶媒に加えて混合し、液状混合物を調製した
後、溶媒を除去し、成形し、炭化・黒鉛化する。この有
機溶媒の使用により、未炭化繊維および無機粉末または
無機繊維の均一な分散が可能となる。また、毛玉の出来
やすい繊維長の大きな未炭化繊維(例えば、繊維長10
mm以上)の分散も良好となる。有機溶媒としては、ア
セトンおよび/またはトルエンがより好ましい。混合手
段は、各成分が有機溶媒中で均一に混合される限り、特
に限定されないが、超音波照射による撹拌、機械的撹拌
などが例示される。特に、超音波照射による撹拌は、各
成分の分散性を改善する。液状混合物中の固形分濃度
も、均一な混合物の形成が可能である限り、特に限定さ
れないが、通常5〜80%程度(重量%を表す:以下同
じ)であり、より好ましくは20〜50%程度である。
In the first invention of the present application, the carbon powder, the uncarbonized fiber and the inorganic powder or the inorganic fiber having the self-sinterability in the above proportions are added to an organic solvent such as acetone, toluene, ethanol or methanol and mixed to form a liquid state. After preparing the mixture, the solvent is removed, the mixture is molded, and carbonized and graphitized. By using this organic solvent, it is possible to uniformly disperse the uncarbonized fiber and the inorganic powder or the inorganic fiber. In addition, uncarbonized fiber having a large fiber length (for example, a fiber length of 10
The dispersion of (mm or more) is also good. Acetone and / or toluene are more preferable as the organic solvent. The mixing means is not particularly limited as long as the components are uniformly mixed in the organic solvent, and examples thereof include stirring by ultrasonic irradiation and mechanical stirring. In particular, stirring with ultrasonic irradiation improves the dispersibility of each component. The solid content concentration in the liquid mixture is not particularly limited as long as a uniform mixture can be formed, but is usually about 5 to 80% (representing weight%: the same below), and more preferably 20 to 50%. It is a degree.

【0014】本願第一発明では、さらにタール、ピッ
チ、有機高分子(フェノール樹脂、ポリ塩化ビニル、ポ
リビニルアルコールなど)などの粘結成分を含有する材
料を併用しても良い。この粘結成分含有材料を併用する
ことにより、未炭化繊維、無機粉末あるいは無機繊維、
自己焼結性を有する炭素粉などの液状混合物中での分散
性がより一層改善される。粘結成分を含有する材料の配
合量は、自己焼結性を有する炭素粉100部に対し、1
〜100部程度(より好ましくは5〜50部程度)とす
る。
In the first invention of the present application, a material containing a caking component such as tar, pitch, organic polymer (phenol resin, polyvinyl chloride, polyvinyl alcohol, etc.) may be used in combination. By using this binder-containing material together, uncarbonized fiber, inorganic powder or inorganic fiber,
The dispersibility in a liquid mixture such as carbon powder having self-sinterability is further improved. The compounding amount of the material containing the caking component is 1 with respect to 100 parts of the self-sintering carbon powder.
It is about 100 parts (more preferably about 5 to 50 parts).

【0015】かくして得られた液状混合物は、濾過など
の手段により脱溶媒した後、成形される。成形は、公知
の自己焼結性を有する炭素粉の成形と同様にして行なっ
ても良く、この場合には、例えば1〜10トン/cm
程度の加圧下に所定の寸法に成形すれば良い。或いは、
CIP法等によって成形を行なっても良い。成形は、2
0℃程度の常温から500℃程度までの温度(より好ま
しくは100〜400℃程度)で行なうことが出来る。
加熱状態で成形を行なう場合には、酸化防止のために、
不活性雰囲気中で行なうことが好ましい。
The liquid mixture thus obtained is desolvated by a means such as filtration and then molded. The molding may be performed in the same manner as the known carbon powder having self-sinterability, and in this case, for example, 1 to 10 ton / cm 2.
It may be formed into a predetermined size under a certain amount of pressure. Alternatively,
Molding may be performed by the CIP method or the like. Molding is 2
It can be performed at a temperature from room temperature of about 0 ° C. to about 500 ° C. (more preferably about 100 to 400 ° C.).
When molding in a heated state, to prevent oxidation,
It is preferably carried out in an inert atmosphere.

【0016】本発明においては、上記の液状混合物を脱
溶媒した後、金型に収容し、常温から500℃程度まで
の温度(より好ましくは100〜400℃程度)で混合
物の収縮率が最大収縮率の10〜70%となる圧力で圧
縮することにより、成形を行なうことが、より好まし
い。特に、加熱下にこの様な方法により成形を行なう場
合には、メソカーボンマイクロビーズなどの自己焼結性
を有する炭素粉の表面に存在する粘結性成分(β−レジ
ン)が溶融流動するので、常温で成形する場合に比し
て、より低い圧力で緻密な構造の成形体が得られる。ま
た、圧力の付与により成形体内部に発生する内部応力お
よび歪みも、同様にして緩和される。
In the present invention, after the above liquid mixture is desolvated, it is housed in a mold and the shrinkage ratio of the mixture is maximum at a temperature from room temperature to about 500 ° C. (more preferably about 100 to 400 ° C.). It is more preferable to carry out molding by compressing at a pressure of 10 to 70% of the ratio. In particular, when molding is performed by such a method under heating, the caking component (β-resin) existing on the surface of the carbon powder having self-sintering property such as mesocarbon microbeads melts and flows. As compared with the case of molding at room temperature, a compact body having a dense structure can be obtained at a lower pressure. Further, the internal stress and strain generated inside the molded body due to the application of pressure are similarly relaxed.

【0017】ここに、最大収縮率とは、以下のように定
義される。すなわち、脱溶媒後の原料混合物を有底のシ
リンダーに収容し、上部のピストンに荷重を加えつつ該
シリンダーを常温から500℃まで加熱すると、粘結性
成分の溶融により、原料混合物の体積が次第に減少して
シリンダー内の原料混合物の高さが減少する。この高さ
の減少値(収縮量)を当初の高さで除したものを収縮率
といい、収縮量が最大となった時点の収縮率を最大収縮
率とする。この収縮量あるいは最大収縮量は、原料混合
物の組成により異なるが、その値は、実験により容易に
求めることができる。
Here, the maximum contraction rate is defined as follows. That is, when the raw material mixture after desolvation is housed in a bottomed cylinder and the cylinder is heated from room temperature to 500 ° C. while applying a load to the upper piston, the volume of the raw material mixture gradually increases due to melting of the caking component. The height of the raw material mixture in the cylinder is reduced. The reduction value (shrinkage amount) of this height divided by the initial height is called the shrinkage ratio, and the shrinkage ratio at the time when the shrinkage amount is maximum is the maximum shrinkage ratio. This shrinkage amount or maximum shrinkage amount varies depending on the composition of the raw material mixture, but the value can be easily obtained by an experiment.

【0018】焼成は、公知の自己焼結性を有する炭素粉
の成形体の焼結と同様の条件下に行なえば良く、特に限
定されないが、通常非酸化性雰囲気中0.1〜300℃
/時間程度の速度で常温から1300℃程度の温度まで
昇温し、0.5〜10時間程度保持すれば良い。
The firing may be carried out under the same conditions as the known sintering of a carbon powder compact having self-sintering property, and is not particularly limited, but is usually 0.1 to 300 ° C. in a non-oxidizing atmosphere.
The temperature may be raised from room temperature to a temperature of about 1300 ° C. at a speed of about / hour and held for about 0.5 to 10 hours.

【0019】得られた焼結体は、次いで黒鉛化される。
黒鉛化の条件も、特に限定されず、非酸化性雰囲気中で
焼結時の温度から0.1〜500℃/時間程度の速度で
1500〜3000℃程度の温度まで昇温し、0.5〜
10時間程度保持すれば良い。
The obtained sintered body is then graphitized.
The conditions for graphitization are also not particularly limited, and the temperature at the time of sintering in a non-oxidizing atmosphere is raised to a temperature of about 1500 to 3000 ° C. at a rate of about 0.1 to 500 ° C./hour, and 0.5 ~
It should be held for about 10 hours.

【0020】(2).本願第二発明 本願第二発明で紡糸材料として使用する原料ピッチは、
本願第一発明で使用するものと同様であり、その紡糸に
よるピッチ繊維の製造およびピッチ繊維の不融化も、本
願第一発明と同様にして行なわれる。本願第二発明で使
用する無機粉末あるいは無機繊維、自己焼結性を有する
炭素粉なども、本願第一発明と同様のものを使用する。
(2). Second invention of the present application The raw material pitch used as the spinning material in the second invention of the present application is
This is the same as that used in the first invention of the present application, and the production of pitch fibers by the spinning and the infusibilization of the pitch fibers are performed in the same manner as in the first invention of the present application. The same inorganic powder, inorganic fiber, or self-sintering carbon powder as those used in the second invention of the present application are also used.

【0021】本願第二発明においても、さらにタール、
ピッチ、有機高分子(フェノール樹脂、ポリ塩化ビニ
ル、ポリビニルアルコールなど)などの粘結成分を含有
する材料を併用しても良い。この粘結成分含有材料を併
用することにより、未炭化繊維、無機粉末あるいは無機
繊維、自己焼結性を有する炭素粉などの混合物中での分
散性がやはりより一層改善される。
In the second invention of the present application, tar,
A material containing a binding component such as pitch or an organic polymer (phenol resin, polyvinyl chloride, polyvinyl alcohol, etc.) may be used in combination. By using this binder-containing material together, the dispersibility in a mixture of uncarbonized fiber, inorganic powder or inorganic fiber, carbon powder having self-sinterability, etc. is further improved.

【0022】本願第二発明における混合物は、自己焼結
性を有する炭素粉100部(重量部を表わす:以下同
じ)に対し、未炭化繊維1〜200部程度(より好まし
くは5〜100部程度)、無機粉末または無機繊維1〜
200部程度(より好ましくは1〜50部程度)或いは
さらに必要に応じて粘結成分を含有する材料1〜100
部程度(より好ましくは5〜50部程度)を加えて混合
することにより、調製される。
The mixture in the second invention of the present application is about 1 to 200 parts (more preferably about 5 to 100 parts) of uncarbonized fiber with respect to 100 parts of carbon powder having self-sinterability (representing parts by weight; the same applies hereinafter). ), Inorganic powder or inorganic fibers 1 to
About 200 parts (more preferably about 1 to 50 parts) or, if necessary, a material containing a caking component 1 to 100
It is prepared by adding about 1 part (more preferably about 5 to 50 parts) and mixing.

【0023】本願第二発明における成形は、上記の混合
物を金型に収容し、常温から500℃程度までの温度
(より好ましくは100〜400℃程度)で混合物の収
縮率が最大収縮率の10〜70%となる圧力で圧縮する
ことにより、行なう。
In the molding according to the second invention of the present application, the mixture described above is housed in a mold, and the shrinkage ratio of the mixture is 10 to the maximum shrinkage ratio at a temperature from room temperature to about 500 ° C. (more preferably about 100 to 400 ° C.). It is performed by compressing at a pressure of ˜70%.

【0024】成形体の焼成は、本願第一発明におけると
同様にして行なえば良い。
The molding may be fired in the same manner as in the first invention of the present application.

【0025】(3).本願第三発明 本願第三発明では、無機粉末または無機繊維を含まない
以外は本願第一発明と同様の組成を有する混合物を脱溶
媒した後、金型に収容し、本願第1発明と同様にして成
形する。
(3). Third Invention of the Present Application In the third invention of the present application, a mixture having the same composition as that of the first invention of the present application except that it does not contain inorganic powder or inorganic fibers is desolvated, and then housed in a mold to perform the same process as the first invention of the present application. And mold.

【0026】本願第三発明における上記の方法により得
られた成形体は、本願第一発明或いは本願第二発明にお
けると同様にして炭化・黒鉛化処理されて、所望の炭素
−炭素複合材が得られる。
The molded body obtained by the above method in the third invention of the present application is carbonized and graphitized in the same manner as in the first invention of the present application or the second invention of the present application to obtain a desired carbon-carbon composite material. To be

【0027】(4).本願第四発明 本願第四発明では、無機粉末または無機繊維を含まない
以外は本願第二発明と同様の組成を有する混合物を金型
に収容し、本願第三発明におけるとと同様にして、成形
する。
(4). Fourth invention of the present application In the fourth invention of the present application, a mixture having the same composition as the second invention of the present application except that the inorganic powder or the inorganic fiber is not contained is housed in a mold and molded in the same manner as in the third invention of the present application. To do.

【0028】本願第四発明における上記の方法により得
られた成形体は、本願第一発明乃至本願第三発明におけ
ると同様にして炭化・黒鉛化処理されて、所望の炭素−
炭素複合材が得られる。
The molded body obtained by the above method in the fourth invention of the present application is carbonized / graphitized in the same manner as in the first to third inventions of the present application to obtain a desired carbon-
A carbon composite material is obtained.

【0029】[0029]

【発明の効果】【The invention's effect】

(1)有機溶媒を使用する本願第一発明および本願第三
発明においては、未炭化繊維および自己焼結性炭素粉と
有機溶媒との濡れ性が良好なので、混合が容易である。
その結果、繊維長の大きな未炭化繊維を使用しても、毛
玉が生じることがなく、各成分が均一に分散した液状混
合物が得られる。さらに、混合に際して、有機溶媒に対
する超音波照射による撹拌を行なうことができるので、
無機粉末および/または無機繊維の分散も容易となる。 (2)タールなどの粘結成分含有材料を併用する場合に
は、未炭化繊維、自己焼結性炭素粉などと有機溶媒との
濡れ性がさらに一層改善されるので、より均一な混合が
可能となる。 (3)上記(1)および(2)の結果として、強度など
の機械的特性に優れた高密度の炭素−炭素複合材が得ら
れる。 (4)また、自己焼結性炭素粉としてメソカーボンマイ
クロビーズを使用する場合には、成形時にその表面に存
在する粘結成分(β−レジン)が溶融するので、成形材
料としての流動性が高くなり、低い圧力で緻密な構造の
成形体が得られ、ひいては各種の特性に優れた炭素−炭
素複合材が得られる。また、加圧成形時に発生する内部
応力および歪みは、粘結成分(β−レジン)の流動によ
り、緩和される。 (5)本願第二および第四発明においても、成形時に自
己焼結性炭素粉の表面に存在する粘結成分(β−レジ
ン)が溶融することにより、未炭化繊維と自己焼結性炭
素粉とのなじみが良くなるので、成形材料中に有機溶媒
が存在しない場合にも、やはり低い圧力で緻密な構造の
成形体が得られ、ひいては各種の特性に優れた炭素−炭
素複合材が得られる。
(1) In the first invention of the present application and the third invention of the present application using an organic solvent, the wettability between the uncarbonized fiber and the self-sintering carbon powder and the organic solvent is good, and therefore mixing is easy.
As a result, even if an uncarbonized fiber having a large fiber length is used, a pill does not occur, and a liquid mixture in which the respective components are uniformly dispersed can be obtained. Furthermore, when mixing, it is possible to perform stirring by ultrasonic irradiation of an organic solvent,
Dispersion of the inorganic powder and / or the inorganic fiber is also facilitated. (2) When a binder-containing material such as tar is used in combination, the wettability of uncarbonized fiber, self-sintering carbon powder, etc. with an organic solvent is further improved, so more uniform mixing is possible. Becomes (3) As a result of the above (1) and (2), a high density carbon-carbon composite material having excellent mechanical properties such as strength can be obtained. (4) Further, when the mesocarbon microbeads are used as the self-sintering carbon powder, the caking component (β-resin) existing on the surface of the bead melts during molding, so that the fluidity as a molding material is high. A molded body having a high density and a dense structure can be obtained at a low pressure, and thus a carbon-carbon composite material excellent in various characteristics can be obtained. Further, the internal stress and strain generated during the pressure molding are relaxed by the flow of the caking component (β-resin). (5) Also in the second and fourth inventions of the present application, the uncarbonized fiber and the self-sintering carbon powder are melted by melting the caking component (β-resin) present on the surface of the self-sintering carbon powder during molding. Since it is well compatible with, a molded product having a dense structure can be obtained at a low pressure even when an organic solvent does not exist in the molding material, and thus a carbon-carbon composite material excellent in various characteristics can be obtained. .

【0030】[0030]

【実施例】以下に実施例および比較例を示し、本発明の
特徴とするところをより一層明確にする。
EXAMPLES Examples and comparative examples will be shown below to further clarify the features of the present invention.

【0031】実施例1 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(繊維径15μm、繊維長0.5mm)230
部に中心粒径7μmのコールタール系メソカーボンマイ
クロビーズ530部を加え、アセトン800部中で均一
に混合し、さらにアセトン100部中にアルミナ粉末
(粒径0.5μm)50部を含む分散液を超音波照射下
に混合し、液状混合物を得た後、濾過した。
Example 1 Infusible fibers (fiber diameter 15 μm, fiber length 0.5 mm) 230 obtained by a conventional method from coal-based optically isotropic pitch 230
Dispersion containing 530 parts of coal tar-based mesocarbon microbeads having a central particle size of 7 μm, uniformly mixed in 800 parts of acetone, and further containing 50 parts of alumina powder (particle size 0.5 μm) in 100 parts of acetone. Were mixed under ultrasonic irradiation to obtain a liquid mixture, which was then filtered.

【0032】得られた混合物を成形圧力2トン/cm
の成形圧力で直径50mm×長さ10mmの大きさに成
形し、150℃/時間の速度で1000℃まで昇温し、
同温度で1時間保持して焼成した後、500℃/時間の
速度で2800℃まで加熱し、同温度に20分間保持し
た。
The resulting mixture is molded at a molding pressure of 2 ton / cm 2.
With a molding pressure of 50 mm in diameter and 10 mm in length, and heated to 1000 ° C. at a rate of 150 ° C./hour,
After holding at the same temperature for 1 hour for firing, it was heated to 2800 ° C. at a rate of 500 ° C./hour and kept at the same temperature for 20 minutes.

【0033】かくして、密度1.82g/cm、曲げ
強度900kgf/cmの炭素−炭素複合材が得られ
た。
Thus, a carbon-carbon composite material having a density of 1.82 g / cm 3 and a bending strength of 900 kgf / cm 2 was obtained.

【0034】比較例1 石炭系の光学的等方性ピッチから常法により得られた炭
化繊維(繊維径15μm、繊維長0.5mm)300部
に中心粒径7μmのコールタール系メソカーボンマイク
ロビーズ700部を加え、乾式で混合し、さらにアルミ
ナ粉末(粒径0.5μm)50部を乾式で混合した。以
後実施例1と同様にして炭素−炭素式合材を得た。その
物性は均一なものであったが、密度1.74g/c
、曲げ強度480kgf/cmであり、本発明品
に比して劣るものであった。
Comparative Example 1 300 parts of carbonized fibers (fiber diameter 15 μm, fiber length 0.5 mm) obtained by a conventional method from coal-based optically isotropic pitch, and coal tar-based mesocarbon microbeads having a central particle diameter of 7 μm 700 parts was added and mixed by a dry method, and further 50 parts by alumina powder (particle size: 0.5 μm) was mixed by a dry method. Thereafter, a carbon-carbon type composite material was obtained in the same manner as in Example 1. The physical properties were uniform, but the density was 1.74 g / c.
m 3 and bending strength of 480 kgf / cm 2 , which were inferior to the products of the present invention.

【0035】実施例2 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(繊維径15μm、繊維長0.5mm)300
部に中心粒径7μmのコールタール系メソカーボンマイ
クロビーズ700部を加え、乾式で混合し、さらにアル
ミナ粉末(粒径0.5μm)50部を乾式で混合した。
Example 2 300 infusible fibers (fiber diameter 15 μm, fiber length 0.5 mm) obtained from a coal-based optically isotropic pitch by a conventional method
700 parts of coal tar-based mesocarbon microbeads having a central particle size of 7 μm was added to the above parts and mixed by a dry method, and further 50 parts of alumina powder (particle diameter 0.5 μm) was mixed by a dry method.

【0036】得られた混合粉を減圧(76mmHg)下
に8℃/分の昇温速度で450℃まで昇温した。この混
合粉の温度が300℃となった時点で、500kg/c
の成形圧力で1分間加圧した。得られた直径50m
m×長さ10mmの成形体を150℃/時間の速度で1
000℃まで昇温し、同温度で1時間保持して焼成した
後、500℃/時間の速度で2800℃まで加熱し、同
温度に20分間保持した。
The obtained mixed powder was heated to 450 ° C. at a heating rate of 8 ° C./min under reduced pressure (76 mmHg). When the temperature of this mixed powder reaches 300 ° C, 500 kg / c
A molding pressure of m 2 was applied for 1 minute. Obtained diameter 50m
m × 10 mm length molded body 1 at a rate of 150 ° C./hour
The temperature was raised to 000 ° C., and the temperature was kept at the same temperature for 1 hour for firing. Then, the temperature was raised to 2800 ° C. at a rate of 500 ° C./hour, and the temperature was kept for 20 minutes.

【0037】かくして、密度1.83g/cm、曲げ
強度920kgf/cmの炭素−炭素複合材が得られ
た。
Thus, a carbon-carbon composite material having a density of 1.83 g / cm 3 and a bending strength of 920 kgf / cm 2 was obtained.

【0038】実施例3 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(繊維径15μm、繊維長0.5mm)300
部に中心粒径7μmのコールタール系メソカーボンマイ
クロビーズ700部を加え、乾式で混合して得た混合物
の加圧下での加熱時の溶融特性を図1に示す。結果は、
混合物を内径50mm×深さ100mmのシリンダーに
充填し(初期充填密度0.979g/cm)、上方か
らピストンにより150kg/cmの圧力で加圧しつ
つ、8℃/分の速度で昇温した場合のピストンの最大降
下値(すなわち、成形体の最大収縮率)を100とし
て、相対値で示してある。300℃で成形体の収縮率5
6%となったことが明らかである。
Example 3 300 infusible fibers (fiber diameter 15 μm, fiber length 0.5 mm) obtained by a conventional method from coal-based optically isotropic pitch
FIG. 1 shows the melting characteristics of a mixture obtained by adding 700 parts of coal tar-based mesocarbon microbeads having a central particle size of 7 μm to the above parts and mixing them in a dry manner during heating under pressure. Result is,
The mixture was filled in a cylinder having an inner diameter of 50 mm and a depth of 100 mm (initial packing density 0.979 g / cm 3 ), and the temperature was raised at a rate of 8 ° C./minute while pressurizing from above with a piston pressure of 150 kg / cm 2 . In this case, the maximum drop value of the piston (that is, the maximum shrinkage ratio of the molded body) is set to 100, and the relative value is shown. Shrinkage rate of the molded product at 300 ℃ 5
It is clear that it was 6%.

【0039】また、上記と同様にして得た混合物を上記
と同様のシリンダーに充填し(初期充填密度0.979
g/cm)、8℃/分の速度で450℃まで昇温し
た。その際、図2に示す様に、混合物の温度が、それぞ
れ200℃,250℃,300℃,310℃,320
℃,350℃および400℃に到達した時点で、1分間
にわたり500kg/cmの圧力で加圧した。
The mixture obtained in the same manner as above was packed in the same cylinder as above (initial packing density 0.979).
g / cm 3 ) and the temperature was raised to 450 ° C. at a rate of 8 ° C./min. At that time, as shown in FIG. 2, the temperature of the mixture is 200 ° C., 250 ° C., 300 ° C., 310 ° C., 320 ° C., respectively.
When the temperature reached 350 ° C., 350 ° C. and 400 ° C., the pressure was increased to 500 kg / cm 2 for 1 minute.

【0040】かくして得られたそれぞれの試験片を45
0℃で1時間保持した後、自然放冷した。得られた直径
50mm×長さ10mmの各成形体を150℃/時間の
速度で1000℃まで昇温し、同温度で1時間保持して
焼成した後、500℃/時間の速度で2000℃まで加
熱し、同温度に20分間保持した。図3に上記の加圧時
の温度と最終的に得られた焼結体の曲げ強度(上方の曲
線)および密度(下方の曲線)との関係を示す。
Each of the test pieces thus obtained was subjected to 45
After keeping at 0 ° C. for 1 hour, it was naturally cooled. Each of the obtained molded bodies having a diameter of 50 mm and a length of 10 mm was heated to 1000 ° C. at a rate of 150 ° C./hour, held at the same temperature for 1 hour and baked, and then heated to 2000 ° C. at a rate of 500 ° C./hour. It was heated and kept at the same temperature for 20 minutes. FIG. 3 shows the relationship between the temperature at the time of pressurization and the bending strength (upper curve) and density (lower curve) of the finally obtained sintered body.

【0041】実施例4 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(繊維径15μm、繊維長0.5mm)300
部に中心粒径7μmのコールタール系メソカーボンマイ
クロビーズ700部を加え、乾式で混合した。
Example 4 300 infusible fibers (fiber diameter 15 μm, fiber length 0.5 mm) obtained by a conventional method from coal-based optically isotropic pitch
700 parts of coal tar-based mesocarbon microbeads having a central particle size of 7 μm was added to the above parts, and mixed by a dry method.

【0042】得られた混合粉を減圧(76mmHg)下
に8℃/分の昇温速度で450℃まで昇温した。この混
合粉の温度が200℃となった時点で、150kg/c
の成形圧力で混合粉の温度が250℃となるまで加
圧し、次いで300kg/cmの圧力で混合粉の温度
が275℃となるまで加圧し、さらに500kg/cm
の圧力で混合粉の温度が300℃となるまで加圧し
た。得られた直径50mm×長さ10mmの成形体を1
50℃/時間の速度で1000℃まで昇温し、同温度で
1時間保持して焼成した後、500℃/時間の速度で2
000℃まで加熱し、同温度に20分間保持した。
The obtained mixed powder was heated to 450 ° C. at a heating rate of 8 ° C./min under reduced pressure (76 mmHg). When the temperature of this mixed powder reached 200 ° C, 150 kg / c
It is pressurized at a molding pressure of m 2 until the temperature of the mixed powder reaches 250 ° C., then at a pressure of 300 kg / cm 2 until the temperature of the mixed powder reaches 275 ° C., and further 500 kg / cm.
The pressure of 2 was applied until the temperature of the mixed powder reached 300 ° C. 1 piece of the obtained molded body having a diameter of 50 mm and a length of 10 mm
After heating up to 1000 ° C. at a rate of 50 ° C./hour, holding at the same temperature for 1 hour and firing, 2 at a rate of 500 ° C./hour
It was heated to 000 ° C. and kept at the same temperature for 20 minutes.

【0043】かくして、密度1.82g/cm、曲げ
強度1030kgf/cmの炭素−炭素複合材が得ら
れた。
Thus, a carbon-carbon composite material having a density of 1.82 g / cm 3 and a bending strength of 1030 kgf / cm 2 was obtained.

【0044】実施例5 石炭系の光学的等方性ピッチから常法により得られた不
融化繊維(繊維径15μm、繊維長0.5mm)と繊維
径の異なる不融化繊維(繊維長6mmおよび12mm)
と中心粒径7μmのコールタール系メソカーボンマイク
ロビーズとを下記の重量割合でアセトン中で混合した
(固形分濃度50%)後、濾過した。
Example 5 Infusible fibers (fiber diameter 15 μm, fiber length 0.5 mm) obtained by a conventional method from coal-based optically isotropic pitch and infusible fibers having different fiber diameters (fiber lengths 6 mm and 12 mm) )
And coal tar-based mesocarbon microbeads having a central particle size of 7 μm were mixed in acetone at the following weight ratio (solid content concentration 50%), and then filtered.

【0045】得られた混合粉を減圧(76mmHg)下
に8℃/分の昇温速度で450℃まで昇温した。この混
合粉の温度が200℃となった時点で、150kg/c
の成形圧力で混合粉の温度が250℃となるまで加
圧し、次いで300kg/cmの圧力で混合粉の温度
が275℃となるまで加圧し、さらに500kg/cm
の圧力で混合粉の温度が300℃となるまで加圧し
た。得られた直径50mm×長さ10mmの成形体を1
50℃/時間の速度で1000℃まで昇温し、同温度で
1時間保持して焼成した後、500℃/時間の速度で2
000℃まで加熱し、同温度に20分間保持した。
The obtained mixed powder was heated to 450 ° C. at a heating rate of 8 ° C./min under reduced pressure (76 mmHg). When the temperature of this mixed powder reached 200 ° C, 150 kg / c
It is pressurized at a molding pressure of m 2 until the temperature of the mixed powder reaches 250 ° C., then at a pressure of 300 kg / cm 2 until the temperature of the mixed powder reaches 275 ° C., and further 500 kg / cm.
The pressure of 2 was applied until the temperature of the mixed powder reached 300 ° C. 1 piece of the obtained molded body having a diameter of 50 mm and a length of 10 mm
After heating up to 1000 ° C. at a rate of 50 ° C./hour, holding at the same temperature for 1 hour and firing, 2 at a rate of 500 ° C./hour
It was heated to 000 ° C. and kept at the same temperature for 20 minutes.

【0046】かくして得られた焼結体の密度及び曲げ強
度を下記に併せて示す。
The density and bending strength of the thus obtained sintered body are also shown below.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年3月2日[Submission date] March 2, 1994

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】追加[Correction method] Added

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法により得た炭素−炭素複合材の成
形時の温度とその収縮率との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the temperature during molding of a carbon-carbon composite material obtained by the method of the present invention and its shrinkage rate.

【図2】本発明の方法により得た炭素−炭素複合材を5
00kg/cmの圧力で加圧するときの時間と温度と
の関係を示すグラフである。
FIG. 2 shows a carbon-carbon composite material obtained by the method of the present invention.
It is a graph which shows the relationship between time and pressure when pressurizing at a pressure of 00 kg / cm 2 .

【図3】本発明の方法により得た炭素−炭素複合材の加
圧時の温度と焼結体の曲げ強度及び密度との関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the temperature of the carbon-carbon composite material obtained by the method of the present invention during pressurization and the bending strength and density of the sintered body.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 村上 典男 大阪市中央区平野町四丁目1番2号 大阪 瓦斯株式会社内 (72)発明者 三浦 宏久 豊田市トヨタ町1番地 トヨタ自動車株式 会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Norio Murakami 4-1-2, Hirano-cho, Chuo-ku, Osaka, Osaka Gas Co., Ltd. (72) Inventor Hirohisa Miura, Toyota-cho, Toyota-shi

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】原料ピッチを紡糸して得たピッチ繊維また
はこれを不融化して得た不融化繊維、無機粉末または無
機繊維、自己焼結性を有する炭素粉および有機溶媒を混
合して液状混合物を調製し、これを脱溶媒した後、成形
し、炭化・黒鉛化することを特徴とする炭素−炭素複合
材の製造方法。
1. A pitch fiber obtained by spinning a raw material pitch, or an infusible fiber obtained by infusibilizing the pitch fiber, an inorganic powder or an inorganic fiber, a carbon powder having self-sinterability, and an organic solvent are mixed to form a liquid. A method for producing a carbon-carbon composite material, which comprises preparing a mixture, desolvating the mixture, molding the mixture, and carbonizing / graphitizing the mixture.
【請求項2】原料ピッチを紡糸して得たピッチ繊維また
はこれを不融化して得た不融化繊維、無機粉末または無
機繊維および自己焼結性を有する炭素粉からなる混合物
を調製した後、これを金型に入れ、該混合物の収縮率が
その最大収縮率の10〜70%となるまで常温乃至50
0℃の温度で圧縮することにより、成形を行ない、次い
で炭化・黒鉛化することを特徴とする炭素−炭素複合材
の製造方法。
2. A pitch fiber obtained by spinning a raw material pitch or an infusible fiber obtained by making it infusible, inorganic powder or a mixture of inorganic fiber and carbon powder having self-sintering property, This is put in a mold, and the mixture shrinks from room temperature to 50 until the shrinkage of the mixture reaches 10 to 70% of its maximum shrinkage.
A method for producing a carbon-carbon composite material, which comprises performing compression by compression at a temperature of 0 ° C. and then carbonizing and graphitizing.
【請求項3】原料ピッチを紡糸して得たピッチ繊維また
はこれを不融化して得た不融化繊維、自己焼結性を有す
る炭素粉および有機溶媒を混合して液状混合物を調製
し、これを脱溶媒した後、成形し、炭化・黒鉛化するこ
とを特徴とする炭素−炭素複合材の製造方法。
3. A liquid mixture is prepared by mixing pitch fibers obtained by spinning raw material pitch or infusible fibers obtained by infusibilizing the pitch, self-sintering carbon powder and an organic solvent. The method for producing a carbon-carbon composite material, which comprises desolvating, then shaping, and carbonizing / graphitizing.
【請求項4】原料ピッチを紡糸して得たピッチ繊維また
はこれを不融化して得た不融化繊維および無機粉末また
は無機繊維からなる混合物を調製し、これを金型に入れ
て該混合物の収縮率がその最大収縮率の10〜70%と
なるまで常温乃至500℃の温度で圧縮することによっ
て成形を行ない、次いで炭化・黒鉛化することを特徴と
する炭素−炭素複合材の製造方法。
4. A mixture of pitch fibers obtained by spinning a raw material pitch or infusible fibers obtained by infusibilizing this and inorganic powder or a mixture of inorganic fibers is placed in a mold and the mixture is mixed. A method for producing a carbon-carbon composite material, which comprises performing compression by compressing at a temperature from room temperature to 500 ° C. until the shrinkage ratio becomes 10 to 70% of the maximum shrinkage ratio, and then carbonizing / graphitizing.
【請求項5】液状混合物が、さらに粘結成分含有材料を
含有している請求項1に記載の炭素−炭素複合材の製造
方法。
5. The method for producing a carbon-carbon composite material according to claim 1, wherein the liquid mixture further contains a caking component-containing material.
【請求項6】混合物が、さらに粘結成分含有材料を含有
している請求項2に記載の炭素−炭素複合材の製造方
法。
6. The method for producing a carbon-carbon composite material according to claim 2, wherein the mixture further contains a caking component-containing material.
【請求項7】液状混合物が、さらに粘結成分含有材料を
含有している請求項3に記載の炭素−炭素複合材の製造
方法。
7. The method for producing a carbon-carbon composite material according to claim 3, wherein the liquid mixture further contains a caking component-containing material.
【請求項8】混合物が、さらに粘結成分含有材料を含有
している請求項4に記載の炭素−炭素複合材の製造方
法。
8. The method for producing a carbon-carbon composite material according to claim 4, wherein the mixture further contains a caking component-containing material.
【請求項9】混合物を金型に入れて該混合物の収縮率が
その最大収縮率の10〜70%となるまで常温乃至50
0℃の温度で圧縮することによって成形を行ない、次い
で炭化・黒鉛化する請求項1,3,5及び7のいずれか
に記載の炭素−炭素複合材の製造方法。
9. The mixture is placed in a mold and the shrinkage of the mixture is from room temperature to 50 until the shrinkage of the mixture reaches 10 to 70% of its maximum shrinkage.
The method for producing a carbon-carbon composite material according to any one of claims 1, 3, 5 and 7, wherein molding is performed by compression at a temperature of 0 ° C, and then carbonization and graphitization are performed.
【請求項10】自己焼結性を有する炭素粉が、メソカー
ボンマイクロビーズである請求項1乃至9のいずれかに
記載の炭素−炭素複合材の製造方法。
10. The method for producing a carbon-carbon composite material according to claim 1, wherein the carbon powder having self-sinterability is mesocarbon microbeads.
【請求項11】粘結成分含有材料が、タール、ピッチま
たは有機高分子である請求項5乃至8のいずれかに記載
の炭素−炭素複合材の製造方法。
11. The method for producing a carbon-carbon composite material according to claim 5, wherein the binder-containing material is tar, pitch or an organic polymer.
【請求項12】成形時の加熱温度が、100〜400℃
の範囲にある請求項2,4または9に記載の炭素−炭素
複合材の製造方法。
12. The heating temperature at the time of molding is 100 to 400 ° C.
The method for producing a carbon-carbon composite material according to claim 2, 4 or 9, which is within the range.
【請求項13】有機溶媒が、少なくともアセトンおよび
/またはトルエンを含む請求項1または3に記載の炭素
−炭素複合材の製造方法。
13. The method for producing a carbon-carbon composite material according to claim 1, wherein the organic solvent contains at least acetone and / or toluene.
JP2418140A 1990-12-21 1990-12-21 Production of carbon-carbon composite material Pending JPH06199577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2418140A JPH06199577A (en) 1990-12-21 1990-12-21 Production of carbon-carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2418140A JPH06199577A (en) 1990-12-21 1990-12-21 Production of carbon-carbon composite material

Publications (1)

Publication Number Publication Date
JPH06199577A true JPH06199577A (en) 1994-07-19

Family

ID=18526076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2418140A Pending JPH06199577A (en) 1990-12-21 1990-12-21 Production of carbon-carbon composite material

Country Status (1)

Country Link
JP (1) JPH06199577A (en)

Similar Documents

Publication Publication Date Title
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
US4041116A (en) Method for the manufacture of carbon-carbon composites
USRE42775E1 (en) Isotropic pitch-based materials for thermal insulation
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
DE19823507A1 (en) Process for the production of moldings based on carbon, carbides and / or carbonitrides
US5569417A (en) Thermoplastic compositions comprising filled, B-staged pitch
US3993738A (en) High strength graphite and method for preparing same
JPH06199577A (en) Production of carbon-carbon composite material
CN117480141A (en) Method for producing carbonized or graphitized shaped parts
KR100213315B1 (en) Manufacturing method of carbon-sintered body
KR970008693B1 (en) Process for the preparation of carbon composite material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
EP0656331B1 (en) A method for preparing a carbon/carbon composite material
EP1017648B1 (en) Method for producing carbon composite materials and/or materials containing carbon, carbidic and/or carbonitridic materials
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPS6355172A (en) High carbon composite material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH0323207A (en) Production of carbon compact
JPH0456788B2 (en)
JPH0456789B2 (en)
JP2566555B2 (en) Method for producing carbon fiber reinforced carbon composite material
EP0379328A1 (en) Carbon fiber reinforced carbon