JP3314383B2 - Method for producing carbon fiber / carbon composite material - Google Patents

Method for producing carbon fiber / carbon composite material

Info

Publication number
JP3314383B2
JP3314383B2 JP29368490A JP29368490A JP3314383B2 JP 3314383 B2 JP3314383 B2 JP 3314383B2 JP 29368490 A JP29368490 A JP 29368490A JP 29368490 A JP29368490 A JP 29368490A JP 3314383 B2 JP3314383 B2 JP 3314383B2
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
carbon
liquid crystal
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29368490A
Other languages
Japanese (ja)
Other versions
JPH04182354A (en
Inventor
勲 持田
隆次 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP29368490A priority Critical patent/JP3314383B2/en
Priority to US07/724,892 priority patent/US5205888A/en
Publication of JPH04182354A publication Critical patent/JPH04182354A/en
Application granted granted Critical
Publication of JP3314383B2 publication Critical patent/JP3314383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 耐熱性、耐摩耗性、耐薬品性などに優れた軽量で高強
度の炭素繊維/炭素複合材料の製造方法に関する。
The present invention relates to a method for producing a lightweight, high-strength carbon fiber / carbon composite material having excellent heat resistance, abrasion resistance, chemical resistance and the like.

(従来の技術) 炭素繊維/炭素複合材料は、その優れた機能・特性か
ら、現在最も注目されている先進複合材料の一つであ
り、機械的特性、耐熱性、耐摩耗性、熱・電気伝導性な
どを生かして、航空宇宙産業、エレクトロニクス産業、
原子力産業などの分野において広く利用されつつある。
加えて、人工骨、歯根、関節など、その生体適合性を生
かした応用も期待されており、活発な研究開発が世界的
に行われている。
(Prior art) Carbon fiber / carbon composite materials are one of the most advanced composite materials that are currently receiving the most attention because of their excellent functions and characteristics. Mechanical properties, heat resistance, abrasion resistance, heat and electricity Taking advantage of conductivity, aerospace, electronics,
It is being widely used in fields such as the nuclear industry.
In addition, applications utilizing their biocompatibility, such as artificial bones, tooth roots, and joints, are also expected, and active research and development are being conducted worldwide.

このように応用範囲の広い炭素繊維/炭素複合材料の
製造法については、これまで枚挙の暇がない程の報告例
がある。炭素繊維とマトリックスを複合するプロセスと
しては、その緻密性を付与するために、細孔空隙への粘
結材の再含浸・炭化の繰り返し操作(樹脂含浸炭化法)
や空隙への気相からの炭素沈着(CVD法)などが実施さ
れている。
There have been reports of producing carbon fiber / carbon composite materials having such a wide range of applications that there is no time to enumerate. As a process of combining carbon fiber and matrix, in order to impart its compactness, repeated operation of re-impregnation and carbonization of the binder into the pores (resin impregnation carbonization method)
And carbon deposition from the gas phase into the voids (CVD method).

即ち樹脂含浸炭化法においては、マトリックスとなる
炭素原料として、フラン樹脂、フェノール樹脂などの熱
硬化性樹脂や、主としてピッチに代表される熱可塑性樹
脂が用いられ、不活性雰囲気下、約1000℃で熱処理して
マトリックス樹脂を炭素化する方法が行われる。この樹
脂含浸炭化法ではこれらの樹脂が溶融炭化する温度領域
において極めて緩慢な昇温速度を必要とし、また樹脂の
炭化収率が40〜60%と低く、揮発留分による空隙が生成
するため、樹脂の再含浸、炭化、圧縮を繰り返すという
煩雑な二次処理が必要である。
That is, in the resin impregnation carbonization method, as a carbon raw material serving as a matrix, a thermosetting resin such as a furan resin and a phenol resin, and a thermoplastic resin mainly represented by a pitch are used. A method of carbonizing the matrix resin by heat treatment is performed. This resin impregnation carbonization method requires a very slow heating rate in the temperature range where these resins are melted and carbonized, and the carbonization yield of the resin is as low as 40 to 60%, and voids are generated due to volatile fractions. A complicated secondary treatment of repeating re-impregnation, carbonization and compression of the resin is required.

一方CVD法は、マトリックス原料としてメタン、プロ
パンなどのような低級炭化水素とアルゴンなどの不活性
気体をCVD装置に導入して、減圧下で約800〜1500℃で反
応させ、炭素を直接蒸着させる方法である。CVD法はこ
のように熱分解炭素を直接気相で沈着させるため、緻密
で均質なマトリックスを作りあげることができるが、装
置コストが高く、長時間を要するので、生産性や経済性
の面から極めて不利である。このため通常は、樹脂含浸
炭化法と組み合わせて、二次的な緻密化処理に用いられ
ることが多い。
On the other hand, in the CVD method, a lower hydrocarbon such as methane or propane and an inert gas such as argon are introduced into a CVD apparatus as a matrix material, and reacted at about 800 to 1500 ° C. under reduced pressure to directly deposit carbon. Is the way. Since the CVD method deposits pyrolytic carbon directly in the gas phase in this way, it is possible to create a dense and homogeneous matrix, but the equipment cost is high and it takes a long time. Disadvantageous. For this reason, it is often used for secondary densification treatment in combination with the resin impregnation carbonization method.

(発明が解決しようとする課題) 以上の如く炭素繊維とマトリックスを複合するプロセ
スは極めて複雑であり、この方法により製造される炭素
繊維/炭素複合材料は、非常に高価な材料となる。この
ため炭素繊維/炭素複合材料は用途が限られ、広範な分
野での利用の妨げとなっている。従って将来、量産技術
の確立とコストダウンが達成されるならば、一般工業材
料としての利用価値も急速に高まって来るものと期待さ
れる。
(Problems to be Solved by the Invention) As described above, the process of combining a carbon fiber and a matrix is extremely complicated, and the carbon fiber / carbon composite material produced by this method is a very expensive material. For this reason, the carbon fiber / carbon composite material has a limited use and hinders its use in a wide range of fields. Therefore, if the establishment of mass production technology and cost reduction are achieved in the future, it is expected that the value of use as general industrial materials will rapidly increase.

本発明の目的は、高性能な炭素繊維/炭素複合材料を
より簡便な手法によって、短時間で安価に製造する方法
を提供することにある。
An object of the present invention is to provide a method for producing a high-performance carbon fiber / carbon composite material in a short time and at low cost by a simpler method.

(課題を解決するための手段) 発明者等は、上記の如き目的を達成すべく鋭意検討し
た結果、流動性が高く且つ炭化収率の高い液晶ピッチを
マトリックス原料に用いれば、当該ピッチを溶融あるい
は軟化状態で炭素短繊維の表面に均一に被覆することに
よってピッチの高分散性が達成され、更に僅かな熱処理
によって高い粘結性を維持しつつ一層高い炭化収率が得
られ、新たにバインダーを用いることなく、高性能の炭
素繊維/炭素複合材料を非常に簡単な方法で安価に得ら
れることを見出し、本発明に至った。
(Means for Solving the Problems) As a result of intensive studies to achieve the above object, the inventors have found that if a liquid crystal pitch having a high fluidity and a high carbonization yield is used as a matrix material, the pitch can be melted. Alternatively, by uniformly coating the surface of the short carbon fiber in a softened state, a high dispersibility of the pitch is achieved, and a higher carbonization yield is obtained while maintaining a high caking property by a slight heat treatment. The present inventors have found that a high-performance carbon fiber / carbon composite material can be obtained at a low cost by a very simple method, without using any of them.

すなわち本発明は、炭素短繊維と、軟化点300℃以下
で炭素収率が75%以上である炭素質液晶ピッチ粉末を均
一に混合した後、当該ピッチの溶融あるいは軟化する温
度領域において炭素短繊維の表面を当該ピッチで被覆
し、更に必要に応じて300〜490℃で熱処理を行い、成
形、焼成することを特徴とする炭素繊維/炭素複合材料
の製造方法である。
That is, the present invention provides a method for uniformly mixing a carbon short fiber and a carbonaceous liquid crystal pitch powder having a softening point of 300 ° C. or less and a carbon yield of 75% or more and then melting or softening the pitch. A carbon fiber / carbon composite material, characterized in that the surface of the carbon fiber is coated with the pitch, heat-treated at 300 to 490 ° C. as necessary, and then molded and fired.

本発明において補強材料として用いられる炭素短繊維
は、PAN系、ピッチ系等の何れの炭素繊維から得られる
ものでも良く、炭化処理のみならず黒鉛化処理の行われ
たものでも良い。繊維の長さは、用途や特性の要求に応
じて、50μm〜10mmの長さのものが用いられる。なおこ
れらの炭素短繊維は、一般に酸化処理等の表面処理を行
ったものであることが好ましい。
The short carbon fiber used as the reinforcing material in the present invention may be obtained from any of PAN-based and pitch-based carbon fibers, and may be subjected to not only carbonization but also graphitization. Fibers having a length of 50 μm to 10 mm are used depending on the application and the requirements of the properties. In addition, it is preferable that these carbon short fibers are generally subjected to a surface treatment such as an oxidation treatment.

マトリックスの原料として用いられる炭素質液晶ピッ
チは、偏光顕微鏡で観察した光学的異方性相が少なくと
も80%以上、好ましくは90%以上、更に好ましくは実質
的に100%であることが望ましい。微量融点測定法によ
るこの炭素液晶ピッチの軟化点は300℃以下であり、好
ましくは200〜280℃である。このように軟化点が低い炭
素質ピッチをマトリックスに用いることにより、200〜3
00℃での流動性が良いので、短繊維間の隙間や短繊維の
周囲、或いは粒子状骨材の周囲に速やかに且つ均一に分
散される。
It is desirable that the carbonaceous liquid crystal pitch used as a matrix material has an optically anisotropic phase observed by a polarizing microscope of at least 80% or more, preferably 90% or more, and more preferably substantially 100%. The softening point of the carbon liquid crystal pitch determined by the trace melting point measurement method is 300 ° C. or less, and preferably 200 to 280 ° C. By using a carbonaceous pitch having a low softening point for the matrix, 200 to 3
Since it has good fluidity at 00 ° C., it is rapidly and uniformly dispersed around the gaps between short fibers, around short fibers, or around particulate aggregates.

また本発明においては、マトリックスの原料に炭化収
率が75%以上、好ましくは85%以上の炭素質液晶ピッチ
が用いられる。この炭化収率は、ピッチを不活性気流中
で600℃に徐々に昇温して2時間程度保持した時の収率
である。炭化収率がこのように高く、揮発成分が少ない
ことから、形成されるカーボンボンドは緻密で、気孔跡
をほとんど残さないため、極めて強固な光学的異方性相
が形成される。炭化収率の低いピッチを用いた場合に
は、成形体中に揮発ガスによる空隙が生成し易く、得ら
れる炭素繊維/炭素複合材料の機械的強度が低下する。
Further, in the present invention, a carbonaceous liquid crystal pitch having a carbonization yield of 75% or more, preferably 85% or more is used as a matrix material. The carbonization yield is a yield when the pitch is gradually heated to 600 ° C. in an inert gas stream and held for about 2 hours. Since the carbonization yield is high and the volatile component is small, the formed carbon bond is dense and leaves little trace of pores, so that an extremely strong optically anisotropic phase is formed. When a pitch having a low carbonization yield is used, voids due to volatile gas are easily generated in the molded body, and the mechanical strength of the obtained carbon fiber / carbon composite material is reduced.

これらの条件を満足する炭素質液晶ピッチの一例とし
て、特開平1−139621号および特開平1−254796号に記
載されているピッチが好適である。このピッチは、縮合
多環芳香族炭化水素をHF−BF3の存在下で重合して得ら
れるピッチであり、高い炭化収率が得られ、軟化点が低
く200〜350℃で良好な流動性を示す。
As an example of a carbonaceous liquid crystal pitch satisfying these conditions, pitches described in JP-A-1-139621 and JP-A-1-254796 are preferable. The pitch is a pitch obtained by condensed polycyclic aromatic hydrocarbons and polymerized in the presence of HF-BF 3, high carbonization yield can be obtained, good flowability at 200 to 350 ° C. lower softening point Is shown.

炭素短繊維と炭素質液晶ピッチの混合比は、短繊維/
液晶ピッチの重量比で30/70〜90/10、好ましくは40/60
〜70/30の範囲である。なおこのとき混合物に、必要に
応じて、カーボンブラック、コークス粉、黒鉛などの微
粒子状炭素骨材を、液晶ピッチに対して3〜70%添加す
ることも行われる。これら微粒子炭素骨材の粒径は10μ
m以下、好ましくは1μm以下である。このように微粒
子状炭素骨材を添加することにより、成形品の緻密化が
更に促進され、機械的強度が向上する。
The mixing ratio of short carbon fiber and carbonaceous liquid crystal pitch is short fiber /
30 / 70-90 / 10 by weight of liquid crystal pitch, preferably 40/60
It is in the range of ~ 70/30. At this time, if necessary, a fine carbon aggregate such as carbon black, coke powder or graphite may be added to the mixture in an amount of 3 to 70% based on the liquid crystal pitch. The particle size of these fine carbon aggregates is 10μ.
m or less, preferably 1 μm or less. By adding the finely divided carbon aggregate as described above, the densification of the molded product is further promoted, and the mechanical strength is improved.

本発明においては、炭素短繊維と炭素質液晶ピッチ、
或いはさらに加えられる微粒子状炭素骨材とが、均一に
混合されておれば良く、混合方法は特に限定されない。
In the present invention, short carbon fiber and carbonaceous liquid crystal pitch,
Alternatively, the fine particle carbon aggregate to be further added may be uniformly mixed, and the mixing method is not particularly limited.

次にこの混合物に対してコーテング(被覆)処理が施
される。このコーテング処理は炭素質液晶ピッチが溶融
あるいは軟化する温度として、炭素短繊維や微粒子状炭
素骨材の表面をピッチによって均一かつ速やかに被覆
し、高分散を達成する。このためピッチの溶融あるいは
軟化の際、必要に応じて、攪拌や混練などが行われる。
通常このコーテング処理は引き続き行われる熱処理への
昇温過程で行われのが実際的である(実施例1、3、
5、7)。
Next, the mixture is subjected to a coating process. This coating process uniformly and quickly coats the surfaces of the short carbon fibers and the fine carbon particles with the pitch at a temperature at which the carbonaceous liquid crystal pitch melts or softens, thereby achieving high dispersion. Therefore, when the pitch is melted or softened, stirring, kneading, and the like are performed as necessary.
Usually, it is practical that this coating process is performed in the course of raising the temperature to the subsequent heat treatment (Examples 1, 3,
5, 7).

かくして当該ピッチの高分散が達成された混合物を熱
処理することにより、一層高い炭化収率が得られるた
め、更に製品の性能を高めることができる。この熱処理
は、液晶ピッチが完全に炭素化しない範囲において、粘
結性を失わない程度の、かつ炭化収率を一層向上できる
ような適度の条件を選択する必要がある。この熱処理条
件は、液晶ピッチの性状や混合比により異なるが、一般
に非酸化性雰囲気下1〜20℃/minの昇温速度で300〜490
℃まで昇温し、短時間保持することにより行われる。保
持時間は1〜60分間である。熱処理における圧力は特に
制限が無く、常圧、加圧、或いは減圧下の何れでも良
い。
By heat-treating the mixture in which the pitch is thus highly dispersed, a higher carbonization yield can be obtained, and the performance of the product can be further enhanced. In this heat treatment, it is necessary to select appropriate conditions that do not lose caking properties and that can further improve the carbonization yield, as long as the liquid crystal pitch is not completely carbonized. The heat treatment conditions vary depending on the properties of the liquid crystal pitch and the mixing ratio, but are generally 300 to 490 at a temperature increase rate of 1 to 20 ° C./min in a non-oxidizing atmosphere.
This is carried out by raising the temperature to ° C and holding it for a short time. The holding time is 1 to 60 minutes. The pressure in the heat treatment is not particularly limited, and may be normal pressure, pressurization, or reduced pressure.

熱処理が不十分であると、後の焼成工程において揮発
ガスによる膨張や発泡が起り易くなり、高品質の炭素繊
維/炭素複合材料が得られない。一方、過度の熱処理
は、液晶ピッチの粘結性を低下し、所望の機械的性能を
発現することができなくなることがある。つまり適正な
熱処理条件とすることによって、液晶ピッチの粘結性を
保持しつつ、焼成工程で発生するガスを極力排除してお
くことができるので、一回の焼成で、高密度で且つ高強
度の炭素繊維/炭素複合材料を製造することができる。
If the heat treatment is insufficient, expansion and foaming due to volatile gas are likely to occur in the subsequent firing step, and a high quality carbon fiber / carbon composite material cannot be obtained. On the other hand, excessive heat treatment lowers the caking property of the liquid crystal pitch, and may not be able to exhibit desired mechanical performance. In other words, by setting appropriate heat treatment conditions, the gas generated in the firing step can be eliminated as much as possible while maintaining the caking property of the liquid crystal pitch. Can be manufactured.

しかしながら一般に焼成工程で見られる膨張や発泡は
これらの混合物中のピッチ含有率が減少するにしたがっ
て起り難くなってくるので、ピッチ含有量が少ない場合
にはコーテングの後の熱処理は必ずしも行う必要がない
(実施例9)。勿論、この際に熱処理も行えば揮発分が
除去されるので、緻密化が一層促進されることになる。
熱処理が不要となるピッチ含有率は、当該ピッチの性
状、成形条件、炭化条件および要求特性等によって異な
るが、発明者等が行った実験範囲ではほぼ30%前後であ
った。
However, since the expansion and foaming generally observed in the firing step become less likely to occur as the pitch content in these mixtures decreases, heat treatment after coating is not necessarily performed when the pitch content is small. (Example 9). Of course, if a heat treatment is also performed at this time, the volatile components are removed, so that the densification is further promoted.
The pitch content at which heat treatment is not required varies depending on the properties of the pitch, molding conditions, carbonization conditions, required characteristics, and the like, but was approximately 30% in the range of experiments performed by the inventors.

次に、このようにして得られた混合物、すなわち粘結
性を維持した液晶ピッチが高分散した混合物は成形し、
焼成される。このとき混合物は塊状になっているので、
成形し易いように、必要に応じて粉末状にして成形す
る。成形体の形状は、目的、用途等に応じて自由に選択
できる。成形温度は、常温で行う場合と、液晶ピッチが
軟化、或いは溶融する温度で行う場合があり、要求され
る形状や性能に応じて決定される。成形圧力は、補強用
材である短繊維の組織が破壊されず、初期強度を失わな
い範囲で行うことが必要である。
Next, the mixture thus obtained, that is, a mixture in which the liquid crystal pitch maintaining the caking property was highly dispersed was molded,
Fired. At this time, the mixture is in a lump,
For easy molding, the powder is formed into a powder, if necessary. The shape of the molded body can be freely selected according to the purpose, application, and the like. The molding temperature may be at room temperature or at a temperature at which the liquid crystal pitch softens or melts, and is determined according to the required shape and performance. The molding pressure needs to be set within a range in which the structure of the short fibers as the reinforcing material is not broken and the initial strength is not lost.

こうして調製された成形体を引き続き焼成することに
よって、目的とする炭素繊維/炭素複合材料が製造され
る。焼成は一般に非酸化性雰囲気下600〜1500℃の温度
に成形体を加熱し炭化することにより行われるが、更に
この炭化した成形体を2000〜3000℃の温度に加熱して黒
鉛化する工程を含めることもできる。
The target carbon fiber / carbon composite material is manufactured by successively firing the formed body thus prepared. Firing is generally performed by heating the molded body to a temperature of 600 to 1500 ° C. in a non-oxidizing atmosphere and carbonizing, and further comprises a step of heating the carbonized molded body to a temperature of 2000 to 3000 ° C. to graphitize. Can also be included.

(作用および効果) 本発明においては、マトリックス原料として軟化点が
低く炭化収率の極めて高い液晶ピッチを使用し、成形前
にピッチの高分散と適切な熱処理が行われるので、焼成
が短時間で達成されると共に、一回の焼成のみで十分な
高密度と強度が得られる。またこの液晶ピッチ粉末は、
成形体の形状を維持しつつ300〜350℃での流動性により
成形組織内に薄く均一に分散するため、引き続いて起る
炭化によって短繊維間や粉末骨材間に均一なカーボンボ
ンドを形成する。更に液晶メソフェースに由来するマト
リックスは、光学的異方性組織を有し、高緻密質で高純
度であるため、炭素繊維や骨材とマトリックス間の炭素
結合は非常に強固である。この炭素結合は高温での焼成
により黒鉛化度が向上し、かつ収縮により一層緻密化が
促進されるため炭素結合は更に強くなる。また本発明で
用いる液晶ピッチは高い粘結性を持つので、特にバイン
ダーが不要である。
(Operation and Effect) In the present invention, a liquid crystal pitch having a low softening point and a very high carbonization yield is used as a matrix material, and high dispersion of the pitch and appropriate heat treatment are performed before molding. In addition to achieving this, a single firing only provides sufficient density and strength. Also, this liquid crystal pitch powder,
Because the fluidity at 300-350 ° C keeps the shape of the molded body and disperses thinly and uniformly in the molded structure, a uniform carbon bond is formed between short fibers and powder aggregates by subsequent carbonization. . Further, since the matrix derived from the liquid crystal mesophase has an optically anisotropic structure, is dense and highly pure, the carbon bond between the matrix and the carbon fiber or aggregate is very strong. The degree of graphitization of the carbon bond is improved by firing at a high temperature, and further densification is promoted by shrinkage, so that the carbon bond is further strengthened. Further, since the liquid crystal pitch used in the present invention has a high caking property, a binder is not particularly required.

本発明によれば、上記理由により耐熱性、耐摩耗性な
どに優れた軽量で高強度の炭素繊維/炭素複合材料が、
容易に短時間で安価に製造できる。従って本発明の工業
的意義が極めて大きい。
According to the present invention, a lightweight and high-strength carbon fiber / carbon composite material having excellent heat resistance, abrasion resistance, etc.
It can be easily manufactured in a short time and at low cost. Therefore, the industrial significance of the present invention is extremely large.

(実施例) 次に実施例により本発明を更に具体的に説明する。但
し本発明は、これらの実施例により限定されるものでは
ない。
(Example) Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by these examples.

実施例1 ピッチ系炭素短繊維(川崎製鉄(株)と日東紡績
(株)との共同開発品:Xylus GPMF100J、繊維長100μ
m)50部に、HF−BF3の存在下ナフタレンを重合させて
得られた炭素質液晶ピッチ粉末(軟化点218℃、炭化収
率85%、光学的異方性相100vol%)50部を加え、均一に
混合した。次にこの混合物を攪拌下昇温速度5℃/minで
300℃まで昇温することによってコーテング処理を行っ
た。さらに450℃まで昇温して30分間保持することによ
って熱処理を行った。こうして粘結性を有する液晶ピッ
チが高分散した成形試料を調製した。
Example 1 Pitch-based carbon staple fiber (a product jointly developed by Kawasaki Steel Corporation and Nitto Boseki Co., Ltd .: Xylus GPMF100J, fiber length 100 μ)
m) 50 parts of carbonaceous liquid crystal pitch powder (softening point: 218 ° C., carbonization yield: 85%, optically anisotropic phase: 100 vol%) obtained by polymerizing naphthalene in the presence of HF-BF 3 In addition, they were mixed uniformly. Next, the mixture was stirred at a heating rate of 5 ° C./min.
The coating treatment was performed by raising the temperature to 300 ° C. Further, heat treatment was performed by raising the temperature to 450 ° C. and maintaining the temperature for 30 minutes. Thus, a molded sample in which the liquid crystal pitch having a caking property was highly dispersed was prepared.

こうして得られた成形試料を、常温にて成形圧力1000
kg/cm2でデイスク状に成形した後、30atmの窒素加圧
下、600℃まで1℃/minで昇温し2時間保持した。その
後アルゴン流通下1300℃で2時間焼成することにより、
直径60mm、厚さ10mmの炭化物を得た。
The molded sample thus obtained was subjected to a molding pressure of 1000 at room temperature.
After forming into a disk at kg / cm 2 , the temperature was raised to 600 ° C. at 1 ° C./min under a nitrogen pressure of 30 atm and held for 2 hours. After baking for 2 hours at 1300 ℃ under argon flow,
A carbide having a diameter of 60 mm and a thickness of 10 mm was obtained.

実施例2 実施例1で得られた炭化物を更に2500℃まで昇温し、
黒鉛化物を得た。
Example 2 The carbide obtained in Example 1 was further heated to 2500 ° C.
A graphitized product was obtained.

実施例3 ピッチ系炭素繊維(呉羽化学工業(株)製、クレカク
ロスP−200)を平均長400μmに切断した短繊維55部
に、HF−BF3の存在下ナフタレンを重合させて得られた
炭素質液晶ピッチ粉末(軟化点285℃、炭化収率87%、
光学的異方性相100vol%)45部を加え均一に混合した。
次にこの混合物を昇温速度5℃/minで360℃まで昇温す
ることによってコーテング処理を行った。さらに440℃
まで昇温して10分間保持することによって熱処理を行
い、粘結性を有する液晶ピッチが高分散した成形試料を
調製した。
Example 3 Naphthalene was obtained by polymerizing 55 parts of short fibers obtained by cutting pitch-based carbon fiber (Kureka Chemical Industry Co., Ltd., Crecacross P-200) into an average length of 400 μm in the presence of HF-BF 3 . Carbonaceous liquid crystal pitch powder (softening point 285 ° C, carbonization yield 87%,
45 parts of an optically anisotropic phase (100 vol%) was added and mixed uniformly.
Next, the mixture was heated to 360 ° C. at a rate of 5 ° C./min to perform a coating treatment. 440 ° C
Heat treatment was carried out by raising the temperature to 10 minutes and holding it for 10 minutes to prepare a molded sample in which the liquid crystal pitch having a caking property was highly dispersed.

こうして得られた成形試料を、ホットプレス装置を用
いて成形温度480℃、成形圧力1000kg/cm2でデイスク状
に成形したのち、常圧下、600℃まで1℃/minで昇温し
2時間保持した。その後1300℃で2時間焼成することに
より、直径60mm、厚さ10mmの炭化物を得た。
The molded sample thus obtained is formed into a disk at a molding temperature of 480 ° C. and a molding pressure of 1000 kg / cm 2 using a hot press, and then heated to 600 ° C. under normal pressure at 1 ° C./min and held for 2 hours. did. Thereafter, by sintering at 1300 ° C. for 2 hours, a carbide having a diameter of 60 mm and a thickness of 10 mm was obtained.

実施例4 実施例3で得られた炭化物を更に2500℃まで昇温し、
黒鉛化物を得た。
Example 4 The carbide obtained in Example 3 was further heated to 2500 ° C.
A graphitized product was obtained.

実施例5 ピッチ系炭素短繊維(川崎製鉄(株)と日東紡績
(株)との共同開発品:Xylus GPMF100J、繊維長100μ
m)50部に、実施例1と同じ炭素質液晶ピッチ粉末40部
を加え、更にこれにカーボンブラック(三菱化成(株)
#30)10部を添加して均一に混合した。以下、実施例1
と同様の操作を行うことによって炭化物を得た。
Example 5 Pitch-based carbon short fiber (a jointly developed product of Kawasaki Steel Corporation and Nitto Boseki Co., Ltd .: Xylus GPMF100J, fiber length 100 μ)
m) To 50 parts, add 40 parts of the same carbonaceous liquid crystal pitch powder as in Example 1, and further add carbon black (Mitsubishi Chemical Corporation)
# 30) 10 parts were added and mixed uniformly. Hereinafter, Example 1
Carbide was obtained by performing the same operation as described above.

実施例6 実施例5で得られた炭化物を更に2500℃まで昇温し、
黒鉛化物を得た。
Example 6 The carbide obtained in Example 5 was further heated to 2500 ° C.
A graphitized product was obtained.

実施例7 ピッチ系炭素繊維(呉羽化学工業(株)製、クレカク
ロスP−200)を平均長400μmに切断した短繊維55部
に、実施例3と同じ炭素質液晶ピッチ粉末45部を加え、
更に黒鉛粉末(10μm以下)を10部添加し、均一に混合
した。次にこの混合物を攪拌下昇温速度5℃/minで360
℃まで昇温することによってコーテング処理を行った。
さらに440℃まで昇温して10分間保持することによって
熱処理を行い、粘結性を有する液晶ピッチが高分散した
成形試料を調製した。
Example 7 To 55 parts of short fibers obtained by cutting pitch-based carbon fibers (Kureha Chemical Industry Co., Ltd., Crecacross P-200) into an average length of 400 μm, 45 parts of the same carbonaceous liquid crystal pitch powder as in Example 3 were added.
Further, 10 parts of graphite powder (10 μm or less) was added and uniformly mixed. Next, the mixture was stirred at a heating rate of 5 ° C./min for 360 °.
The coating treatment was performed by raising the temperature to ° C.
Further, a heat treatment was performed by raising the temperature to 440 ° C. and holding for 10 minutes to prepare a molded sample in which the liquid crystal pitch having a binding property was highly dispersed.

こうして得られた成形試料を、ホットプレス装置を用
いて、成形温度500℃、成形圧力1000kg/cm2でデイスク
状に成形したのち、常圧下、1300℃まで昇温し2時間保
持焼成することにより、直径60mm、厚さ10mmの炭化物を
得た。
The thus obtained molded sample is formed into a disk at a molding temperature of 500 ° C. and a molding pressure of 1000 kg / cm 2 by using a hot press apparatus, and then heated to 1300 ° C. under normal pressure and baked for 2 hours. A carbide having a diameter of 60 mm and a thickness of 10 mm was obtained.

実施例8 実施例7で得られた炭化物を更に2500℃まで昇温し、
黒鉛化物を得た。
Example 8 The carbide obtained in Example 7 was further heated to 2500 ° C.
A graphitized product was obtained.

実施例9 ピッチ系炭素短繊維(川崎製鉄(株)と日東紡績
(株)との共同開発品:Xylus GPMF100J、繊維長100μ
m)75部に、実施例1と同じ炭素質液晶ピッチ25部を加
え、均一に混合した。次にこの混合物を280℃で10分間
攪拌することによりコーテング処理を行った。そのあと
熱処理を行わずに、常温にて成形圧力1000kg/cm2でディ
スク状に成形した。これを常圧下、1300℃まで1℃/min
で昇温し2時間保持することにより、直径60mm、厚さ10
mmの炭化物を得た。
Example 9 Pitch-based carbon short fiber (a product jointly developed by Kawasaki Steel Corporation and Nitto Boseki Co., Ltd .: Xylus GPMF100J, fiber length 100 μ)
m) 25 parts of the same carbonaceous liquid crystal pitch as in Example 1 was added to 75 parts, and mixed uniformly. Next, a coating treatment was performed by stirring the mixture at 280 ° C. for 10 minutes. Then, without heat treatment, it was molded into a disk at ordinary temperature at a molding pressure of 1000 kg / cm 2 . 1 ℃ / min up to 1300 ℃ under normal pressure
Temperature and hold it for 2 hours to obtain a diameter of 60 mm and a thickness of 10
mm of carbide was obtained.

実施例10 実施例9で得られた炭化物を更に2500℃まで昇温し、
黒鉛化物を得た。
Example 10 The carbide obtained in Example 9 was further heated to 2500 ° C.
A graphitized product was obtained.

各実施例で得られた炭化物または黒鉛化物の評価結果
を次に示す。
The evaluation results of the carbide or graphitized material obtained in each example are shown below.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素短繊維と、軟化点300℃以下で炭化収
率が75%以上である炭素質液晶ピッチ粉末を均一に混合
した後、当該ピッチの溶融あるいは軟化する温度領域に
おいて炭素短繊維の表面を当該ピッチで被覆し、成形、
焼成することを特徴とする炭素繊維/炭素複合材料の製
造方法
1. A short carbon fiber in a temperature range in which a short carbon fiber and a carbonaceous liquid crystal pitch powder having a softening point of 300 ° C. or less and a carbonization yield of 75% or more are uniformly mixed and then melted or softened. Cover the surface with the pitch, forming,
Method for producing carbon fiber / carbon composite material, characterized by firing
【請求項2】炭素短繊維の表面を炭素質液晶ピッチで被
覆した後、さらに300〜490℃で熱処理を行い、成形、焼
成する請求項(1)の炭素繊維/炭素複合材料の製造方
2. The method for producing a carbon fiber / carbon composite material according to claim 1, wherein the surface of the short carbon fiber is covered with a carbonaceous liquid crystal pitch, and then heat-treated at 300 to 490 ° C., and then molded and fired.
【請求項3】炭素短繊維30〜90重量%と、軟化点300℃
以下で炭化収率が75%以上である炭素質液晶ピッチ粉末
70〜10重量%からなる混合物に、粉末状炭素質骨材を当
該ピッチ重量の3〜70%添加した後に、当該ピッチの溶
融あるいは軟化する温度領域において炭素短繊維および
粉末状炭素質骨材の表面を当該ピッチで被覆する請求項
(1)または請求項(2)の炭素繊維/炭素複合材料の
製造方法
3. A mixture of 30 to 90% by weight of short carbon fibers and a softening point of 300 ° C.
Carbonaceous liquid crystal pitch powder with a carbonization yield of 75% or more below
After the powdery carbonaceous aggregate is added to the mixture consisting of 70 to 10% by weight in an amount of 3 to 70% of the weight of the pitch, the short carbon fiber and the powdery carbonaceous aggregate are melted or softened in a temperature range where the pitch is melted or softened. The method for producing a carbon fiber / carbon composite material according to claim 1 or 2, wherein the surface is coated with the pitch.
JP29368490A 1990-07-03 1990-11-01 Method for producing carbon fiber / carbon composite material Expired - Fee Related JP3314383B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP29368490A JP3314383B2 (en) 1990-11-01 1990-11-01 Method for producing carbon fiber / carbon composite material
US07/724,892 US5205888A (en) 1990-07-03 1991-07-02 Process for producing carbon fiber reinforced carbon materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29368490A JP3314383B2 (en) 1990-11-01 1990-11-01 Method for producing carbon fiber / carbon composite material

Publications (2)

Publication Number Publication Date
JPH04182354A JPH04182354A (en) 1992-06-29
JP3314383B2 true JP3314383B2 (en) 2002-08-12

Family

ID=17797896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29368490A Expired - Fee Related JP3314383B2 (en) 1990-07-03 1990-11-01 Method for producing carbon fiber / carbon composite material

Country Status (1)

Country Link
JP (1) JP3314383B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7025913B2 (en) * 2003-04-04 2006-04-11 Honeywell International Inc. Delivery of pitch/thermoplastic/thermoset resins in RTM systems

Also Published As

Publication number Publication date
JPH04182354A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
TWI338611B (en) Manufacture of carbon/carbon composites by hot pressing
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JP5068218B2 (en) Carbon fiber reinforced silicon carbide composite material and method for producing the same
JP3138718B2 (en) Method for producing carbon fiber reinforced carbon material
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
JPH02192461A (en) Production of carbon-carbon composite material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH0456789B2 (en)
JPH01294507A (en) Production of carbon or graphite material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
KR970008693B1 (en) Process for the preparation of carbon composite material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH03247564A (en) Production of carbon fiber-reinforce carbon material
JPH038769A (en) Production of carbon fiber-reinforced carbonaceous material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JPH07215775A (en) Production of carbon-carbon composite material
JPS6153104A (en) Production of high-strength carbon material
JPH01126268A (en) Production of composite carbon fiber/carbon material
JPS6235964B2 (en)
JP2759837B2 (en) Manufacturing method of carbon material
JPH03249268A (en) Intermediate material for carbon fiber reinforced carbon material and its production thereof
JPH03258880A (en) Highly durable coating agent for carbonaceous molded heat insulating material
JPS58194777A (en) Manufacture of whisker reinforced carbonaceous composite material

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees