JPS63112463A - Manufacture of carbon fiber/carbon composite material - Google Patents

Manufacture of carbon fiber/carbon composite material

Info

Publication number
JPS63112463A
JPS63112463A JP61260153A JP26015386A JPS63112463A JP S63112463 A JPS63112463 A JP S63112463A JP 61260153 A JP61260153 A JP 61260153A JP 26015386 A JP26015386 A JP 26015386A JP S63112463 A JPS63112463 A JP S63112463A
Authority
JP
Japan
Prior art keywords
pitch
carbon fiber
carbon
composite material
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61260153A
Other languages
Japanese (ja)
Other versions
JPH0456789B2 (en
Inventor
酢谷 潔
角南 好彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61260153A priority Critical patent/JPS63112463A/en
Publication of JPS63112463A publication Critical patent/JPS63112463A/en
Publication of JPH0456789B2 publication Critical patent/JPH0456789B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、航空機や自動車用のディスクブレーキ材等
の耐摩耗性材料、軸受等の摺動材料、ロケットノズルの
ようなアブレーション材料、或いはホットプレス用モー
ルドなどに使用して優れた性能を発揮する炭素繊維/炭
素複合材の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention is applicable to wear-resistant materials such as disc brake materials for aircraft and automobiles, sliding materials such as bearings, ablation materials such as rocket nozzles, or hot The present invention relates to a method for manufacturing a carbon fiber/carbon composite material that exhibits excellent performance when used in press molds and the like.

〈従来技術とその問題点〉 軽量で貰強度を示し、しかも耐摩耗性や潤滑性に優れた
炭素繊維/炭素複合材(以下rC/C複合材」と略称す
る)は、今や宇宙航空機部材や自動車部材、更には医療
用材料等として欠かせない存在となっているが、その製
造には炭素繊維と熱硬化性樹脂との複合材(CF RP
)を炭化する手段が一般的に採用されている。
<Prior art and its problems> Carbon fiber/carbon composites (hereinafter referred to as rC/C composites), which are lightweight, have high strength, and have excellent wear resistance and lubricity, are now used in spacecraft components and other materials. It has become indispensable as an automobile component and even a medical material, but its production requires a composite material of carbon fiber and thermosetting resin (CF RP).
) is generally employed.

しかし、熱硬化性樹脂を炭化するとその炭化収率は約5
0%程度にしかならず、そのため“ただ単に炭素繊維と
熱硬化性樹脂との複合材を炭化する”だけでは炭化後の
マトリックスが気孔やクラックの多いC/C複合材とな
って所望強度が確保できないので、上記方法に従ってC
/C複合材を製造する場合には「ピッチ含浸−再炭化」
を繰り返す等の緻密化処理が必要とされていた。このよ
うなことから、上記従来のC/C複合材の製造方法には
製造工程が極めて複雑であるが故に生産能率が悪く、従
って製品価格も非常に高価なものとなってしまうとの問
題点が指摘されており、工業的に決して好ましい手段と
は言えなかった。
However, when thermosetting resin is carbonized, the carbonization yield is about 5
Therefore, by simply carbonizing a composite material of carbon fiber and thermosetting resin, the matrix after carbonization becomes a C/C composite material with many pores and cracks, making it impossible to secure the desired strength. Therefore, according to the above method, C
/C When manufacturing composite materials, "pitch impregnation-recarbonization"
Densification processing, such as repeating the process, was required. For this reason, the above-mentioned conventional manufacturing method for C/C composite materials has a problem in that the manufacturing process is extremely complicated, resulting in poor production efficiency and, therefore, the product price is extremely high. It has been pointed out that this method cannot be said to be an industrially preferable method.

一方、このような情勢の中から、最近、C/C複合材の
製造に関して「ピッチとコークス粉をマトリックス材と
し、これに炭素繊維を混入したものを500℃程度のセ
ミ炭化温度で加圧・加熱成形する」と言う手段を取り入
れた新しい方法の可能性を検討した結果も報告されてい
る(「鉄と鋼」NO,5,VOL、72. MAR,1
986,第306頁)。そして、ピッチ成分の加圧・加
熱成形後の炭化収率は90%程度と高いことから、上記
方法によって気孔やクラックの少ないマトリックスを得
られることが予想され、別設の緻密化処理を行わなくて
も比較的良好な強度のC/C複合材が製造されるものと
期待された。
On the other hand, in light of this situation, recently, regarding the production of C/C composite materials, ``Pitch and coke powder are used as matrix materials, and carbon fiber is mixed into this, which is then pressurized at a semi-carbonization temperature of about 500℃.'' The results of examining the possibility of a new method that incorporates the method of "heat forming" have also been reported ("Tetsu to Hagane" NO, 5, VOL, 72. MAR, 1
986, p. 306). Since the carbonization yield of the pitch component after pressure and heat molding is as high as about 90%, it is expected that the above method will yield a matrix with few pores and cracks, without the need for a separate densification process. It was expected that a C/C composite material with relatively good strength would be produced even if

ところが、この新しい報告になる方法によって得られる
C/C複合材も現状で達成できる強度は高々800 k
g/cm2でしかなく、市販されている高性能C/C複
合材の1000〜2000kg/cm”には未だ及ばな
いのが実情であった。
However, the C/C composite material obtained by the method reported in this new report currently has a strength of at most 800 K.
The actual situation was that it was only 1,000 to 2,000 kg/cm'' of commercially available high-performance C/C composite materials.

く問題点を解決するための手段〉 本発明者等は、上述のような観点から、曲げ、引張り、
圧縮及び剪断等の強度や、耐摩耗性を始めとするその他
の物性に優れた高密度C/C複合材を工業的規模で安定
生産し得る方法を提供すべく、特に、炭化収率の低い熱
硬化製樹脂を使用しないことから工夫によっては十分に
満足できる高密度・高強度C/C複合材を得る余地が残
されているのではないかとの期待が頭をもたげがちな前
記「“鉄と鋼”に報告されたC/C複合材の製造方法」
に着目し、まず、この方法で製造されるC/C複合材が
期待される程に高い強度を示さない原因の解明を目指し
て研究を行った結果、以下(al〜(f)に示す如き知
見を得るに至ったのである。即ち、 (a)  ピッチと、コークス粉等の骨材と、炭素繊維
とを混合した成形素材を加圧下で加熱して行くとピッチ
は溶融状態となるが、このとき成形体は成形圧のために
炭素繊維とコークス粉が接触するまで圧密されるので、
余剰のピッチは系外に流出してピンチの過不足が無い状
態となる。ところが、上記成形素材の加圧・加熱成形を
完了するには更なる高温に加熱する必要がある。
Means for Solving Problems〉 From the above-mentioned viewpoint, the present inventors have discovered that bending, tension,
In order to provide a method that can stably produce high-density C/C composite materials on an industrial scale that have excellent compression and shear strength and other physical properties such as abrasion resistance, we particularly aim to Since thermosetting resins are not used, expectations tend to arise that there may be room to obtain sufficiently satisfactory high-density and high-strength C/C composite materials through ingenuity. ``Manufacturing method of C/C composite material reported in ``And Steel''
Focusing on this, we first conducted research aimed at elucidating the reason why the C/C composite material manufactured by this method does not show as high strength as expected. As a result, we found the following (al to (f)) (a) When a molding material made of a mixture of pitch, aggregate such as coke powder, and carbon fiber is heated under pressure, the pitch becomes molten; At this time, the molded body is consolidated due to the molding pressure until the carbon fibers and coke powder come into contact with each other.
The excess pitch flows out of the system, so that there is no excess or deficiency in the pinch. However, in order to complete the pressurization and heat molding of the molding material, it is necessary to heat it to a higher temperature.

しかし、一般にこのような高温域に加熱するとビ・ソチ
は分解してガスを発生するが、この発生ガスのガス圧に
より量的均衡を保っていたピッチは更に系外に押し出さ
れ、この流出したピッチの体積分だけ成形体中に気孔が
発生して、C/C複合材製品の強度低下の原因となるこ
と。
However, when heated to such a high temperature range, bi-sochi generally decomposes and generates gas, and the pitch, which had maintained a quantitative balance, is further pushed out of the system due to the gas pressure of this generated gas, and this outflow Pores are generated in the compact by the volume of the pitch, which causes a decrease in the strength of the C/C composite product.

(b)  そして、この分解ガスの発生量はピッチの揮
発分が高いほど多くなるから、揮発分の高いピッチを使
用した場合はど成形体は多孔質となり、それに応じて得
られるC/C複合材の強度が低下すること。
(b) The amount of decomposed gas generated increases as the volatile content of the pitch increases, so if a pitch with a high volatile content is used, the molded product becomes porous, and the C/C composite obtained accordingly. Decrease in the strength of the material.

(C)シかるに、前記「“鉄と鋼”に報告されたC/C
複合材の製造方法」では、同一報告者の技術論文たる「
゛バルクメソフェーズをバインダーとする炭素材料の試
作°(“炭素” 1985. No、 123.第15
0〜159 頁>」に「揮発分が30%以上のピッチが
良好である」旨記載されていることからも明らかな如く
、高い含有量で揮発分を含むピンチの使用が前提とされ
ているため、これが所期の強度を備えたC/C複合材を
得る上で大きな障害となっているものと考えられること
(C) Shikaruni, the above-mentioned “C/C reported to “Tetsu to Hagane”
``Manufacturing method for composite materials'' is a technical paper by the same author, ``
゛Prototype production of carbon materials using bulk mesophase as a binder° (“Carbon” 1985. No. 123. No. 15
As is clear from the fact that "pitch with a volatile content of 30% or more is good" on pages 0 to 159, it is assumed that a pinch containing a high volatile content should be used. Therefore, this is thought to be a major obstacle in obtaining a C/C composite material with the desired strength.

(d)シからば、低揮発分のピッチを使用すればC/C
強度は改善される筈である。それにもかかわらず、前記
逐次刊行物「炭素」に掲載された技術論文には「ピッチ
中の揮発分含有量が低いと強度は逆に低下する」との結
果が示されているが、ここで使用されているピッチは8
0%以上の割合でキノリンネ溶分を含むものであり、こ
の組成のピッチは溶融性(軟化性)が悪いため炭素繊維
やコークス粉との接着性が良くな(、そのため十分な製
品強度が達成出来なかったものと推測されること。
(d) From the perspective of C/C, if a pitch with low volatility is used, C/C
Strength should be improved. Nevertheless, the technical paper published in the serial "Carbon" states that "the strength decreases when the volatile content of the pitch is low." The pitch used is 8.
Pitch with this composition has poor meltability (softening properties) and has poor adhesion to carbon fibers and coke powder (thus, sufficient product strength is not achieved). It is assumed that it was not possible.

(e)  このようなことから、炭素繊維と、コークス
粉等の骨材と、ピッチとからなる組成物を成形素材とし
てC/C複合材を製造するに当って、低い揮発分含有割
合でしかも溶融性の良好なピッチを使用すれば、複雑な
工程を必要とすることなく十分に満足できる強度を備え
た緻密なC/C複合材の安定製造が可能になると結論さ
れること。
(e) For these reasons, when producing a C/C composite material using a composition consisting of carbon fiber, aggregate such as coke powder, and pitch as a molding material, it is necessary to It is concluded that by using a pitch with good meltability, it is possible to stably manufacture a dense C/C composite material with sufficiently satisfactory strength without requiring complicated processes.

(f)  上述のような低い揮発分で溶融性に優れたピ
ンチは、タール又はピッチを減圧下で、或いは水又はガ
ス(Nzガス等)を吹き込みながら熱処理する等の手段
により容易に得られること。
(f) Pinch with low volatile content and excellent meltability as described above can be easily obtained by heat treating tar or pitch under reduced pressure or while blowing water or gas (Nz gas, etc.). .

この発明は、上記知見に基づいてなされたものであり、 炭素繊維、微粉状炭素質骨材、並びに揮発分が28%以
下でかつ軟化点が400℃以下のバインダーピッチから
なる成形素材を加圧・加熱成形し、次いで炭化ないし黒
鉛化することにより、面倒な処理・操作を要することな
く、高密度で、強度や耐摩耗性等の物性に優れた炭素繊
維強化炭素材を安定して量産し得るようにした点、 に特徴を有するものである。
This invention was made based on the above findings, and involves pressurizing a molded material consisting of carbon fibers, finely powdered carbonaceous aggregate, and a binder pitch with a volatile content of 28% or less and a softening point of 400°C or less.・By heat forming and then carbonizing or graphitizing, it is possible to stably mass-produce carbon fiber-reinforced carbon materials with high density and excellent physical properties such as strength and abrasion resistance without the need for troublesome processing or operations. It is characterized by the following points.

なお、使用される炭素繊維は高性能グレード又は汎用グ
レードの何れでも良く、構造材等の用途には高性能グレ
ード品を、そして耐摩耗性材料や摺動材料等の用途には
汎用グレード品をと言ったような使い分けをするのが適
当である。また、炭素繊維の形態としては、織物、プリ
プレグ状の一方向繊維、短繊維状のチョップ等測れを採
用しても良い。
The carbon fiber used may be either high-performance grade or general-purpose grade, with high-performance grade products used as structural materials and general-purpose grade products used as wear-resistant materials and sliding materials. It is appropriate to use them in the following manner. Furthermore, the form of the carbon fiber may be a woven fabric, a prepreg-like unidirectional fiber, a chopped short fiber, or the like.

炭素質骨材は、成形材の炭化時にマトリックスの収縮を
抑制してマトリックスの亀裂発生を低減する役割を担っ
たものであり、C/C複合材の製造に従来から使用され
ている炭素粉、カーボンブランク、黒鉛等の何れをも採
用することができる。
The carbonaceous aggregate plays the role of suppressing the shrinkage of the matrix and reducing the occurrence of cracks in the matrix during carbonization of the molded material, and is a carbon powder that has been traditionally used in the production of C/C composite materials. Either carbon blank, graphite, etc. can be used.

また、その粒径は格別に限定されるものではないが、粒
径が20μを越えると複合体の炭化処理後に骨材とピッ
チのマトリックス中にクラックが発生し易くなることか
ら、好ましくはユーマイザー等で微粉砕した20μ以下
の粒径のもの(例えば5〜15μの粒径のものが主体を
なすもの)を使用するのが良い。そして、その配合量は
、全マトリックスに対して少なくとも20重量%以上と
するのが好ましい。
Although the particle size is not particularly limited, if the particle size exceeds 20μ, cracks are likely to occur in the matrix of aggregate and pitch after carbonization of the composite, so it is preferable to use Umizer etc. It is preferable to use particles having a particle size of 20 μm or less (for example, particles having a particle size of 5 to 15 μm as a main component) that have been finely pulverized in a process. The blending amount thereof is preferably at least 20% by weight based on the total matrix.

ところで、この発明で使用するバインダーピ・ノチとし
ては、前記の如く揮発分が28%以下(好ましくは10
〜28%)でしかも軟化点が400℃以下のものを選ば
なければならない。なぜなら、揮発分が28%を上回る
と、前述したように加圧・加熱成形中に発生する分解ガ
ス量が多くなってマトリックスの多孔質化を招き、製品
の強度特性等に所望の性能が得られなくなるからであり
、−方、軟化点が400℃を越えるものでは加圧・加熱
成形時に十分な流動性を示さないので炭素繊維や炭素質
骨材に対する接着力が悪く、やはり十分に優れた性能の
C/C複合材を得ることができないからである。
By the way, as mentioned above, the binder Pinochi used in this invention has a volatile content of 28% or less (preferably 10% or less).
~28%) and has a softening point of 400°C or less. This is because if the volatile content exceeds 28%, as mentioned above, the amount of decomposed gas generated during pressurization and heat molding will increase, leading to the matrix becoming porous, and the desired performance such as strength properties of the product will not be achieved. On the other hand, if the softening point exceeds 400°C, it will not show sufficient fluidity during pressure/heat molding and will have poor adhesion to carbon fibers and carbonaceous aggregates. This is because a C/C composite material with high performance cannot be obtained.

ここで、バインダーピッチの揮発分量はJIS8812
に準じて測定した値であり、この値は炭化時に揮発する
成分量を示したものである。また、軟化点は高化式フロ
ーテスターで測定するものであり、その測定方法は次の
通りである。即ち、微粉状ピッチを断面積が1cLll
で下部1flφのノズルを有するシリンダーに詰め、上
部からプランジャーにより10 kg/cm”の圧力で
加圧しつつ6℃/hrで昇温し、プランジャーの変位を
測定する方法である。そして、ここで言う軟化点とは「
ピッチが軟化変形することによりプランジャーが動き始
めた後、その動きが停止する温度」と定義できる。なお
、軟化点の物理的意味は「軟化変形したピッチが初期に
存在した空隙を充填し終る温度」と言うことができる。
Here, the volatile content of the binder pitch is JIS8812
This value was measured according to the method, and this value indicates the amount of components that volatilize during carbonization. Further, the softening point is measured using a Koka type flow tester, and the measuring method is as follows. That is, the cross-sectional area of fine powder pitch is 1 cLll.
In this method, the cylinder is packed in a cylinder with a nozzle of 1 fl φ at the bottom, and the temperature is raised at 6°C/hr while pressurizing with a plunger from the top at a pressure of 10 kg/cm, and the displacement of the plunger is measured. What is the softening point in
It can be defined as the temperature at which the plunger stops moving after it begins to move due to softening and deformation of the pitch. Note that the physical meaning of the softening point can be said to be "the temperature at which the softened and deformed pitch finishes filling the initially existing voids."

このように、揮発分が30%以下でも良好な溶融性を示
すピッチは、例えばタール又はピッチを100Torr
以下の減圧下で380〜550℃程度の温度に加熱し適
当時間保持する熱処理によって容易に得ることができる
。つまり、タール又はピッチを熱処理するに際して雰囲
気を減圧すると、低分子量成分が円滑に除去されて原料
組成の均質化が増し、ピッチの揮発分が同じ値となるよ
うに熱処理した場合には大気圧下で熱処理するよりも遥
かに良好な溶融性を示すようになる。そして、この際の
減圧度合は100Torr以下とすることが必要で、こ
れ以上の圧力ではピッチの溶融性改善の効果が小さいの
で適当でない。また、熱処理温度が380℃未満ではピ
ッチの熱分解反応による揮発分低下が遅くて好ましくな
く、一方、550℃を越える熱処理温度では熱分解反応
速度が過大となって制御が困難となるので、上記手段に
よってバインダーピッチを調整する場合には熱処理温度
は380〜550℃に設定するのが良い。
In this way, pitch that exhibits good melting properties even with a volatile content of 30% or less can be obtained by, for example, melting tar or pitch at 100 Torr.
It can be easily obtained by the following heat treatment of heating to a temperature of about 380 to 550°C under reduced pressure and holding it for an appropriate time. In other words, if the atmosphere is reduced in pressure when heat treating tar or pitch, low molecular weight components will be smoothly removed and the raw material composition will become more homogeneous. It shows much better meltability than heat treatment. The degree of pressure reduction at this time needs to be 100 Torr or less; a pressure higher than this is not appropriate because the effect of improving pitch meltability is small. Furthermore, if the heat treatment temperature is less than 380°C, the reduction in volatile content due to the thermal decomposition reaction of the pitch will be slow, which is undesirable. On the other hand, if the heat treatment temperature exceeds 550°C, the thermal decomposition reaction rate will become excessive and difficult to control. When adjusting the binder pitch by means of other means, the heat treatment temperature is preferably set at 380 to 550°C.

また、上記の如く単に減圧下で熱処理する方法の他に、
大気圧下或いは減圧下において水蒸気やガス(N2ガス
等)を吹き込みつつ熱処理する方法を採用しても、低揮
発分で良好な溶融性を示すピッチを得ることができる。
In addition to the method of simply heat-treating under reduced pressure as described above,
Even if heat treatment is performed under atmospheric pressure or reduced pressure while blowing in water vapor or gas (N2 gas, etc.), it is possible to obtain a pitch that has a low volatile content and exhibits good meltability.

さて、この発明の方法で使用する成形素材の混合・分散
調整は以下のようにして実施すれば良い。
Now, the mixing and dispersion adjustment of the molding materials used in the method of this invention may be carried out as follows.

即ち、炭素繊維として織物や一方向繊維の形態のものを
使用する場合には、炭素質骨材粉とバインダーピッチを
分散させた溶液中に炭素繊維を浸漬する手段が好ましい
。この場合、分散液には、これら固体粉及び炭素繊維の
何れとも濡れ性の良い、例えばアセトン、エタノール、
メタノール、〔水十界面活性材〕の溶液、或いはこれら
と樹脂の混合液等が使用出来る。このような手段を採用
することにより、固体成分が炭素繊維に良くなじんで均
一な厚みで付着し、高炭素繊維含有率の成形体を製造す
ることが可能となる。そして、上述のようにしてマトリ
ックス材を付着させた炭素繊維は、積層の後、加圧・加
熱成形される。
That is, when using carbon fibers in the form of textiles or unidirectional fibers, it is preferable to immerse the carbon fibers in a solution in which carbonaceous aggregate powder and binder pitch are dispersed. In this case, the dispersion liquid may contain materials such as acetone, ethanol, etc., which have good wettability with both the solid powder and the carbon fibers.
A solution of methanol, [water and surfactant], or a mixture of these and a resin can be used. By employing such means, the solid component blends well with the carbon fibers and adheres to them with a uniform thickness, making it possible to produce a molded article with a high carbon fiber content. Then, the carbon fibers to which the matrix material is attached as described above are laminated and then pressurized and heat-molded.

また、炭素繊維としてチョップ状の短繊維を使用する場
合には、繊維とマトリックス粉を配合した後■型プレン
ダー等の混合機で乾式混合すると言う一般的な混合法を
採用す乞ことにより、十分良好な結果が得られる。
In addition, when using chopped short fibers as carbon fibers, it is necessary to use the general mixing method of blending the fibers and matrix powder and then dry-mixing them using a mixer such as a type blender. Good results are obtained.

上記のように積層又は混合された成形素材は、次いで、
そのまま或いは予備成形の後加圧・加熱成形されるが、
出来れば加圧・加熱成形手段には以下に示す二段工程か
ら成る方法を採用するのが望ましい。即ち、まず無加圧
又は低加圧(20kg/cm”程度以下)下で昇温速度
:1〜bにてピッチが軟化流動する温度以上まで昇温し
、この温度域に達したならば加圧力を40 kg/cm
”程度以上とし、更に昇温速度:1〜20℃’c/mi
nにてピンチが熱分解反応を活発に起こす温度域である
450〜600℃程度にまで昇温し、ピッチが十分固化
するまで加圧・保持する方法である。
The molding materials laminated or mixed as described above are then
It can be pressurized and heated as it is or after preforming.
If possible, it is desirable to employ a method consisting of the following two-stage process as the pressure/heat forming means. That is, first, under no pressure or low pressure (approximately 20 kg/cm" or less), the temperature is raised to a temperature higher than the temperature at which the pitch softens and flows at a temperature rise rate of 1 to b. Once this temperature range is reached, the temperature is increased. Pressure 40 kg/cm
The heating rate should be 1 to 20℃'c/mi.
In this method, the temperature is raised to about 450 to 600° C., which is the temperature range in which the pitch actively causes a thermal decomposition reaction, and the pitch is pressurized and held until it is sufficiently solidified.

そして、このようにして得られた加圧・加熱成形体は、
次に、不活性ガス雰囲気中で昇温速度:1〜b される。
The pressurized and heated molded product obtained in this way is
Next, the temperature is increased at a rate of 1 to b in an inert gas atmosphere.

上述したようなこの発明の方法によると、格別な緻密化
処理を行わなくても1.5〜1.7g/cm3と言う高
い見掛は密度を有し、従来のC/C複合材に比して一段
と高い強度(汎用グレードの炭素繊維を使用した場合は
1000kg/c…2程度、また高性能グレードの炭素
繊維を使用した場合で2000kg/cm”程度)を有
するC/C複合材を安定して製造することが可能である
が、以下、実施例によりこの発明を具体的に説明する。
According to the method of the present invention as described above, it has a high apparent density of 1.5 to 1.7 g/cm3 even without special densification treatment, and has a high apparent density compared to conventional C/C composite materials. to stabilize C/C composite materials with even higher strength (approximately 1000 kg/cm2 when using general-purpose grade carbon fiber, and approximately 2000 kg/cm'' when using high-performance grade carbon fiber). However, the present invention will be specifically explained below with reference to Examples.

〈実施例〉 実施例 1 内容禎が52のガラス製セパラブルフラスコに4kgの
コールタールを仕込み、第1表に示す条件で熱処理して
揮発分ランクの異なるバインダーピッチを調整した。
<Examples> Example 1 4 kg of coal tar was charged into a glass separable flask with a content rating of 52, and heat treated under the conditions shown in Table 1 to adjust binder pitches with different volatile content ranks.

一方、石油コークスを1000℃の温度に加熱して炭化
した後、ユーマイザーで微粉砕して平均粒径:11μの
コークス粉を調整した。
On the other hand, petroleum coke was heated to a temperature of 1000° C. to carbonize it, and then finely pulverized using a userizer to prepare coke powder with an average particle size of 11 μm.

次いで、上述の揮発分の異なるバインダーピッチの各々
について、100メツシユ以下に粉砕したそれの70部
とコークス粉30部とを170部のエタノール中に分散
し、この分散液中に、アセトンで洗浄後乾燥して9.5
cmX9.5cmに裁断したPAN系炭素繊維織物(高
強度糸、フィラメント数:1000本、平織)を浸漬し
て上記コークス粉とバインダーピッチとを付着させた。
Next, for each of the above-mentioned binder pitches with different volatile contents, 70 parts of the binder pitches pulverized to 100 mesh or less and 30 parts of coke powder were dispersed in 170 parts of ethanol, and in this dispersion, after washing with acetone, Dry 9.5
A PAN-based carbon fiber fabric (high-strength yarn, number of filaments: 1000, plain weave) cut into a size of 9.5 cm x 9.5 cm was immersed to adhere the coke powder and binder pitch.

次に、このようにしてマトリックス材を付着させ、その
後乾燥した上記織物を30枚積層し、これを内寸が10
cm角の金型に装入して昇温速度:第  1  表 (注1)*印は、本発明の条件から外れていることを示
す。
Next, the matrix material was attached in this way, and then 30 sheets of the dried fabric were layered, and the inner dimensions were 10.
Temperature rising rate after charging into a cm square mold: Table 1 (Note 1) * indicates that the conditions are outside the conditions of the present invention.

(注4)得られたC/C複合材中の炭素繊維含有率は5
0〜60%であった。
(Note 4) The carbon fiber content in the obtained C/C composite material is 5
It was 0-60%.

第  2  表 (注1)*印は、本発明の条件から外れていることを示
す。
Table 2 (Note 1) * indicates that the conditions of the present invention are not met.

5℃/rainにて520℃まで昇温した。そして、こ
の温度で30分保持した後冷却し、上記寸法の成形体を
得た。
The temperature was raised to 520°C at a rate of 5°C/rain. Then, after being maintained at this temperature for 30 minutes, it was cooled to obtain a molded article having the above dimensions.

続いて、これらの成形体を粉コークス中に詰めN2雰囲
気下で昇温速度=15℃/minにて1000℃まで昇
温しで炭化し、C/C複合材とした。
Subsequently, these molded bodies were packed in coke powder and carbonized by raising the temperature to 1000° C. at a heating rate of 15° C./min in an N2 atmosphere to obtain a C/C composite material.

このようにして得られたC/C複合材の見掛は密度と曲
げ強度の測定結果を第1表に併せて示す。
Table 1 also shows the apparent density and bending strength of the C/C composite material thus obtained.

第1表に示される結果からも明らかな如く、本発明の条
件通りに製造されたC/C複合材は高密度を有しており
、曲げ強度で1500 kg/am”以上の高強度を備
えていることが分かる。
As is clear from the results shown in Table 1, the C/C composite material manufactured according to the conditions of the present invention has a high density and a high bending strength of 1500 kg/am'' or more. I can see that

実施例 2 実例例1におけると同様のバインダーピッチとコークス
粉とを準備し、繊維長: 0.7mmの汎用グレード炭
素繊維(糸強度: 70kg/cm2.糸径:18μ)
と配合比(重量比) バインダーピッチ:コークス粉:炭素繊維−25部:2
5部:50部 の割合で配合して十分混合した後、この混合物の100
gを実施例Iにおけると同様の金型に装入して実施例1
と同じ成形条件で成形し、ついで実施例1と同じ炭化条
件で炭化処理した。
Example 2 The same binder pitch and coke powder as in Example 1 were prepared, and general-purpose grade carbon fiber with fiber length: 0.7 mm (thread strength: 70 kg/cm2. thread diameter: 18 μ) was prepared.
and blending ratio (weight ratio) Binder pitch: Coke powder: Carbon fiber - 25 parts: 2
After mixing thoroughly in a ratio of 5 parts: 50 parts, 100 parts of this mixture
Example 1 by charging g into a mold similar to that in Example I.
It was molded under the same molding conditions as in Example 1, and then carbonized under the same carbonization conditions as in Example 1.

このようにして得られたC/C複合材の見掛は密度と曲
げ強度との測定結果を第2表に示す。
Table 2 shows the results of measuring the apparent density and bending strength of the C/C composite material thus obtained.

第2表に示される結果からも明らかなように、本発明の
条件通りに製造されたC/C複合材は高密度を有してお
り、汎用グレードのチョップ状炭素繊維を用いたとして
も高い強度を示すことが分かる。
As is clear from the results shown in Table 2, the C/C composite material produced according to the conditions of the present invention has a high density, which is high even when general-purpose grade chopped carbon fiber is used. It can be seen that it shows strength.

実施例 3 内容積が51のガラス製セパラブルフラスコに2kgの
コールタールを仕込み、450℃の熱処理温度でかつ第
3表に示す各圧力下で、得られるピッチ中の揮発分が〔
20±0.5〕%となるまで熱処理してバインダーピッ
チを調整した。
Example 3 2 kg of coal tar was charged into a glass separable flask with an internal volume of 51 cm, and the volatile content in the resulting pitch was heated at a heat treatment temperature of 450°C and under each pressure shown in Table 3.
The binder pitch was adjusted by heat treatment until it became 20±0.5%.

このようにして得られたバインダーピッチと、実施例1
におけると同様のコークス粉及び炭素繊維とを用い、や
はり実施例1と同様条件でC/C複合材を製造した。
Binder pitch thus obtained and Example 1
A C/C composite material was produced under the same conditions as in Example 1 using the same coke powder and carbon fiber as in Example 1.

このようにして製造されたC/C複合材の見掛は密度と
曲げ強度との測定結果を第3表に併せて示すが、これら
の結果からも、本発明の条件通りに製造されたC/C複
合材は高密度を有していて高い強度を示すことが分かる
The apparent density and bending strength of the C/C composite material manufactured in this way are also shown in Table 3, and from these results, it is clear that the C/C composite material manufactured according to the conditions of the present invention It can be seen that the /C composite material has high density and exhibits high strength.

実施例 4 内容積が51のガラス製セパラブルフラスコに4kgの
ストレートアスファルトを仕込み、昇温速度:5℃/w
inで440℃まで昇温した後、該アスファルト液中に
内径=311φのステンレス鋼チューブを通して500
℃に予熱した水蒸気を毎分5gずつ吹き込みながら2時
間熱処理したところ、揮発分が22%、軟化点が330
℃のピンチが得られ、処理時の収率は24%であった。
Example 4 4 kg of straight asphalt was charged into a separable glass flask with an internal volume of 51 cm, and the temperature was increased at a rate of 5°C/w.
After heating the asphalt solution to 440°C, a stainless steel tube with an inner diameter of 311φ was passed through the asphalt solution.
When heat treated for 2 hours while blowing 5 g of steam preheated to ℃ per minute, the volatile content was 22% and the softening point was 330.
A pinch of 0.degree. C. was obtained and the yield on processing was 24%.

次に、上記ピッチを60メソシユ以下に微粉砕して得た
バインダーピッチ25部と、実施例1におけると同様の
コークス粉35部と、実施例2におけると同じ繊維長:
0.7mmの汎用グレード炭素繊維(糸強度: 70k
g/cm2.糸径:18μ)40部とを混合した後、実
施例2の場合と同様条件で加熱・加圧成形し、炭化処理
した。
Next, 25 parts of the binder pitch obtained by finely pulverizing the above pitch to 60 mS or less, 35 parts of coke powder similar to that in Example 1, and the same fiber length as in Example 2:
0.7mm general-purpose grade carbon fiber (thread strength: 70k)
g/cm2. After mixing 40 parts of yarn diameter: 18μ), the mixture was heated and press-molded under the same conditions as in Example 2, and carbonized.

このようにして製造されたC/C複合材の見掛は密度と
曲げ強度とを測定したところ、見掛は密度が1.53g
/cm2で曲げ強度が1020kg/cm2であること
が確認された。
When the apparent density and bending strength of the C/C composite material manufactured in this way were measured, the apparent density was 1.53 g.
It was confirmed that the bending strength was 1020 kg/cm2.

く効果の総括〉 以上に説明した如く、この発明によれば、高密度を有し
、強度その他の緒特性に一段と優れた炭素繊維強化炭素
材を工業的規模で安定して生産することが可能となり、
炭素繊維強化炭素材の適用分野の更なる拡大が期待でき
るなど、産業上極めて有用な効果がもたらされるのであ
る。
Summary of Effects> As explained above, according to the present invention, it is possible to stably produce on an industrial scale a carbon fiber-reinforced carbon material with high density and superior strength and other properties. Then,
This will bring about extremely useful effects industrially, such as further expansion of the fields of application of carbon fiber-reinforced carbon materials.

Claims (3)

【特許請求の範囲】[Claims] (1)炭素繊維、微粉状炭素質骨材、並びに揮発分が2
8%以下でかつ軟化点が400℃以下のバインダーピッ
チからなる成形素材を加圧・加熱成形し、次いで炭化な
いし黒鉛化することを特徴とする、炭素繊維強化炭素材
の製造方法。
(1) Carbon fiber, finely powdered carbonaceous aggregate, and volatile content of 2
A method for producing a carbon fiber-reinforced carbon material, which comprises pressurizing and heating forming a molding material made of a binder pitch of 8% or less and having a softening point of 400° C. or less, and then carbonizing or graphitizing the material.
(2)使用するバインダーピッチが、タール或いはピッ
チを100Torr以下の減圧下で熱処理して得られた
ものである、特許請求の範囲第1項に記載の炭素繊維強
化炭素材の製造方法。
(2) The method for producing a carbon fiber reinforced carbon material according to claim 1, wherein the binder pitch used is obtained by heat treating tar or pitch under reduced pressure of 100 Torr or less.
(3)使用するバインダーピッチが、タール或いはピッ
チを大気圧下或いは減圧下で水又はガスを吹き込みなが
ら熱処理して得られたものである、特許請求の範囲第1
項に記載の炭素繊維強化炭素材の製造方法。
(3) The binder pitch used is obtained by heat-treating tar or pitch while blowing water or gas under atmospheric pressure or reduced pressure, Claim 1
A method for producing a carbon fiber-reinforced carbon material as described in 2.
JP61260153A 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material Granted JPS63112463A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61260153A JPS63112463A (en) 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61260153A JPS63112463A (en) 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material

Publications (2)

Publication Number Publication Date
JPS63112463A true JPS63112463A (en) 1988-05-17
JPH0456789B2 JPH0456789B2 (en) 1992-09-09

Family

ID=17344047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61260153A Granted JPS63112463A (en) 1986-10-31 1986-10-31 Manufacture of carbon fiber/carbon composite material

Country Status (1)

Country Link
JP (1) JPS63112463A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699427B2 (en) 2002-07-26 2004-03-02 Ucar Carbon Company Inc. Manufacture of carbon/carbon composites by hot pressing
JP2005336469A (en) * 2004-04-26 2005-12-08 Ucar Carbon Co Inc Carbon fiber binder pitch
JP2008222516A (en) * 2007-03-14 2008-09-25 Toray Ind Inc Inorganic matrix-carbon fiber composite wire material for reinforcing concrete or the like, method for manufacturing the composite material, and structure of concrete or the like

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276284B2 (en) * 2003-12-18 2007-10-02 Sgl-Carbon Ag Carbon fiber reinforced coke from the delayed coker

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6699427B2 (en) 2002-07-26 2004-03-02 Ucar Carbon Company Inc. Manufacture of carbon/carbon composites by hot pressing
JP2005336469A (en) * 2004-04-26 2005-12-08 Ucar Carbon Co Inc Carbon fiber binder pitch
JP2008222516A (en) * 2007-03-14 2008-09-25 Toray Ind Inc Inorganic matrix-carbon fiber composite wire material for reinforcing concrete or the like, method for manufacturing the composite material, and structure of concrete or the like

Also Published As

Publication number Publication date
JPH0456789B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US3969124A (en) Carbon articles
US5205888A (en) Process for producing carbon fiber reinforced carbon materials
US4671907A (en) Method of manufacturing carbon materials
JPS6127453B2 (en)
US5631086A (en) Thermoplastic compositions comprising filled, B-staged pitch
JP2000044360A (en) Carbon/carbon composite material containing ceramic and its production
JPS63112463A (en) Manufacture of carbon fiber/carbon composite material
JPH04321559A (en) Composition for carbon material, composite carbon material and their production
RU2135854C1 (en) Friction composite material and method of its manufacture
JPH0456788B2 (en)
KR970008693B1 (en) Process for the preparation of carbon composite material
JP2003055057A (en) Method of manufacturing carbon fiber reinforced carbon material
JPH03247563A (en) Production of carbon fiber-reinforced carbon material
JPH05306167A (en) Production of short fiber reinforced c/c composite
JPH07215775A (en) Production of carbon-carbon composite material
JP3314383B2 (en) Method for producing carbon fiber / carbon composite material
JPS63151610A (en) Raw material composition for producing large-sized carbonaceous material
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPH06172032A (en) Production of boron carbide/carbon composite-based neutron shielding material
JPS63297833A (en) Brake member using carbon fiber reinforced composite as base material
JPH05345666A (en) Production of formed carbon material
JPH051227B2 (en)
EP0818510A1 (en) Filled thermoplastic, B-staged pitch preforms and composites therefrom
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH01163290A (en) Fine particle of pitch having microscopic optically anisotropic structure and production thereof