JPH0456789B2 - - Google Patents

Info

Publication number
JPH0456789B2
JPH0456789B2 JP61260153A JP26015386A JPH0456789B2 JP H0456789 B2 JPH0456789 B2 JP H0456789B2 JP 61260153 A JP61260153 A JP 61260153A JP 26015386 A JP26015386 A JP 26015386A JP H0456789 B2 JPH0456789 B2 JP H0456789B2
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
carbon
strength
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61260153A
Other languages
Japanese (ja)
Other versions
JPS63112463A (en
Inventor
Kyoshi Sutani
Yoshihiko Sunami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61260153A priority Critical patent/JPS63112463A/en
Publication of JPS63112463A publication Critical patent/JPS63112463A/en
Publication of JPH0456789B2 publication Critical patent/JPH0456789B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〈産業上の利用分野〉 この発明は、航空機や自動車用のデイスクブレ
ーキ材等の耐摩耗性材料、軸受等の摺動材料、ロ
ケツトノズルのようなアブレーシヨン材料、或い
はホツトプレス用モールドなどに使用して優れた
性能を発揮する炭素繊維/炭素複合材の製造方法
に関するものである。 〈従来技術とその問題点〉 軽量で高強度を示し、しかも耐摩耗性や潤滑性
に優れた炭素繊維/炭素複合材(以下「C/C複
合材」と略称する)は、今や宇宙航空機部材や自
動車部材、更には医療用材料等として欠かせない
存在となつているが、その製造には炭素繊維と熱
硬化性樹脂との複合材(CFRP)を炭化する手段
が一般的に採用されている。 しかし、熱硬化性樹脂を炭化するとその炭化収
率は約50%程度にしかならず、そのため“ただ単
に炭素繊維と熱硬化性樹脂との複合材を炭化す
る”だけでは炭化後のマトリツクスが気孔やクラ
ツクの多いC/C複合材となつて所望強度が確保
できないので、上記方法に従つてC/C複合材を
製造する場合には「ピツチ含浸−再炭化」を繰り
返す等の緻密化処理が必要とされていた。このよ
うなことから、上記従来のC/C複合材の製造方
法には製造工程が極めて複雑であるが故に生産能
率が悪く、従つて製品価格も非常に高価なものと
なつてしまうとの問題点が指摘されており、工業
的に決して好ましい手段とは言えなかつた。 一方、このような情勢の中から、最近、C/C
複合材の製造に関して『ピツチとコークス粉をマ
トリツクス材とし、これに炭素繊維を混入したも
のを500℃程度のセミ炭化温度で加圧・加熱成形
する』と言う手段を取り入れた新しい方法の可能
性を検討した結果も報告されている(「鉄と鋼」
No.5,VOL.72,MAR.1986,第306頁)。そして、
ピツチ成分の加圧・加熱成形後の炭化収率は90%
程度と高いことから、上記方法によつて気孔やク
ラツクの少ないマトリツクスを得られることが予
想され、別段の緻密化処理を行わなくても比較的
良好な強度のC/C複合材が製造されるものと期
待された。 ところが、この新しい報告になる方法によつて
得られるC/C複合材も現状で達成できる強度は
高々800Kg/cm2でしかなく、市販されている高性
能C/C複合材の1000〜2000Kg/cm2には未だ及ば
ないのが実情であつた。 〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、曲げ、
引張り、圧縮及び剪断等の強度や、耐摩耗性を始
めとするその他の物性に優れた高密度C/C複合
材を工業的規模で安定生産し得る方法を提供すべ
く、特に、炭化収率の低い熱硬化製樹脂を使用し
ないことから工夫によつては十分に満足できる高
密度・高強度C/C複合材を得る余地が残されて
いるのではないかとの期待が頭をもたげがちな前
記「“鉄と鋼”に報告されたC/C複合材の製造
方法」に着目し、まず、この方法で製造される
C/C複合材が期待される程に高い強度を示さな
い原因の解明を目指して研究を行つた結果、以下
(a)〜(f)に示す如き知見を得るに至つたのである。
即ち、 (a) ピツチと、コークス粉等の骨材と、炭素繊維
とを混合した成形素材を加圧下で加熱して行く
とピツチは溶融状態となるが、このとき成形体
は成形圧のために炭素繊維とコークス粉が接触
するまで圧密されるので、余剰のピツチは系外
に流出してピツチの過不足が無い状態となる。
ところが、上記成形素材の加圧・加熱成形が完
了するには更なる高温に加熱する必要がある。 しかし、一般にこのような高温域が加熱する
とピツチは分解してガスを発生するが、この発
生ガスのガス圧により量的均衡を保つていたピ
ツチは更に系外に押し出され、この流出したピ
ツチの体積分だけ成形体中に気孔が発生して、
C/C複合材製品の強度低下の原因となるこ
と。 (b) そして、この分解ガスの発生量はピツチの揮
発分が高いほど多くなるから、揮発分の高いピ
ツチを使用した場合ほど成形体は多孔質とな
り、それに応じて得られるC/C複合材の強度
が低下すること。 (c) しかるに、前記4「“鉄と鋼”に報告された
C/C複合材の製造方法」では、同一報告者の
技術論文たる「“バルクメソフエーズをバイン
ダーとする炭素材料の試作”(“炭素”1985,No.
123、第150〜159頁)」に「揮発分が30%以上の
ピツチが良好である」旨記載されていることか
らも明らかな如く、高い含有量で揮発分を含む
ピツチの使用が前提とされているため、これが
所期の強度を備えたC/C複合材を得る上で大
きな障害となつているものと考えられること。 (d) しからば、低揮発分のピツチを使用すれば
C/C強度は改善される筈である。それにもか
かわらず、前記逐次刊行物「炭素」に掲載され
た技術論文には「ピツチ中の揮発分含有量が低
いと強度は逆に低下する」との結果が示されて
いるが、ここで使用されているピツチは80%以
上の割合でキノリン不溶分を含むものであり、
この組成のピツチは溶融性(軟化性)が悪いた
め炭素繊維やコークス粉との接着性が良くな
く、そのため十分な製品強度が達成出来なかつ
たものと推測されること。 (e) このようなことから、炭素繊維と、コークス
粉等の骨材と、ピツチとからなる組成物を成形
素材としてC/C複合材を製造するに当つて、
低い揮発分含有割合でしかも溶融性の良好なピ
ツチを使用すれば、複雑な工程を必要とするこ
となく十分に満足できる強度を備えた緻密な
C/C複合材の安定製造が可能になると結論さ
れること。 (f) 上述のような低い揮発分で溶融性に優れたピ
ツチは、タール又はピツチを減圧下で、或いは
水又はガス(N2ガス等)を吹き込みながら熱
処理する等の手段により容易に得られること。 この発明は、上記知見に基づいてなされたもの
であり、 炭素繊維、微粉状炭素質骨材、並びに揮発分が
28%以下でかつ軟化点が400℃以下のバインダー
ピツチからなる成形素材を加圧・加熱成形し、次
いで炭化ないし黒鉛化することにより、面倒な処
理・操作を要することなく、高密度で、強度や耐
摩耗性等の優れた炭素繊維強化炭素材を安定し量
産し得るようにした点、 に特徴を有するものである。 なお、使用される炭素繊維は高性能グレード又
は汎用グレードの何れでも良く、構造材等の用途
には高性能グレード品を、そして耐摩耗性材料や
摺動材料等の用途には汎用グレード品をと言つた
ような使い分けをするのが適当である。また、炭
素繊維の形態としては、織物、プリプレグ状の一
方向繊維、短繊維状のチヨツプ等何れを採用して
も良い。 炭素質骨材は、成形材の炭化時にマトリツクス
の収縮を抑制してマトリツクスの亀裂発生を低減
する役割を担つたものであり、C/C複合材の製
造に従来から使用されている炭素粉、カーボンブ
ラツク、黒鉛等の何れをも採用することができ
る。また、その粒径は格別に限定されるものでは
ないが、粒径が20μを越えると複合体の炭化処理
後に骨材とピツチのマトリツクス中にクラツクが
発生し易くなることから、好ましくはユーマイザ
ー等で微粉砕した20μ以下の粒径のもの(例えば
5〜15μの粒径のものが主体をなすもの)を使用
するのが良い。そして、その配合量は、全マトリ
ツクスに対して少なくとも20重量%以上とするの
が好ましい。 ところで、この発明で使用するバインダーピツ
チとしては、前記の如く揮発分が28%以下(好ま
しくは10〜28%)でしかも軟化点が400℃以下の
ものを選ばなければならない。なぜなら、揮発分
が28%を上回ると、前述したように加圧・加熱成
形中に発生する分解ガス量が多くなつてマトリツ
クスの多孔質化を招き、製品の強度特性等に所望
の性能が得られなくなるからであり、一方、軟化
点が400℃を越えるものでは加圧・加熱成形時に
十分な流動性を示さないので炭素繊維や炭素質骨
材に対する接着力が悪く、やはり十分に優れた性
能のC/C複合材を得ることができないからであ
る。 ここで、バインダーピツチの揮発分量は
JIS8812に準じて測定した値であり、この値は炭
化時に揮発する成分量を示したものである。ま
た、軟化点は高化式フローテスターで測定するも
のであり、その測定方法は次の通りである。即
ち、微粉状ピツチを断面積が1cm2で下部1mmφの
ノズルを有するシリンダーに詰め、上部からプラ
ンジヤーにより10Kg/cm2の圧力で加圧しつつ6
℃/hrで昇温し、プランジヤーの変位を測定する
方法である。そして、ここで言う軟化点とは「ピ
ツチが軟化変形することによりプランジヤーが動
き始めた後、その動きが停止する温度」と定義で
きる。なお、軟化点の物理的意味は「軟化変形し
たピツチが初期に存在した空隙を充填し終る温
度」と言うことができる。 このように、揮発分が30%以下でも良好な溶融
性を示すピツチは、例えばタール又はピツチを
100Torr以下の減圧下で380〜550℃程度の温度に
加熱し適当時間保持する熱処理によつて容易に得
ることができる。つまり、タール又はピツチを熱
処理するに際して雰囲気を減圧すると、低分子量
成分が円滑に除去されて原料組成の均質化が増
し、ピツチの揮発分が同じ値となるように熱処理
した場合には大気圧下で熱処理するよりも遥かに
良好な溶融性を示すようになる。そして、この際
の減圧度合は100Torr以下とすることが必要で、
これ以上の圧力ではピツチの溶融性改善の効果が
小さいので適当でない。また、熱処理温度が380
℃未満ではピツチの熱分解反応による揮発分低下
が遅くて好ましくなく、一方、550℃を越える熱
処理温度では熱分解反応速度が過大となつて制御
が困難となるので、上記手段によつてバインダー
ピツチを調整する場合には熱処理温度では380〜
550℃に設定するのが良い。 また、上記の如く単に減圧下で熱処理する方法
の他に、大気圧下或いは減圧下において水蒸気や
ガス(N2ガス等)を吹き込みつつ熱処理する方
法を採用しても、低揮発分で良好な溶融性を示す
ピツチを得ることができる。 さて、この発明の方法で使用する成形素材の混
合・分散調整は以下のようにして実施すれば良
い。 即ち、炭素繊維として織物や一方向繊維の形態
のものを使用する場合には、炭素質骨材粉とバイ
ンダーピツチを分散させた溶液中に炭素繊維を浸
漬する手段が好ましい。この場合、分散液には、
これら固体粉及び炭素繊維の何れとも濡れ性の良
い、例えばアセトン、エタノール、メタノール、
〔水+界面活性材〕の溶液、或いはこれらと樹脂
の混合液等が使用出来る。このような手段を採用
することにより、固体成分が炭素繊維に良くなじ
んで均一な厚みで付着し、高炭素繊維含有率の成
形体を製造することが可能となる。そして、上述
のようにしてマトリツクス材を付着させた炭素繊
維は、積層の後、加圧・加熱成形される。 また、炭素繊維としてチヨツプ状の短繊維を使
用する場合には、繊維とマトリツクス粉を配合し
た後V型ブレンダー等の混合機で乾式混合すると
言う一般的な混合法を採用することにより、十分
良好な結果が得られる。 上記のように積層又は混合された成形素材は、
次いで、そのまま或いは予備成形の後加圧・加熱
成形されるが、出来れば加圧・加熱成形手段には
以下に示す二段工程から成る方法を採用するのが
望ましい。即ち、まず無加圧又は低加圧(20Kg/
cm2程度以下)下で昇温速度:1〜50℃/minにて
ピツチが軟化流動する温度以上まで昇温し、この
温度域に達したならば加圧力を40Kg/cm2程度以上
とし、更に昇温速度:1〜20℃℃/minにてピツ
チが熱分解反応を活発に起こす温度域である450
〜600℃程度にまで昇温し、ピツチが十分固化す
るまで加圧・保持する方法である。 そして、このようにして得られた加圧・加熱成
形体は、次に、不活性ガス雰囲気中で昇温速度:
1〜100℃/hrにて加熱され炭化乃至は黒鉛化さ
れる。 上述したようなこの発明の方法によると、格別
な緻密化処理を行わなくても1.5〜1.7g/cm3と言
う高い見掛け密度を有し、従来のC/C複合材に
比して一段と高い強度(汎用グレードの炭素繊維
を使用した場合は1000Kg/cm2程度、また高性能グ
レードの炭素繊維を使用した場合で2000Kg/cm2
度)を有するC/C複合材を安定して製造するこ
とが可能であるが、以下、実施例によりこの発明
を具体的に説明する。 〈実施例〉 実施例 1 内容積が5のガラス製セパラブルフラスコに
4Kgのコールタールを仕込み、第1表に示す条件
で熱処理して揮発分ランクの異なるバインダーピ
ツチを調整した。 一方、石油コークスを1000℃の温度で加熱して
炭化した後、ユーマイザーで微粉砕して平均粒
径:11μのコークス粉を調整した。 次いで、上述の揮発分の異なるバインダーピツ
チの各々について、100メツシユ以下に粉砕した
それの70部とコークス粉30部とを170部のエタノ
ール中に分散し、この分散液中に、アセトンで洗
浄後乾燥して9.5cm×9.5cmに裁断したPAN系炭素
繊維織物(高強度糸とフイラメント数:1000本、
平織)を浸漬して上記コークス粉とバインダーピ
ツチとを付着させた。 次に、このようにしてマトリツクス材を付着さ
せ、その後乾燥した上記織物を30枚積層し、これ
を内寸が10cm角の金型に装入して昇温速度:
<Industrial Application Fields> This invention can be used in wear-resistant materials such as disc brake materials for aircraft and automobiles, sliding materials such as bearings, abrasion materials such as rocket nozzles, or molds for hot presses. The present invention relates to a method for manufacturing a carbon fiber/carbon composite material that exhibits excellent performance. <Prior art and its problems> Carbon fiber/carbon composites (hereinafter referred to as "C/C composites"), which are lightweight, have high strength, and have excellent wear resistance and lubricity, are now used as spacecraft components. It has become indispensable as an automobile component, medical material, etc., but carbonization of a composite material of carbon fiber and thermosetting resin (CFRP) is generally used to manufacture it. There is. However, when thermosetting resin is carbonized, the carbonization yield is only about 50%, and therefore, simply carbonizing a composite material of carbon fiber and thermosetting resin will cause the matrix after carbonization to have pores and cracks. Since the C/C composite material has a large amount of C/C and cannot secure the desired strength, when manufacturing the C/C composite material according to the above method, densification treatment such as repeating "pitch impregnation-recarbonization" is necessary. It had been. For this reason, the above-mentioned conventional manufacturing method for C/C composite materials has a problem in that the manufacturing process is extremely complicated, resulting in poor production efficiency and, therefore, the product price is extremely high. However, this method could not be said to be an industrially preferable method. Meanwhile, in light of this situation, C/C
Regarding the production of composite materials, there is a possibility of a new method that incorporates the method of ``using pitch and coke powder as a matrix material, mixing it with carbon fiber, and pressurizing and heat forming it at a semi-carbonization temperature of about 500 degrees Celsius.'' The results of the study have also been reported (“Iron and Steel”).
No.5, VOL.72, MAR.1986, page 306). and,
The carbonization yield after pressurizing and heat forming the pitch component is 90%.
It is expected that the above method will yield a matrix with few pores and cracks, and a C/C composite material with relatively good strength will be produced without any special densification treatment. It was expected. However, the C/C composite material obtained by the method reported in this new report can only achieve a strength of 800 kg/cm 2 at most, which is lower than the 1000 to 2000 kg/cm 2 strength of commercially available high-performance C/C composite materials. The reality is that it still falls short of cm 2 . <Means for solving the problem> From the above-mentioned viewpoint, the present inventors have developed a method for bending,
In order to provide a method that can stably produce high-density C/C composite materials on an industrial scale that have excellent tensile, compressive, and shear strengths and other physical properties such as wear resistance, we particularly aim to improve the carbonization yield. Because this method does not use a thermosetting resin with a low carbon content, expectations tend to arise that there may still be room to obtain a sufficiently satisfactory high-density, high-strength C/C composite material through ingenuity. Focusing on the above-mentioned "method for manufacturing C/C composite materials reported in 'Tetsu to Hagane'," we first investigated the reason why C/C composite materials manufactured by this method do not exhibit as high strength as expected. As a result of research aimed at elucidating the issue, we found the following:
This led to the findings shown in (a) to (f).
That is, (a) When a molded material made of a mixture of pitch, aggregate such as coke powder, and carbon fiber is heated under pressure, the pitch becomes molten, but at this time, the molded body melts due to the molding pressure. Since the carbon fibers and coke powder are compacted until they come into contact with each other, excess pitch flows out of the system, and there is no excess or deficiency of pitch.
However, in order to complete the pressurization and heat molding of the molding material, it is necessary to heat it to a higher temperature. However, when such a high-temperature area is heated, pitches generally decompose and generate gas, and the pitches that maintained a quantitative balance due to the gas pressure of this generated gas are further pushed out of the system, and the pitches that flow out are Pores are generated in the molded body by the volume,
This may cause a decrease in the strength of C/C composite products. (b) The amount of decomposition gas generated increases as the volatile content of the pitch increases, so the higher the volatile content of pitch is used, the more porous the molded product becomes, and the C/C composite material obtained accordingly. decrease in strength. (c) However, in 4 above, “Manufacturing method of C/C composite material reported in “Tetsu to Hagane””, the technical paper ““Prototype production of carbon material using bulk mesophase as binder”” by the same reporter is mentioned. (“Carbon” 1985, No.
123, pp. 150-159) states that ``pitch with a volatile content of 30% or more is good'', the use of pitch with a high volatile content is a prerequisite. This is thought to be a major obstacle in obtaining a C/C composite material with the desired strength. (d) Therefore, if a pitch with a low volatile content is used, the C/C strength should be improved. Nevertheless, the technical paper published in the serial "Carbon" states that "the strength decreases when the volatile content in pitch is low." The pituti used contains more than 80% quinoline insoluble matter,
Pitch with this composition has poor meltability (softening properties), so it does not have good adhesion to carbon fibers or coke powder, and it is assumed that this is why it was not possible to achieve sufficient product strength. (e) For this reason, when manufacturing a C/C composite material using a composition consisting of carbon fiber, aggregate such as coke powder, and pitch as a molding material,
We concluded that by using pitch with a low volatile content and good meltability, it is possible to stably manufacture dense C/C composites with sufficient strength without the need for complicated processes. To be done. (f) Pitch with low volatile content and excellent meltability as described above can be easily obtained by heat treating tar or pitch under reduced pressure or while blowing water or gas ( N2 gas, etc.). thing. This invention was made based on the above knowledge, and uses carbon fiber, finely powdered carbonaceous aggregate, and volatile matter.
By pressurizing and heat-forming a molding material made of binder pitch with a binder pitch of 28% or less and a softening point of 400℃ or less, and then carbonizing or graphitizing it, it is possible to create a molded material with high density and strength without the need for troublesome processing or operations. It is characterized by the ability to stably mass-produce carbon fiber-reinforced carbon materials with excellent wear resistance and wear resistance. The carbon fiber used may be either high-performance grade or general-purpose grade, with high-performance grade products used as structural materials and general-purpose grade products used as wear-resistant materials and sliding materials. It is appropriate to use them in different ways. Further, as the form of the carbon fiber, any of textiles, prepreg-like unidirectional fibers, short fiber-like chops, etc. may be adopted. The carbonaceous aggregate plays the role of suppressing the shrinkage of the matrix and reducing the occurrence of cracks in the matrix during carbonization of the molding material, and is a carbon powder that has been traditionally used in the production of C/C composite materials. Any of carbon black, graphite, etc. can be used. Although the particle size is not particularly limited, if the particle size exceeds 20μ, cracks are likely to occur in the matrix of aggregate and pitch after carbonization of the composite, so it is preferable to use Umizer etc. It is best to use particles with a particle size of 20μ or less (for example, particles with a particle size of 5 to 15μ) that have been finely pulverized in a process. The blending amount thereof is preferably at least 20% by weight based on the total matrix. By the way, as mentioned above, the binder pitch used in this invention must have a volatile content of 28% or less (preferably 10 to 28%) and a softening point of 400°C or less. This is because if the volatile content exceeds 28%, as mentioned above, the amount of decomposed gas generated during pressurization and heat molding increases, causing the matrix to become porous, making it difficult to achieve the desired strength properties of the product. On the other hand, if the softening point exceeds 400°C, it will not show sufficient fluidity during pressure/heat molding and will have poor adhesion to carbon fibers and carbonaceous aggregates. This is because it is not possible to obtain a C/C composite material of Here, the volatile content of the binder pitch is
This value was measured according to JIS8812, and this value indicates the amount of components that volatilize during carbonization. Further, the softening point is measured using a Koka type flow tester, and the measuring method is as follows. That is, fine powder pitch was packed into a cylinder with a cross-sectional area of 1 cm 2 and a nozzle of 1 mm diameter at the bottom, and was pressurized from the top with a plunger at a pressure of 10 kg/cm 2 .
This method raises the temperature at °C/hr and measures the displacement of the plunger. The softening point here can be defined as "the temperature at which the plunger stops moving after it starts moving due to softening and deformation of the pitch." The physical meaning of the softening point can be said to be "the temperature at which the softened and deformed pitches finish filling the initially existing voids." In this way, pitch that exhibits good melting properties even with a volatile content of 30% or less can be used, for example, for tar or pitch.
It can be easily obtained by heat treatment of heating to a temperature of about 380 to 550°C under reduced pressure of 100 Torr or less and holding it for an appropriate time. In other words, if the atmosphere is reduced in pressure when heat treating tar or pitch, low molecular weight components will be smoothly removed and the raw material composition will become more homogeneous. It shows much better meltability than heat treatment. The degree of pressure reduction at this time must be 100 Torr or less.
A pressure higher than this is not suitable because the effect of improving the pitch's meltability is small. In addition, the heat treatment temperature is 380℃.
If the heat treatment temperature is below 550°C, the reduction in volatile content due to the thermal decomposition reaction of the binder will be slow, which is undesirable. On the other hand, if the heat treatment temperature exceeds 550°C, the thermal decomposition reaction rate will become excessive and difficult to control. When adjusting the heat treatment temperature, the temperature is 380~
It is best to set the temperature to 550℃. In addition to the method of heat treatment under reduced pressure as described above, it is also possible to adopt a method of heat treatment while blowing steam or gas ( N2 gas, etc.) under atmospheric pressure or reduced pressure to achieve a good result with a low volatile content. Pitch exhibiting melting properties can be obtained. Now, the mixing and dispersion adjustment of the molding materials used in the method of this invention may be carried out as follows. That is, when carbon fibers in the form of fabrics or unidirectional fibers are used, it is preferable to immerse the carbon fibers in a solution in which carbonaceous aggregate powder and binder pitch are dispersed. In this case, the dispersion contains
These solid powders and carbon fibers have good wettability, such as acetone, ethanol, methanol,
A solution of [water + surfactant] or a mixture of these and a resin can be used. By employing such means, the solid component blends well with the carbon fibers and adheres to them with a uniform thickness, making it possible to produce a molded article with a high carbon fiber content. Then, the carbon fibers to which the matrix material is attached as described above are laminated and then pressurized and heat-molded. In addition, when using chop-shaped short fibers as carbon fibers, it is possible to achieve satisfactory results by using a general mixing method in which the fibers and matrix powder are blended and then dry-mixed using a mixer such as a V-type blender. results. The molding materials laminated or mixed as above are
Next, the material is pressurized and heated as it is or after preforming, but it is preferable to use a two-step process as shown below for the pressurized and heated forming means. That is, first, no pressure or low pressure (20Kg/
cm 2 or less) at a heating rate of 1 to 50℃/min to a temperature above which the pitch softens and flows, and once this temperature range is reached, increase the pressure to 40Kg/cm 2 or more, Furthermore, temperature increase rate: 1 to 20℃/min at 450℃, which is the temperature range in which pitches actively undergo thermal decomposition reactions.
This method involves raising the temperature to around 600°C and pressurizing and holding until the pitch is sufficiently solidified. The pressurized and heated molded product thus obtained is heated in an inert gas atmosphere at a rate of temperature increase:
It is heated at 1 to 100°C/hr to be carbonized or graphitized. According to the method of this invention as described above, it has a high apparent density of 1.5 to 1.7 g/cm 3 even without special densification treatment, which is much higher than that of conventional C/C composite materials. Stable production of C/C composite material with strength (approximately 1000 kg/cm 2 when using general-purpose grade carbon fiber, and approximately 2000 kg/cm 2 when using high-performance grade carbon fiber) However, the present invention will be specifically explained below with reference to Examples. <Examples> Example 1 4 kg of coal tar was charged into a glass separable flask with an internal volume of 5, and heat treated under the conditions shown in Table 1 to prepare binder pitches with different volatile content ranks. On the other hand, petroleum coke was heated at a temperature of 1000°C to carbonize it, and then finely pulverized using a userizer to prepare coke powder with an average particle size of 11μ. Next, for each of the above binder pitches with different volatile contents, 70 parts of the binder pitches pulverized to 100 mesh or less and 30 parts of coke powder were dispersed in 170 parts of ethanol, and in this dispersion, after washing with acetone, PAN-based carbon fiber fabric (high-strength yarn and filament count: 1000, dried and cut into 9.5 cm x 9.5 cm)
The coke powder and binder pitch were adhered to the coke powder and binder pitch by dipping the plain weave. Next, the matrix material was attached in this way, and then 30 sheets of the dried fabric were layered, and this was placed in a mold with an inner dimension of 10 cm square, and the heating rate:

【表】【table】

【表】【table】

【表】 5℃/minにて520℃まで昇温した。そして、こ
の温度で30分保持した後冷却し、上記寸法の成形
体を得た。 続いて、これら成形体を粉コークス中に詰め
N2雰囲気中で昇温速度:15℃/minにて1000℃
まで昇温して炭化し、C/C複合材とした。 このようにして得られたC/C複合材の見掛け
密度と曲げ強度の測定結果を第1表に併せて示
す。 第1表に示される結果からも明らかな如く、本
発明の条件通りに製造されたC/C複合材は高密
度を有しており、曲げ強度で1500Kg/cm2以上の高
強度を備えていることが分かる。 実施例 2 実施例1におけると同様のバインダーピツチと
コークス粉とを準備し、繊維長:0.7mmの汎用グ
レード炭素繊維(糸強度:70Kg/cm2、糸径:
18μ)と配合比(重量比) バインダーピツチ:コークス粉:炭素繊維 =25部:25部:50部 の割合で配合して十分混合した後、この混合物の
100gを実施例1におけると同様の金型に装入し
て実施例1と同じ成形条件で成形し、ついで実施
例1と同じ炭化条件で炭化処理した。 このようにして得られたC/C複合材の見掛け
密度と曲げ強度との測定結果を第2表に示す。 第2表に示される結果からも明らかなように、
本発明の条件通りに製造されたC/C複合材は高
密度を有しており、汎用グレードのチヨツプ状炭
素繊維を用いたとしても高い強度を示すことが分
かる。 実施例 3 内容積が5のガラス製セパラブルフラスコに
2Kgのコールタールを仕込み、450℃の熱処理温
度でかつ第3表に示す各圧力下で、得られるピツ
チ中の揮発分が〔20±0.5〕%となるまで熱処理
してバインダーピツチを調整した。 このようにして得られたバインダーピツチと、
実施例1におけると同様のコークス粉及び炭素繊
維とを用い、やはり実施例1と同様条件でC/C
複合材を製造した。
[Table] The temperature was raised to 520°C at 5°C/min. Then, the mixture was kept at this temperature for 30 minutes and then cooled to obtain a molded article having the above dimensions. Next, these compacts are packed into coke powder.
Temperature increase rate: 1000℃ at 15℃/min in N2 atmosphere
The temperature was raised to 100% to carbonize the material, resulting in a C/C composite material. Table 1 also shows the measurement results of the apparent density and bending strength of the C/C composite material thus obtained. As is clear from the results shown in Table 1, the C/C composite material manufactured according to the conditions of the present invention has a high density and a bending strength of 1500 kg/cm 2 or more. I know that there is. Example 2 The same binder pitch and coke powder as in Example 1 were prepared, and general-purpose grade carbon fiber with fiber length: 0.7 mm (thread strength: 70 Kg/cm 2 , thread diameter:
18μ) and blending ratio (weight ratio) Binder pitch: Coke powder: Carbon fiber = 25 parts: 25 parts: 50 parts After mixing thoroughly,
100 g was charged into the same mold as in Example 1, molded under the same molding conditions as in Example 1, and then carbonized under the same carbonization conditions as in Example 1. Table 2 shows the measurement results of the apparent density and bending strength of the C/C composite material thus obtained. As is clear from the results shown in Table 2,
It can be seen that the C/C composite material manufactured according to the conditions of the present invention has high density and exhibits high strength even when general-purpose grade chopped carbon fibers are used. Example 3 2 kg of coal tar was charged into a glass separable flask with an internal volume of 5, and the volatile content in the resulting pitch was heated at 450°C and under each pressure shown in Table 3. ]%, the binder pitch was adjusted. The binder pitch obtained in this way,
Using the same coke powder and carbon fiber as in Example 1, C/C was also carried out under the same conditions as in Example 1.
A composite material was manufactured.

【表】 このようにして製造されたC/C複合材の見掛
け密度と曲げ強度との測定結果を第3表に併せて
示すが、これらの結果からも、本発明の条件通り
に製造されたC/C複合材は高密度を有していて
高い強度を示すことが分かる。 実施例 4 内容積が5のガラス製セパラブルフラスコに
4Kgのストレートアスフアルトを仕込み、昇温速
度:5℃/minで440℃まで昇温した後、該アス
フアルト液中に内径:3mmφのステンレス鋼チユ
ーブを通して500℃に予熱した水蒸気を毎分5g
ずつ吹き込みながら2時間熱処理したところ、揮
発分が22%、軟化点が330℃のピツチが得られ、
処理時の収率は24%であつた。 次に、上記ピツチを60メツシユ以下に微粉砕し
て得たバインダーピツチ25部と実施例1における
と同様のコークス粉35部と、実施例2におけると
同じ繊維長::0.7mmの汎用グレード炭素繊維
(糸強度:70Kg/cm2、糸径:18μ)40部とを混合
した後、実施例2の場合と同様条件で加熱・加圧
成形し、炭化処理した。 このようにして製造されたC/C複合材の見掛
け密度と曲げ強度とを測定したところ、見掛け密
度が1.53g/cm2で曲げ強度が1020Kg/cm2であるこ
とが確認された。 〈効果の総括〉 以上に説明した如く、この発明によれば、高密
度を有し、強度その他の諸特性に一段と優れた炭
素繊維強化炭素材を工業的規模で安定して生産す
ることが可能となり、炭素繊維強化炭素材の適用
分野の更なる拡大が期待できるなど、産業上極め
て有用な効果をもたらされるのである。
[Table] Table 3 shows the measurement results of the apparent density and bending strength of the C/C composite material manufactured in this way, and these results also indicate that the C/C composite material manufactured according to the conditions of the present invention was It can be seen that the C/C composite material has high density and exhibits high strength. Example 4 4 kg of straight asphalt was charged into a glass separable flask with an internal volume of 5, and the temperature was raised to 440°C at a heating rate of 5°C/min. A stainless steel tube with an inner diameter of 3 mmφ was placed in the asphalt liquid. 5g/min of steam preheated to 500℃ through
When heat-treated for 2 hours while blowing in powder, pitch was obtained with a volatile content of 22% and a softening point of 330℃.
The yield upon treatment was 24%. Next, 25 parts of binder pitch obtained by finely pulverizing the above pitch to 60 meshes or less, 35 parts of coke powder similar to that in Example 1, and general-purpose grade carbon with the same fiber length: 0.7 mm as in Example 2. After mixing with 40 parts of fiber (thread strength: 70 Kg/cm 2 , thread diameter: 18 μm), the mixture was heated and pressed under the same conditions as in Example 2, and carbonized. When the apparent density and bending strength of the C/C composite material thus produced were measured, it was confirmed that the apparent density was 1.53 g/cm 2 and the bending strength was 1020 Kg/cm 2 . <Summary of Effects> As explained above, according to the present invention, it is possible to stably produce carbon fiber-reinforced carbon materials on an industrial scale that have high density and are superior in strength and other properties. Therefore, it is expected that the field of application of carbon fiber-reinforced carbon materials will further expand, and extremely useful effects will be brought about industrially.

Claims (1)

【特許請求の範囲】 1 炭素繊維、微粉状炭素質骨材、並びに揮発分
が28%以下でかつ軟化点が400℃以下のバインダ
ーピツチからなる成形素材を加圧・加熱成形し、
次いで炭化ないし黒鉛化することを特徴とする、
炭素繊維強化炭素材の製造方法。 2 使用するバインダーピツチが、タール或いは
ピツチを100Torr以下の減圧下で熱処理して得ら
れたものである、特許請求の範囲第1項に記載の
炭素繊維強化炭素材の製造方法。 3 使用するバインダーピツチが、タール或いは
ピツチを大気圧下或いは減圧下で水又はガスを吹
き込みながら熱処理して得られたものである、特
許請求の範囲第1項に記載の炭素繊維強化炭素材
の製造方法。
[Scope of Claims] 1 A molding material consisting of carbon fibers, finely powdered carbonaceous aggregate, and binder pitch with a volatile content of 28% or less and a softening point of 400°C or less is pressurized and heat-molded,
Characterized by subsequent carbonization or graphitization,
Method for manufacturing carbon fiber reinforced carbon material. 2. The method for producing a carbon fiber-reinforced carbon material according to claim 1, wherein the binder pitch used is obtained by heat-treating tar or pitch under reduced pressure of 100 Torr or less. 3. The binder pitch used is a carbon fiber-reinforced carbon material according to claim 1, which is obtained by heat-treating tar or pitch while blowing water or gas under atmospheric pressure or reduced pressure. Production method.
JP61260153A 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material Granted JPS63112463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260153A JPS63112463A (en) 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260153A JPS63112463A (en) 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material

Publications (2)

Publication Number Publication Date
JPS63112463A JPS63112463A (en) 1988-05-17
JPH0456789B2 true JPH0456789B2 (en) 1992-09-09

Family

ID=17344047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260153A Granted JPS63112463A (en) 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material

Country Status (1)

Country Link
JP (1) JPS63112463A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179669A (en) * 2003-12-18 2005-07-07 Sgl Carbon Ag Carbon fiber-reinforced coke

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699427B2 (en) 2002-07-26 2004-03-02 Ucar Carbon Company Inc. Manufacture of carbon/carbon composites by hot pressing
EP1593661A1 (en) * 2004-04-26 2005-11-09 UCAR Carbon Company Inc. Carbon fiber binder pitch
JP5046276B2 (en) * 2007-03-14 2012-10-10 東レ株式会社 Concrete or mortar structure and method for producing concrete or mortar structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179669A (en) * 2003-12-18 2005-07-07 Sgl Carbon Ag Carbon fiber-reinforced coke

Also Published As

Publication number Publication date
JPS63112463A (en) 1988-05-17

Similar Documents

Publication Publication Date Title
US5205888A (en) Process for producing carbon fiber reinforced carbon materials
CN111018554A (en) Method for preparing ultrahigh-power graphite electrode by using graphene
EP1089952B1 (en) Method for producing shaped bodies on the basis of carbon, carbides and/or carbonitrides
US4671907A (en) Method of manufacturing carbon materials
US5705106A (en) Heat-insulating structural carbon material and process for producing heat-insulating structural carbon material
US5631086A (en) Thermoplastic compositions comprising filled, B-staged pitch
US3708451A (en) Method and composition for preparing graphite products
JPH0456789B2 (en)
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
KR970008693B1 (en) Process for the preparation of carbon composite material
US3107153A (en) Method of fabricating carbon and graphite structures
JPH0456788B2 (en)
JPH05306167A (en) Production of short fiber reinforced c/c composite
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPH07215775A (en) Production of carbon-carbon composite material
JPH0825815B2 (en) Method for producing carbon-carbon composite material
JPH03247563A (en) Production of carbon fiber-reinforced carbon material
JPH0561225B2 (en)
JPS6153104A (en) Production of high-strength carbon material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
KR970010355B1 (en) Method for preparing carbon fiber reinforced carbon composites
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPS63297833A (en) Brake member using carbon fiber reinforced composite as base material
JPH01145375A (en) Production of carbon fiber-reinforced carbonaceous composite