JPS6235964B2 - - Google Patents

Info

Publication number
JPS6235964B2
JPS6235964B2 JP55035873A JP3587380A JPS6235964B2 JP S6235964 B2 JPS6235964 B2 JP S6235964B2 JP 55035873 A JP55035873 A JP 55035873A JP 3587380 A JP3587380 A JP 3587380A JP S6235964 B2 JPS6235964 B2 JP S6235964B2
Authority
JP
Japan
Prior art keywords
carbonaceous
component
aggregate
product
thermally modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55035873A
Other languages
Japanese (ja)
Other versions
JPS56134507A (en
Inventor
Takane Myazaki
Shigeru Tatsuno
Yoshio Funato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP3587380A priority Critical patent/JPS56134507A/en
Publication of JPS56134507A publication Critical patent/JPS56134507A/en
Publication of JPS6235964B2 publication Critical patent/JPS6235964B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高品質炭素質成形体の製造法に関す
る。 黒鉛電極、炭素ブラシ等の炭素質成形体は一般
に混〓、成形、焼成、要すれば黒鉛化等の工程を
経て製造されるが、普通製造に3〜6ケ月の長期
間を要する。その上製造中にクラツチが生じたり
多孔質化したりして製品歩留をおとす等、種々の
欠点を有する。たとえば嵩密度が比較的高く、ま
た高強度の製品をつくるには、一般に炭素質骨材
として微粉を配合するが、この場合には骨材表面
積が大きくなり、結合剤の必要量が増え、かつ焼
成や黒鉛化等の熱処理時における寸法変化が著る
しいなどのためにヘアークラツク等の内部欠陥を
生じやすい。 すなわち結合剤のコールタールピツチ等を大量
に配合するため焼成時の揮発力の逸出による多孔
質化や亀裂発生という問題が起きる。これを防止
するため焼成昇温速度をたとえば1〜3℃/hrと
いうような低速にする必要が生じ、ひいては製造
に多大な時間を要するという現状にある。又、等
方性炭材を得るためには現状では大がかりな装置
を要する等、工程的、コスト的問題が多い。 本発明者らは、このような従来法の欠点を改良
し内部欠陥が少なく均質で強度が大きく等方性の
炭素質成形体を簡単な方法で短期間で製造する方
法を見出すべく検討した結果本発明に到達した。
すなわち本発明は炭素質骨材と瀝青物を混合、加
熱撹拌後加圧成形したのち焼成黒鉛化、もしくは
焼成工程を省略し生成形品を直接黒鉛化炉中で熱
処理することを特徴とする高強度炭素質成形体の
製造方法である。本技術において重要なことは、
すでに粘結性を十分に有するバインダーピツチと
骨材を混〓するのでなくて、実質的に粘結性を有
しないバインダーピツチの前駆体ともいうべきコ
ールタール、ソフトピツチ、石油系重質油等を骨
材と混合し熱処理することによつて、熱処理時に
はじめて骨材の表面もしくは周辺部において粘結
剤化を有効に進行せしめ、かかる方法によつて分
散を極めて良好に行なわしめることに加えて撹拌
を液体状態で行なわせることによつて通常の炭材
製造における混〓よりもはるかに高い分散度を得
ることができるところにある。 以下、本発明を更に詳細に説明する。 本発明において使用する炭素質骨材は、ピツチ
コークス、石油コークス、フルイドコークス等の
各種コークス及びその中間製品である未仮焼の生
コークス、更に天然黒鉛、カーボンブラツク等で
あるが、特に生コークス、又は生コークスと他の
骨材との混合系を使用した場合は通常の一軸加圧
成形機で型入成形を行なつても、得られる炭素質
成形体には物性の異方性がなく等方性炭材を得る
事ができる。また、炭素質骨材の粒径に関しては
特に制限はないが、より高強度のものを得るため
には、200メツシユの篩を全量通過しその平均粒
径が30ミクロン以下であることが好ましい。また
骨材と混合熱処理すべき瀝青物としてはコールタ
ール及びコールタールピツチの前駆体であるソフ
トピツチ、石油系重質油等のキノリン不溶分5%
以下ベンゼン不溶分15%以下のものを使用する
が、好ましくはキノリン不溶分3%以下でベンゼ
ン不溶分12%以下の瀝青物が望ましい。 本発明において、炭素質骨材に対する瀝青物の
配合比は、重量比で炭素質骨材1に対して0.5倍
以上5倍以下であるが、好ましくは1.5倍以上3
倍以下が望ましい。0.5倍以下では混合加熱時撹
拌が十分に行なわれず、最終的な製品に十分な品
質を与えることができない。また5倍以上では成
形体の焼成、黒鉛化などの熱処理時にクラツクや
発泡状態を呈しやすくなる。 混合加熱時の熱改質条件は350℃以上500℃以下
で、好ましくは380℃以上450℃以下が望ましい。
熱処理時間は、雰囲気、圧力、温度等によつて異
なるが0.5から40時間ある。また加熱時の圧力は
瀝青物の改質後歩留を向上させるため、あるいは
瀝青物の重質化を促進させるために加圧下、減圧
下、常圧還流下あるいは窒素ガス等のキヤリヤー
ガスで揮発するガスをスイープしてもよく、また
これらの組合せでも問題ない。本発明において重
要なことは、得られた熱改質物中の重質化した瀝
青物部分の組成がキノリン不溶分(以下α成分と
いう)が10〜85重量%、好ましくは20〜70重量
%、キノリン可溶でベンゼン不溶分(以下β成分
という)が5〜40重量%、好ましくは15〜30重量
%になるように調整することである。α成分が10
重量%以下、もしくはβ成分が40重量%以上では
成形体の焼成、黒鉛化の熱処理時に発泡状態を呈
しやすくなり、α成分が80重量%以上もしくはβ
成分が5%以下では最終製品に十分な品質を与え
ることができない。 こうして得られた熱改質物を微粉砕し新たに粘
結剤を加えることなく加圧形成する。加圧成形は
種々の方法、例えば一軸加圧成形や静水圧法が採
用される。次いで焼成、黒鉛化もしくは焼成工程
を省略し生成形品を直接黒鉛化炉中で熱処理を行
ない高強度炭素質成形体を得る。 本発明による炭素質成形体は従来法に比して次
のように品保質上の長所を有する。 (1) 緻密で強度大な製品が容易に得られる。たと
えば炭素質骨材として微粉のものを配合すれば
強度の大なる製品を得ることができるが従来法
では結合剤ピツチを炭素質骨材微粉の表面に十
分行きわたらせることが困難なため均質な材料
を得ることが困難であつた。しかし、本発明に
よれば、瀝青物が骨材に対して多量に配合さ
れ、かつ混合熱処理時に液中分散されるために
熱改質時に有効粘結成分を骨材に対して均一に
分散生成させることが容易であることに加えて
粘結質化が主に骨材表面で進行するために粘結
材から生成する炭素質の量および質が良好とな
り強度その他の特性を向上させることができ
る。 (2) 品質変動の少ないものが得られる。本発明に
よれば有効粘結成分が骨材に対して均一に分散
しているため、焼成、黒鉛化の熱処理時の膨張
収縮がバランスよく行なわれ、従来の方法によ
るものよりも均一な品質の製品が容易に得られ
る。 (3) 更に本発明によれば緻密で強度の大きいこと
に加えて等方性製品が容易に得られる。原子炉
用炭材を初め高温下の構造材等の分野で近年と
みにその要求が高まりつつある等方性炭素質成
形体の製造法としては、一般に広く成形法とし
て静水圧法が採用されているが、本発明により
適宜条件を選択すれば通常の一軸加圧成形によ
つて容易に等方性炭素質成形体が得られる。 本発明はさらに製造工程上にも、次のような長
所を有する。 (1) 工程の短縮ができる。 従来法における粘結剤製造工程と混〓工程を
同時に行うことによる工程の短縮、さらに焼成
速度を早くできる等の点から従来法によれば3
〜6ケ月要した工程が、本発明の方法により、
1〜2ケ月に工程短縮ができる。 このことより生産計画の機動性の増大、品質
情報のフイードバツクの迅速化等大きな効果を
期待することができる。 (2) コストの低減ができる。 本発明の方法によれば、工程の簡略化による
コストの低減、亀裂不良の減少等によるコスト
カツトが著しい。また通常の等方性炭素質成形
体を得るためには、成形方法として静水圧法が
使用されるがこの方法により大型製品を得るた
めにはかなりの大がかりな装置が必要となるな
ど装置の制約及び操作の繁雑性など必然的に生
産能力が劣る。しかし本発明によれば前記のよ
うに通常の一軸加圧成形で容易に等方性炭素質
成形体が得られ経済的効果が大きい。 以下実施例により更に本発明を説明するが、本
発明はその要旨を越えない限り、これら実施例に
限定されるものではない。 尚、本願中の溶剤不溶分の分析についてはJIS
−K2425規定の方法によつたが、トルエン不溶分
の溶剤トルエンのかわりにベンゼンを使用しベン
ゼン不溶分とした。 又、以下の実施例及び比較例で得られた炭素質
成形体の評価は全て次のように実施した。 (サンプリング) 得られた炭素質成形体を厚さ方向に半裁し、一
方よりA方向(成形時の加圧方向に対して垂直な
方向)、他方よりB方向(成形時の加圧方向に対
して平行な方向)に8×8×35(m/m)のテス
トピースをそれぞれ3本切り出し供試体とした。
尚、特に断らないかぎりはA方向の値をもつて代
表させた。 (測定方法) JIS−R7202に準拠し測定し表示は3本のチス
トピースの平均値を記した。 嵩比重:寸法、重量法により算出 曲げ強度:500Kgのロードセルレを装備したテン
シロンにより支点間距離32m/mとし定歪下で
荷重し測定した。 電気比抵抗:JIS−R7202記載の電圧降下法によ
り測定した。 また実施例の記載の中で単に%と記した場合に
は重量%を示すものとする。 実施例 1 炭素質骨材として平均粒径6μの生ピツチコー
クス(揮発分6.1%)3240g、瀝青物としてター
ル系ソフトピツチ(α成分≒0%、β成分≒7
%)6480gを10オートクレーブにとり、窒素流
通下混合、42℃−10時間加熱撹拌し、熱改質を行
なつた。得られた熱改質物中の重質化した瀝青物
部分の成分組成はα成分が20%、β成分が28%で
あつた。 次いで熱改質物を空気中で200℃、1時間処理
すると上記α、β成分はそれぞれ49%、22%とな
つた。得られた成形粉を常温、加圧力1000Kg/cm2
で通常の一軸加圧成形し150×220×65m/mの生
成形品を得た。これを5℃/hrの昇温速度で最高
800℃で焼成を行ない、次いで40時間で2800℃ま
で加熱して黒鉛化を行ない炭素質成形体を得た。
こうして得られた炭素質成形体の嵩高度は1.85
(g/cm3)でその特性は第1表に示すように等方
性を有するものであり、しかも高品質なものであ
つた。
The present invention relates to a method for producing a high quality carbonaceous molded body. Carbonaceous molded bodies such as graphite electrodes and carbon brushes are generally manufactured through processes such as mixing, molding, firing and, if necessary, graphitization, which usually takes a long period of 3 to 6 months to manufacture. Moreover, it has various drawbacks, such as clogging and porous formation during manufacturing, which reduces product yield. For example, to make products with relatively high bulk density and high strength, fine powder is generally mixed as carbonaceous aggregate, but in this case, the surface area of the aggregate becomes large, the amount of binder required increases, and Due to significant dimensional changes during heat treatments such as firing and graphitization, internal defects such as hair cracks are likely to occur. That is, since a large amount of binder such as coal tar pitch is blended, problems such as porosity and cracking occur due to the escape of volatile power during firing. In order to prevent this, it is necessary to reduce the firing temperature increase rate to, for example, 1 to 3° C./hr, and the current situation is that the production takes a long time. Furthermore, in order to obtain an isotropic carbonaceous material, large-scale equipment is currently required, and there are many process and cost problems. The present inventors have conducted research to find a method to improve the shortcomings of conventional methods and to produce homogeneous, strong, and isotropic carbonaceous molded bodies with few internal defects in a simple manner and in a short period of time. We have arrived at the present invention.
That is, the present invention is a high-density carbonaceous aggregate characterized in that carbonaceous aggregate and bituminous material are mixed, heated and stirred, then pressure-formed, and then fired and graphitized, or the firing step is omitted and the formed product is directly heat-treated in a graphitization furnace. This is a method for producing a strong carbonaceous molded body. What is important about this technology is that
Rather than mixing aggregate with binder pitch, which already has sufficient caking properties, coal tar, soft pitch, heavy petroleum oil, etc., which are precursors of binder pitch that do not have substantially caking properties, are mixed. By mixing with the aggregate and heat-treating it, the formation of a binder is effectively promoted on the surface or surrounding area of the aggregate for the first time during the heat treatment, and in addition to achieving extremely good dispersion with this method, stirring By carrying out the process in a liquid state, it is possible to obtain a much higher degree of dispersion than when mixing is carried out in ordinary carbon material production. The present invention will be explained in more detail below. The carbonaceous aggregates used in the present invention include various types of coke such as pitch coke, petroleum coke, and fluid coke, uncalcined raw coke that is an intermediate product thereof, natural graphite, carbon black, etc., but especially raw coke, Alternatively, if a mixed system of raw coke and other aggregates is used, the resulting carbonaceous molded product will not have anisotropy in physical properties even if it is molded using a normal uniaxial pressure molding machine. Oriented carbonaceous material can be obtained. There are no particular restrictions on the particle size of the carbonaceous aggregate, but in order to obtain higher strength, it is preferable that the entire amount passes through a 200 mesh sieve and the average particle size is 30 microns or less. In addition, the bituminous materials to be mixed with aggregate and heat treated include coal tar, soft pitch which is a precursor of coal tar pitch, and 5% quinoline insoluble content such as petroleum heavy oil.
Below, a bituminous material with a benzene insoluble content of 15% or less is used, preferably a bituminous material with a quinoline insoluble content of 3% or less and a benzene insoluble content of 12% or less. In the present invention, the blending ratio of bitumen to carbonaceous aggregate is 0.5 times or more and 5 times or less, preferably 1.5 times or more and 3 times or less, relative to 1 part carbonaceous aggregate.
Desirably less than twice that. If the ratio is less than 0.5 times, sufficient stirring during mixing and heating will not be performed, and sufficient quality will not be imparted to the final product. Moreover, if it is 5 times or more, cracks or foaming are likely to occur during heat treatment such as firing and graphitization of the molded body. Thermal modification conditions during mixing and heating are 350°C or higher and 500°C or lower, preferably 380°C or higher and 450°C or lower.
The heat treatment time varies depending on the atmosphere, pressure, temperature, etc., but is 0.5 to 40 hours. In addition, the pressure during heating is volatilized under pressure, reduced pressure, normal pressure reflux, or with a carrier gas such as nitrogen gas in order to improve the yield after reforming the bitumen or to promote the weighting of the bitumen. Sweeping the gas may be used, and a combination of these may also be used. What is important in the present invention is that the composition of the heavy bituminous part in the obtained thermally modified product is such that the quinoline insoluble content (hereinafter referred to as α component) is 10 to 85% by weight, preferably 20 to 70% by weight. The content of quinoline-soluble and benzene-insoluble components (hereinafter referred to as β component) is adjusted to 5 to 40% by weight, preferably 15 to 30% by weight. α component is 10
If the α component is less than 80% by weight, or if the β component is more than 40% by weight, the molded body will tend to form a foaming state during heat treatment for firing or graphitization.
If the content of the component is less than 5%, sufficient quality cannot be imparted to the final product. The thermally modified product thus obtained is finely pulverized and formed under pressure without adding any additional binder. Various methods can be used for pressure molding, such as uniaxial pressure molding and hydrostatic pressure molding. Next, the calcination, graphitization, or calcination step is omitted and the formed product is directly heat-treated in a graphitization furnace to obtain a high-strength carbonaceous compact. The carbonaceous molded article according to the present invention has the following advantages in terms of quality compared to conventional methods. (1) Dense and strong products can be easily obtained. For example, if finely powdered carbonaceous aggregate is blended, a product with greater strength can be obtained, but with conventional methods, it is difficult to sufficiently spread the binder pitch over the surface of the finely divided carbonaceous aggregate, resulting in a homogeneous product. It was difficult to obtain materials. However, according to the present invention, a large amount of bituminous material is blended into the aggregate and dispersed in the liquid during mixing heat treatment, so that effective viscous components are uniformly dispersed in the aggregate during thermal modification. In addition, since caking occurs mainly on the surface of the aggregate, the amount and quality of carbon produced from the caking material are good, improving strength and other properties. . (2) Products with less variation in quality can be obtained. According to the present invention, since the effective viscous component is uniformly dispersed in the aggregate, expansion and contraction during heat treatments such as calcination and graphitization are performed in a well-balanced manner, resulting in more uniform quality than with conventional methods. The product is easily obtained. (3) Furthermore, according to the present invention, in addition to being dense and having high strength, isotropic products can be easily obtained. The hydrostatic pressure method is generally widely used as a forming method for producing isotropic carbonaceous compacts, which have been in increasing demand in recent years in the fields of carbonaceous materials for nuclear reactors and other structural materials under high temperatures. However, according to the present invention, if conditions are appropriately selected, an isotropic carbonaceous molded body can be easily obtained by ordinary uniaxial pressure molding. The present invention also has the following advantages in terms of manufacturing process. (1) The process can be shortened. According to the conventional method, the process is shortened by performing the binder manufacturing process and the mixing process at the same time, and the firing speed can be increased.
The process that took ~6 months was completed by the method of the present invention.
The process can be shortened to 1 to 2 months. As a result, great effects such as increased flexibility in production planning and faster quality information feedback can be expected. (2) Cost can be reduced. According to the method of the present invention, there is a significant cost reduction due to the simplification of the process and the reduction in crack defects. Furthermore, in order to obtain a normal isotropic carbonaceous molded body, the hydrostatic pressure method is used as a molding method, but in order to obtain a large product using this method, a fairly large-scale equipment is required, and there are limitations to the equipment. The production capacity is inevitably inferior due to the complexity of operations. However, according to the present invention, an isotropic carbonaceous molded body can be easily obtained by ordinary uniaxial pressure molding as described above, and the economic effect is great. The present invention will be further explained below with reference to Examples, but the present invention is not limited to these Examples unless the gist of the invention is exceeded. Regarding the analysis of solvent-insoluble components in this application, JIS
- The method prescribed in K2425 was followed, but benzene was used instead of toluene as the solvent for the toluene-insoluble component to obtain the benzene-insoluble component. In addition, all evaluations of the carbonaceous molded bodies obtained in the following Examples and Comparative Examples were performed as follows. (Sampling) The obtained carbonaceous molded body was cut in half in the thickness direction, and one side was cut in the A direction (perpendicular to the pressing direction during molding), and the other side was cut in the B direction (perpendicular to the pressing direction during molding). Three test pieces each measuring 8 x 8 x 35 (m/m) were cut out in the parallel direction) to serve as specimens.
Note that unless otherwise specified, values in the A direction are used as representative values. (Measurement method) Measured according to JIS-R7202, and the average value of three chist pieces is shown. Bulk specific gravity: Calculated by dimension and weight method Bending strength: Measured under constant strain using a Tensilon equipped with a 500 kg load cell with a distance between fulcrums of 32 m/m. Electrical specific resistance: Measured by the voltage drop method described in JIS-R7202. Moreover, when simply written as % in the description of Examples, it indicates weight %. Example 1 3240 g of raw pitch coke (volatile content 6.1%) with an average particle size of 6 μm was used as the carbonaceous aggregate, and tar-based soft pitch coke (α component ≒ 0%, β component ≒ 7) was used as the bituminous material.
%) was placed in a 10 autoclave, mixed under nitrogen flow, heated and stirred at 42°C for 10 hours, and thermally modified. The component composition of the heavier bitumen part in the obtained thermally modified product was 20% α component and 28% β component. When the thermally modified product was then treated in air at 200°C for 1 hour, the α and β components were 49% and 22%, respectively. The obtained molded powder was heated at room temperature with a pressure of 1000 kg/cm 2
A molded product of 150 x 220 x 65 m/m was obtained by normal uniaxial pressure molding. This is achieved at a heating rate of 5℃/hr.
Firing was performed at 800°C, and then graphitization was performed by heating to 2800°C for 40 hours to obtain a carbonaceous molded body.
The bulk height of the carbonaceous molded body obtained in this way is 1.85
(g/cm 3 ), its properties were isotropic as shown in Table 1, and it was of high quality.

【表】 実施例 2 炭素質骨材として平均粒径22μの生ピツチコー
クス(揮発分6.5%)を350g、タール系ソフトピ
ツチ(α成分≒0%、β成分≒7%)700gを1
ステンレスポツトにとり実施例1と同様に420
℃、10時間熱改質を行なつた。得られた熱改質物
中の重質化した瀝青物部分の成分組成はα成分が
55%、β成分が17%であつた。 次いでこの熱改質物から得られた成形粉を、常
温加圧力1000Kg/cm2で通常の一軸加圧成形し直径
60m/m、厚さ45m/mの生成形品を得た。これ
を5℃/hrの昇温速度で最高800℃で焼成を行
い、次いで40時間で3000℃まで加熱して黒鉛化を
行ない炭素質成形体を得た。こうして得られた炭
素質成形体の嵩高度は1.66(g/cm3)でその特性
は第2表に示すように等方性を有するものであつ
た。
[Table] Example 2 As carbonaceous aggregates, 350 g of raw pitch coke (volatile content 6.5%) with an average particle size of 22 μm and 700 g of tar-based soft pitch coke (α component ≒ 0%, β component ≒ 7%) were used as carbonaceous aggregates.
420 in the same way as in Example 1 for the stainless steel pot.
Thermal modification was carried out at ℃ for 10 hours. The composition of the heavy bitumen part in the obtained thermally modified material is such that the α component is
55%, and the β component was 17%. Next, the molded powder obtained from this thermally modified product is subjected to normal uniaxial pressure molding at room temperature and a pressure of 1000 kg/cm 2 to reduce the diameter.
A molded product with a length of 60 m/m and a thickness of 45 m/m was obtained. This was fired at a maximum temperature of 800°C at a temperature increase rate of 5°C/hr, and then heated to 3000°C for 40 hours to graphitize and obtain a carbonaceous molded body. The bulkiness of the carbonaceous molded body thus obtained was 1.66 (g/cm 3 ), and its properties were isotropic as shown in Table 2.

【表】 実施例 3 炭素質骨材として平均粒径22μの生ピツチコー
クス(揮発分6.5%)を400g、瀝青物としてター
ル系ソフトピツチ(α成分≒3.0%、β成分≒6.0
%)600gを1ステンレスポツトにとり実施例
1と同様に400℃、10時間熱改質を行なつた。得
られた熱改質物中の重質化した瀝青物部分の成分
組成はα成分が22.3%、β成分が25.0%であつ
た。 次いで熱改質物を空気中で200℃、1時間処理
すると上記α、β成分はそれぞれ37%、27%とな
つた。得られた成形粉を常温、加圧力1000Kg/cm2
で通常の一軸加圧成形し、直径60m/m、厚さ45
m/mの生成形品を得た。これを焼成することな
く40時間で3000℃まで加熱して黒鉛化を行ない炭
素質成形体を得た。こうして得られた炭素質成形
体の嵩高度は1.82(g/cm3)でその特性は第3表
に示すように等方性を有するものでありしかも高
品質なものであつた。
[Table] Example 3 400 g of raw pitch coke (volatile content 6.5%) with an average particle size of 22μ as the carbonaceous aggregate, and tar-based soft pitch coke (α component ≒ 3.0%, β component ≒ 6.0) as the bituminous material.
%) was placed in one stainless steel pot and thermally modified at 400°C for 10 hours in the same manner as in Example 1. The component composition of the heavier bitumen part in the obtained thermally modified product was 22.3% α component and 25.0% β component. Next, when the thermally modified product was treated in air at 200°C for 1 hour, the α and β components were 37% and 27%, respectively. The obtained molded powder was heated at room temperature with a pressure of 1000 kg/cm 2
Normal uniaxial pressure molding, diameter 60m/m, thickness 45
A molded article of m/m was obtained. This was heated to 3000°C for 40 hours without firing to graphitize it to obtain a carbonaceous compact. The bulkiness of the carbonaceous molded body thus obtained was 1.82 (g/cm 3 ), and its properties were isotropic as shown in Table 3, and it was of high quality.

【表】 実施例 4 炭素質骨材として平均粒径22μの生ピツチコー
クス(揮発分6.5%)を350g、瀝青物としてター
ル系ソフトピツチ(α成分≒3.0%、β成分≒6.0
%)700gを1ステンレスポツトにとり実施例
1と同様に450℃4時間熱改質を行なつた。得ら
れた熱改質物中の重質化した瀝青物部分の成分組
成はα成分が30.7%、β成分が25.1%であつた。 次いで熱改質物を空気中で200℃1時間処理す
ると上記α、β成分はそれぞれ68%、15%となつ
た。得られた成形粉を常温、加圧力1000Kg/cm2
一軸加圧成形し、直径60m/m厚さ45m/mの生
成形品を得た。これを焼成することなく40時間で
3000℃まで加熱して黒鉛化を行ない炭素質成形体
を得た。こうして得られた炭素質成形体の嵩高度
は1.66(g/cm3)でその特性は第4表に示すよう
に等方性を有するものであり、しかも高品質なも
のであつた。
[Table] Example 4 350 g of raw pitch coke (volatile content 6.5%) with an average particle size of 22μ as the carbonaceous aggregate, and tar-based soft pitch coke (α component ≒ 3.0%, β component ≒ 6.0) as the bituminous material.
%) was placed in one stainless steel pot and thermally modified at 450°C for 4 hours in the same manner as in Example 1. The component composition of the heavier bitumen part in the obtained thermally modified product was 30.7% α component and 25.1% β component. Next, when the thermally modified product was treated in air at 200°C for 1 hour, the α and β components were 68% and 15%, respectively. The obtained molded powder was uniaxially pressed at room temperature and a pressure of 1000 kg/cm 2 to obtain a molded product with a diameter of 60 m/m and a thickness of 45 m/m. This can be done in 40 hours without baking.
Graphitization was performed by heating to 3000°C to obtain a carbonaceous molded body. The bulkiness of the carbonaceous molded body thus obtained was 1.66 (g/cm 3 ), its properties were isotropic as shown in Table 4, and it was of high quality.

【表】 実施例 5 炭素質骨材として平均粒径5μの仮焼ピツチコ
ークスを350g、瀝青物としてタール系ソフトピ
ツチ(α成分≒0%、β成分≒7%)700gを1
ステンレスポツトにとり熱改質を行なつた。 得られた熱改質物中の重質化した瀝青物部分の
成分組成はα成分が78%、β成分が8%であつ
た。 得られた成形粉を常温、加圧力1000Kg/cm2で成
形し直径60m/m厚さ40m/mの生成形品を得
た。これを5℃/hrの昇温速度で最高温度800℃
で焼成を行ない、次いで40時間で3000℃まで加熱
して黒鉛化を行ない炭素質成形体を得た。こうし
て得られた炭素質成形体の特性が第5表に示すよ
うに、従来品以上の強度を示すものが得られた。
[Table] Example 5 350 g of calcined pitch coke with an average particle size of 5 μm was used as the carbonaceous aggregate, and 700 g of tar-based soft pitch coke (α component ≒ 0%, β component ≒ 7%) was used as the bituminous material.
Thermal modification was carried out in a stainless steel pot. The component composition of the heavier bitumen part in the obtained thermally modified product was 78% α component and 8% β component. The obtained molded powder was molded at room temperature with a pressure of 1000 kg/cm 2 to obtain a molded product with a diameter of 60 m/m and a thickness of 40 m/m. This was heated to a maximum temperature of 800°C at a heating rate of 5°C/hr.
The carbonaceous compact was then fired at 3000° C. for 40 hours to graphitize it. As shown in Table 5, the properties of the carbonaceous molded product obtained in this way showed a strength higher than that of conventional products.

【表】 実施例 6 炭素質骨材として平均粒径3μの仮焼ピツチコ
ークスを230g、瀝青物としてタール系ソフトピ
ツチ(α成分≒3%、β成分≒6%)805gを1
ステンレスポツトにとり実施例1と同様に400
℃、8時間熱改質を行なつた。得られた熱改質物
中の重質化した瀝青物部分の成分組成はα成分が
80%、β成分が8%であつた。得られた成形粉を
常温、加圧力1000Kg/cm2で成形し、直径60m/m
厚さ40m/mの生成形品を得た。これを5℃/hr
の昇温速度で最高温度800℃で焼成を行ない、次
いで40時間で3000℃まで加熱して黒鉛化を行ない
炭素質成形体を得た。こうして得られた炭素質成
形体の特性は第6表に示すように、従来品に比較
してかなりの高強度高緻密を示すものが得られ
た。
[Table] Example 6 230 g of calcined pitch coke with an average particle size of 3 μm was used as the carbonaceous aggregate, and 805 g of tar-based soft pitch coke (α component ≒ 3%, β component ≒ 6%) was used as the bituminous material.
400 in the same way as in Example 1 for the stainless steel pot.
Thermal modification was carried out at ℃ for 8 hours. The composition of the heavy bituminous material in the obtained thermally modified material is such that the α component is
80%, and the β component was 8%. The obtained molded powder was molded at room temperature with a pressure of 1000 kg/cm 2 to a diameter of 60 m/m.
A molded product with a thickness of 40 m/m was obtained. 5℃/hr
Firing was carried out at a maximum temperature of 800°C at a heating rate of , and then graphitized by heating to 3000°C for 40 hours to obtain a carbonaceous molded body. As shown in Table 6, the carbonaceous molded product obtained in this way had considerably higher strength and density than conventional products.

【表】 実施例 7 炭素質骨材としてカーボンブラツク(SRF旭
カーボン社、旭#35、平均粒径100mμ)を230
g、瀝青物としてタール系ソフトピツチ(α成分
≒3%、β成分≒6%)805gを1ステンレス
ポツトにとり実施例1と同様に400℃、5時間熱
改質を行なつた。得られた熱改質物中の重質化し
た瀝青物部分の成分組成はα成分が78%、β成分
が12%であつた。得られた成形粉を常温、加圧力
1000Kg/cm2で成形し直径60m/m厚さ40m/mの
生成形品を得た。これを5℃/hrの昇温速度で最
高800℃で焼成を行い、次いで40時間で3000℃ま
で加熱して黒鉛化を行ない炭素質成形体を得た。
こうして得られた炭素質成形体の特性は第3表に
示すようなものであつた。
[Table] Example 7 Carbon black (SRF Asahi Carbon Co., Ltd., Asahi #35, average particle size 100 mμ) was used as a carbonaceous aggregate.
805 g of tar-based soft pitch (alpha component ≒ 3%, β component ≒ 6%) as a bituminous material was placed in one stainless steel pot and thermally modified at 400°C for 5 hours in the same manner as in Example 1. The component composition of the heavier bitumen part in the obtained thermally modified product was 78% α component and 12% β component. The obtained molded powder is heated at room temperature and under pressure.
It was molded at 1000 kg/cm 2 to obtain a molded product with a diameter of 60 m/m and a thickness of 40 m/m. This was fired at a maximum temperature of 800°C at a temperature increase rate of 5°C/hr, and then heated to 3000°C for 40 hours to graphitize and obtain a carbonaceous molded body.
The properties of the carbonaceous molded body thus obtained were as shown in Table 3.

【表】 実施例 8 炭素質骨材として平均粒径22μの生ピツチコー
クスを350g、タール系ソフトピツチ(α成分≒
0%、β成分≒7%)700gを1ステンレスポ
ツトにとり、実施例1と同様に410℃、10時間熱
改質を行なつた。得られた熱改質物中の重質化し
た瀝青物部分の成分組成はα成分が22.2%、β成
分が29.4%であつた。次いで熱改質物を空気中で
200℃、1時間処理すると上記のα、β成分はそ
れぞれ39.2%、29.2%となつた。得られた成形粉
を常温、加圧力1000Kg/cm2で一軸加圧成形し、直
径60m/m厚さ45m/mの生成形品を得た。これ
を5℃/hrの昇温速度で最高800℃で焼成を行な
い、次いで40時間で3000℃また加熱して黒鉛化を
行ない炭素質成形体を得た。こうして得られた炭
素質成形体の嵩高度は1.87(g/cm3)でその特性
は第8表に示すように等方性を有するものであ
り、しかも高品質のものが得られた。
[Table] Example 8 350 g of raw pitch coke with an average particle size of 22μ as carbonaceous aggregate, tar-based soft pitch (α component ≒
0%, β component≈7%) was placed in one stainless steel pot, and thermally modified at 410°C for 10 hours in the same manner as in Example 1. The component composition of the heavier bitumen part in the obtained thermally modified product was 22.2% α component and 29.4% β component. The thermal reformate is then heated in air.
When treated at 200°C for 1 hour, the α and β components were 39.2% and 29.2%, respectively. The obtained molded powder was uniaxially pressed at room temperature and a pressure of 1000 kg/cm 2 to obtain a molded product with a diameter of 60 m/m and a thickness of 45 m/m. This was fired at a maximum temperature of 800°C at a heating rate of 5°C/hr, and then heated again to 3000°C for 40 hours to graphitize and obtain a carbonaceous molded body. The bulkiness of the carbonaceous molded product thus obtained was 1.87 (g/cm 3 ), its properties were isotropic as shown in Table 8, and it was of high quality.

【表】 比較例 炭素質骨材として平均粒径15μの仮焼ピツチコ
ークス400gと、瀝青物としてα成分が13%、β
成分が20%のコールタールピツチ200gとを180℃
で1時間ニーダーで〓合した。この〓合物を粉砕
後常温、加圧力1000Kg/cm2で成形し直径60m/m
厚さ45m/mの生成形品を得た。これを5℃/hr
の昇温速度で最高800℃で焼成を行ない、次いで
40時間で3000℃まで加熱して黒鉛化を行ない炭素
質成形体を得た。こうして得られた炭素質成形体
の嵩高度は1.63(g/cm3)でその特性は第9表に
示すようなものであつた。
[Table] Comparative example: 400 g of calcined pitch coke with an average particle size of 15μ as carbonaceous aggregate, and 13% α component and β component as bituminous material.
200g of coal tar pitch with 20% ingredients at 180℃
Then, it was kneaded for 1 hour. After pulverizing this compound, it was molded at room temperature with a pressure of 1000 kg/cm 2 to a diameter of 60 m/m.
A molded product with a thickness of 45 m/m was obtained. 5℃/hr
Calcination is carried out at a maximum temperature of 800℃ at a heating rate of
Graphitization was performed by heating to 3000°C for 40 hours to obtain a carbonaceous molded body. The bulkiness of the carbonaceous molded body thus obtained was 1.63 (g/cm 3 ), and its properties were as shown in Table 9.

【表】 尚、上記の成形体を焼成することなく40時間で
3000℃まで加熱して黒鉛化したところクラツクが
多数発生し満足な成形体は得られなかつた。
[Table] In addition, the above molded body can be heated in 40 hours without firing.
When graphitized by heating to 3000°C, many cracks occurred and a satisfactory molded product could not be obtained.

Claims (1)

【特許請求の範囲】 1 炭素質骨材にキノリン不溶分5%以下でベン
ゼン不溶分15%以下の瀝青物を重量比で0.5〜5.0
倍量加え、得られた混合物を加熱撹拌しつつ瀝青
物を重縮合させ、得られた熱改質物中の重質化し
た瀝青物部分の組成がキノリン不溶分が10〜85重
量%、キノリン可溶でベンゼン不溶分が5〜40重
量%となるようにした熱改質物を成形したのち熱
処理することを特徴とする高品質炭素質成形体を
製造する方法。 2 炭素質骨材として生コークスを使用して、成
形を一軸加圧成形により行うことからなる特許請
求の範囲第1項記載の方法。 3 炭素質骨材として、生コークスを平均粒径30
μ以下に微粉砕したものを使用する特許請求の範
囲第2項記載の方法。 4 混合物の加熱を350〜500℃で行うことからな
る特許請求の範囲第1〜3項のいずれかに記載の
方法。 5 熱改質物を成形に先立ち150〜300℃で0.5〜
10時間、空気中で加熱処理することからなる特許
請求の範囲1〜4項のいずれかに記載の方法。
[Claims] 1. Carbonaceous aggregate with bituminous material having a quinoline insoluble content of 5% or less and a benzene insoluble content of 15% or less in a weight ratio of 0.5 to 5.0.
The bituminous material is polycondensed while heating and stirring the obtained mixture, and the composition of the heavy bituminous material in the obtained thermally modified product is 10 to 85% by weight of quinoline insoluble matter and quinoline soluble. A method for producing a high-quality carbonaceous molded article, which comprises molding a thermally modified material in which the benzene-insoluble content is 5 to 40% by weight, and then heat-treating it. 2. The method according to claim 1, which comprises using raw coke as the carbonaceous aggregate and performing the molding by uniaxial pressure molding. 3 Use raw coke as carbonaceous aggregate with an average particle size of 30
The method according to claim 2, which uses a product that has been pulverized to a particle size of less than μ. 4. The method according to any one of claims 1 to 3, which comprises heating the mixture at 350 to 500°C. 5 Heat the thermally modified material at 150-300℃ prior to molding.
5. A method according to any one of claims 1 to 4, comprising heat treatment in air for 10 hours.
JP3587380A 1980-03-21 1980-03-21 Making method of high-quality carbonaceous shaped article Granted JPS56134507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3587380A JPS56134507A (en) 1980-03-21 1980-03-21 Making method of high-quality carbonaceous shaped article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3587380A JPS56134507A (en) 1980-03-21 1980-03-21 Making method of high-quality carbonaceous shaped article

Publications (2)

Publication Number Publication Date
JPS56134507A JPS56134507A (en) 1981-10-21
JPS6235964B2 true JPS6235964B2 (en) 1987-08-05

Family

ID=12454106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3587380A Granted JPS56134507A (en) 1980-03-21 1980-03-21 Making method of high-quality carbonaceous shaped article

Country Status (1)

Country Link
JP (1) JPS56134507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174073U (en) * 1985-12-25 1987-11-05

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764528B2 (en) * 1985-09-18 1995-07-12 三菱化学株式会社 Method for producing high-quality carbonaceous compact
JPH0645504B2 (en) * 1986-11-28 1994-06-15 川崎製鉄株式会社 High-density and high-strength carbon material manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174073U (en) * 1985-12-25 1987-11-05

Also Published As

Publication number Publication date
JPS56134507A (en) 1981-10-21

Similar Documents

Publication Publication Date Title
JPS6235964B2 (en)
JP4311777B2 (en) Method for producing graphite material
EP0157586A2 (en) A method for producing sintered silicon carbide articles
JPS5978914A (en) Manufacture of special carbonaceous material
JPS61295216A (en) Preparation of isotropic graphite material having high density and high strength
JPH0132162B2 (en)
US3202619A (en) Graphitic neutron reflector containing beryllium and method of making same
CN110562953B (en) Production and manufacturing technology of high-density carbon
JPH01305859A (en) Production of high-density carbon material
JP2697482B2 (en) Method for producing pitch-based material and method for producing carbon material using the same as raw material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPS61251504A (en) Production of formed graphite
JPH0250072B2 (en)
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH0333064A (en) Powder composition for producing carbon/silicon carbide composite material, production of carbon/silicon carbide composite material and carbon/silicon carbide composite material
JPH0735299B2 (en) Method for producing isotropic high strength carbon material having low coefficient of thermal expansion
JPH0551555B2 (en)
JP2808807B2 (en) Production method of raw material powder for carbon material
JPH0764528B2 (en) Method for producing high-quality carbonaceous compact
JPH0791107B2 (en) Method for producing isotropic graphite material having high density and high strength
CN110616080A (en) Self-sintering carbon material process technology
JP3094502B2 (en) Manufacturing method of carbon material
JPH02271908A (en) Production of high-density and high-strength carbon material
JPS6224391B2 (en)
JPS61191509A (en) Production of isotropic graphitic material