JP2566555B2 - Method for producing carbon fiber reinforced carbon composite material - Google Patents

Method for producing carbon fiber reinforced carbon composite material

Info

Publication number
JP2566555B2
JP2566555B2 JP61089398A JP8939886A JP2566555B2 JP 2566555 B2 JP2566555 B2 JP 2566555B2 JP 61089398 A JP61089398 A JP 61089398A JP 8939886 A JP8939886 A JP 8939886A JP 2566555 B2 JP2566555 B2 JP 2566555B2
Authority
JP
Japan
Prior art keywords
composite material
molded body
carbon fiber
carbonization
pitches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61089398A
Other languages
Japanese (ja)
Other versions
JPS62246864A (en
Inventor
公平 奥山
明男 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP61089398A priority Critical patent/JP2566555B2/en
Publication of JPS62246864A publication Critical patent/JPS62246864A/en
Application granted granted Critical
Publication of JP2566555B2 publication Critical patent/JP2566555B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素繊維強化炭素複合材料に関するものであ
る。詳しくはピツチ類をマトリツクス原料として優れた
性能を有する炭素繊維強化炭素複合材料を製造する方法
に関するものである。
TECHNICAL FIELD The present invention relates to a carbon fiber reinforced carbon composite material. More specifically, it relates to a method for producing a carbon fiber reinforced carbon composite material having excellent performance by using pitches as a matrix raw material.

(従来の技術) 炭素繊維強化炭素複合材料(以下「C/C複合材」と略
す)は軽量、高強度であり耐熱、耐食性に優れていると
いう特徴を活してロケツトノズル、ノーズコーン、航空
機のデイスクブレーキなどの航空宇宙材料や発熱体、ホ
ツトプレス鋳型、その他の機械部品、原子炉用部材等に
用いられている。
(Prior Art) Carbon fiber reinforced carbon composite material (hereinafter abbreviated as "C / C composite material") is light weight, high strength, heat resistance and corrosion resistance, and is utilized for rocket nozzle, nose cone and aircraft. It is used for aerospace materials such as disk brakes, heating elements, hot press molds, other mechanical parts, and reactor components.

従来C/C複合材は予め炭素繊維に樹脂、ピツチ等の有
機物マトリツクスを含浸しておき、成型・硬化させた
後、炭化・黒鉛化する方法、あるいは化学気相蒸着法に
より炭素繊維間に熱分解炭素を充填する方法で製造され
ている。
In the conventional C / C composite material, carbon fibers are previously impregnated with an organic matrix such as resin or pitch, molded and cured, and then carbonized or graphitized. It is manufactured by the method of filling cracked carbon.

これらの方法のうちピツチ類をマトリツクス原料とす
る方法は原料が安価であること、炭化収率が高いこと、
炭化の結果得られる炭素質が易黒鉛化性物質でありC/C
複合材の性能発現上好ましいものであること、更には用
いる炭素繊維がピツチを原料とするものである場合には
繊維とのなじみが良く繊維とマトリツクスの接着性が良
くなると言つた利点を有している。しかしながら、一方
ではピツチ類は炭化時の膨張が著しく、そのためC/C複
合材のマトリツクスとして使用した場合にはC/C複合材
に焼きあげた時の保形性、寸法安定性が不良である、あ
るいはC/C複合材の内部に多数の気孔、亀裂が発生し、
その後ピツチ含浸あるいは樹脂含浸−炭化の緻密化工程
を多数回繰返さなければ充分な性能を発現するに至らな
いといつた欠点も有している。
Among these methods, the method of using Pitches as a matrix raw material is inexpensive raw material, high carbonization yield,
The carbonaceous material obtained as a result of carbonization is a graphitizable substance and is C / C
It has the advantage that it is preferable in terms of performance of the composite material, and further that when the carbon fiber used is made of pitch as a raw material, it is well compatible with the fiber and the adhesion between the fiber and the matrix is good. ing. However, on the other hand, pits have a significant expansion during carbonization, and when used as a matrix for C / C composites, they have poor shape retention and dimensional stability when baked into C / C composites. , Or a large number of pores and cracks inside the C / C composite,
There is also a drawback that sufficient performance cannot be achieved unless the densification process of pitch impregnation or resin impregnation-carbonization is repeated many times thereafter.

(発明が解決しようとする問題点) そこで従来ではピツチ類をマトリツクス原料とした場
合のかかる欠点を回避する方法として成型後の炭化を、
少なくともピツチ類が炭素質化して強度を発現し始める
600〜700℃の温度まではオートクレーブ中加圧下に行な
ういわゆる加圧炭化と称される方法が採られて来た。し
かしながら、この様な方法を採つたとしてもピツチ類の
膨張が完全に抑制されるものではなく、また炭化のため
の装置が大規模、複雑なものになるといつた問題があつ
た。
(Problems to be solved by the invention) Therefore, carbonization after molding is conventionally performed as a method for avoiding such a drawback in the case where pits are used as a matrix material.
At least pits start to carbonize and develop strength
Up to a temperature of 600 to 700 ° C, a method called so-called carbonization under pressure in an autoclave has been adopted. However, even if such a method is adopted, the expansion of pits is not completely suppressed, and there is a problem when the apparatus for carbonization becomes large-scale and complicated.

(問題点を解決するための手段) 本発明者等は、上記の問題点を解決すべく鋭意検討し
た結果、炭素繊維にピツチ類を含浸し、成型した後、特
定の処理をすることにより優れた性能を有するC/C複合
材が得られることを見い出し本発明に到達した。
(Means for Solving the Problems) The inventors of the present invention have conducted extensive studies to solve the above problems, and as a result, impregnated carbon fibers with pits and molding, and after molding, are superior by performing a specific treatment. The present invention has been achieved by finding that a C / C composite material having excellent performance can be obtained.

すなわち、本発明の目的は、簡便な方法で、かつ安定
して高特性のC/C複合材を製造する方法も提供するもの
である。
That is, the object of the present invention is also to provide a method for producing a C / C composite material having a high property in a simple and stable manner.

そして、その目的はピツチ類をマトリツクス原料とし
て炭素繊維強化炭素複合材料を製造する方法において、
炭素繊維にピツチ類を含浸して成型した後、得られた成
型体を酸化性雰囲気中で熱処理し、次いで炭化処理を行
なうことにより達成される。
And, in the method for producing a carbon fiber reinforced carbon composite material using the pitches as a raw material for matrix,
This is achieved by impregnating carbon fibers with pitches and molding, and then subjecting the obtained molded body to heat treatment in an oxidizing atmosphere and then to carbonization treatment.

以下本発明を詳細に説明する。 The present invention will be described in detail below.

本発明で使用されるマトリツクス原料としてのピツチ
類とは石炭タールピツチ、石油系残渣ピツチあるいは各
種合成ピツチ等から蒸留、熱処理、エアブローイングあ
るいは溶剤処理、沈降分離による特定成分の抽出といつ
た方法で導びかれる成型に適した軟化温度を有する炭素
質歴青物質であり得るが、より具体的には、メトラー法
によつて得られる軟化点が200〜350℃の範囲にあり、か
つ300℃における留出分が10%未満であるピツチ類を用
いる。
Pits as a matrix raw material used in the present invention are derived from coal tar pitch, petroleum residue pitch or various synthetic pitch by distillation, heat treatment, air blowing or solvent treatment, extraction of a specific component by sedimentation and separation. It may be a carbonaceous bituminous material having a softening temperature suitable for molding, but more specifically, the softening point obtained by the Mettler method is in the range of 200 to 350 ° C. and the distillation at 300 ° C. Use Pitches with a yield of less than 10%.

また炭素繊維としては特に限定されるものではなくポ
リアクリロニトリル系、ピツチ系炭素繊維、あるいは気
相熱分解法による得られる炭素繊維等が使用することが
出来る。用いる炭素繊維の形態としては、連続繊維、短
繊維、フエルト状あるいは織布状態等のものが用いられ
る。
The carbon fiber is not particularly limited, and polyacrylonitrile-based, pitch-based carbon fiber, carbon fiber obtained by a vapor phase pyrolysis method, or the like can be used. As the form of the carbon fiber to be used, a continuous fiber, a short fiber, a felt-like form or a woven state is used.

また、繊維の使用量はC/C複合材の用途によつて異な
るので一概に特定できないが、一般的には成型体の体積
に対して通常20〜75%、好ましくは30〜60%の範囲から
選択される。炭素繊維は溶融状態のピツチ類を含浸した
後に成型金型中に配列させるか、あるいは金型中に繊維
とピツチ類の粉末を交互に積層してゆく方法等で配列さ
れる。炭素繊維およびピツチ類が充填された金型はその
後加熱ヒータを備えた加圧機に載置され、まず無加圧状
態でピツチ類を加熱溶融する。加熱の程度は使用するピ
ツチ類の軟化温度によつて異なつてくるものであるが、
ピツチ類が炭素繊維間に充分に浸透しうる様な低粘度を
呈すまで、すなわち、通常ピツチ類の軟化点よりも50〜
150℃高い温度まで加熱するのが好ましい。ピツチ類が
溶融した後加圧機によつて所定の圧力、通常5〜100kg/
cm2の圧力が印加され所定形状への成型が行なわれる。
成型後金型は冷却され、充分冷却した後圧力を解放して
成型体が得られる。
Further, the amount of the fiber used cannot be unconditionally specified because it varies depending on the use of the C / C composite material, but it is generally in the range of 20 to 75%, preferably 30 to 60% with respect to the volume of the molded body. Selected from. The carbon fibers are arranged in a molding die after impregnating the melted pitches, or they are arranged by alternately laminating fibers and powders of the pitches in the molding die. The mold filled with carbon fibers and pitches is then placed on a pressurizing machine equipped with a heater, and first, the pitches are heated and melted in a non-pressurized state. The degree of heating varies depending on the softening temperature of the pits used,
Until the pits exhibit such a low viscosity that they can sufficiently penetrate between the carbon fibers, that is, the softening point of the pits is usually 50-
It is preferred to heat to a temperature as high as 150 ° C. After the pits are melted, the pressure is applied by a pressure machine, usually 5-100 kg /
A pressure of cm 2 is applied and molding into a predetermined shape is performed.
After molding, the mold is cooled, and after sufficiently cooled, the pressure is released to obtain a molded body.

本発明方法では得られた成型体を酸化性雰囲気中で熱
処理することが重要である。熱処理条件としては、通常
50〜450℃、好ましくは100〜330℃の範囲の温度におい
て1〜100時間好ましくは5〜30時間、加熱処理する。
In the method of the present invention, it is important to heat-treat the obtained molded body in an oxidizing atmosphere. The heat treatment conditions are usually
Heat treatment is performed at a temperature in the range of 50 to 450 ° C, preferably 100 to 330 ° C for 1 to 100 hours, preferably 5 to 30 hours.

処理温度は最初はピツチ類が軟化あるいは溶融しない
温度とし、その後段階的あるいは連続的に徐々に昇温す
るのがよい。
It is preferable that the treatment temperature is a temperature at which the pitches are not softened or melted at first and then gradually raised in a stepwise or continuous manner.

酸化性雰囲気としては例えば空気、酸素、オゾン、塩
素、硫黄、二酸化炭素、窒素酸化物、硫黄酸化物などの
酸化性ガスを単独あるいは混合した状態で使用出来る。
As the oxidizing atmosphere, for example, an oxidizing gas such as air, oxygen, ozone, chlorine, sulfur, carbon dioxide, nitrogen oxide and sulfur oxide can be used alone or in a mixed state.

また、これらの酸化性ガスを窒素等の不活性ガスで適
宜希釈して使用することも可能である。希釈の程度は酸
化性ガスの種類によつて異なるが例えば、酸素、窒素酸
化物、硫黄酸化物等の場合は酸化性ガスが通常5〜50vo
l%で用いられる。酸化性雰囲気中での熱処理が終了し
た成型体は次いで炭化処理を行なう。炭化処理は常法に
より行なわれ、例えば成型体をパツキングコークス中に
埋め込んで炭化処理がなされる。さらに必要ならばピツ
チ含浸あるいは樹脂含浸−再炭化の緻密化処理を繰返し
て行なえば、一段と緻密なC/C複合材を得ることが出
来、又、必要に応じて、黒鉛化処理を行なつても良い。
It is also possible to appropriately dilute these oxidizing gases with an inert gas such as nitrogen before use. Although the degree of dilution varies depending on the type of oxidizing gas, for example, in the case of oxygen, nitrogen oxides, sulfur oxides, etc., the oxidizing gas is usually 5 to 50 vo
Used in l%. The molded body that has been heat-treated in an oxidizing atmosphere is then carbonized. The carbonization is carried out by a conventional method, for example, the molded body is embedded in packing coke and carbonized. Further, if necessary, it is possible to obtain a more dense C / C composite material by repeating the densification treatment of pitch impregnation or resin impregnation-recarbonization, and if necessary, perform graphitization treatment. Is also good.

(効 果) 本発明によれば、得られるC/C複合材は炭化処理によ
る形状の崩れや寸法の変化も小さく、また気孔、亀裂の
発生が少ないため充分に高密度であり、従つて優れた特
性を示すものである。
(Effect) According to the present invention, the obtained C / C composite material has a small shape collapse and dimensional change due to the carbonization treatment, and has sufficiently few densities of pores and cracks, so that it has a sufficiently high density and is therefore excellent. It shows the characteristics.

以下、本発明を実施例により具体的に説明するが、本
発明はその要旨をこえない限り、下記の実施例に限定さ
れるものではない。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist.

実施例1 厚さ2mm、幅10mm、長さ230mmの金型中に3000フイラメ
ントの炭素繊維束(引張強度200kg/mm2、同弾性率15ton
/mm2)とコールタールピツチから熱処理によつて得た軟
化点240℃で300℃における留出分が10%未満であるピツ
チの60メツシユ篩下の粉とを交互に積層した。次いで加
熱ヒータを備えた加圧機にこの金型を載置し330℃まで
加熱した。金型が330℃に達してから15分後に加圧を開
始し50kg/cm2の圧力下に30分間保持し成型を行なつた。
その後金型を冷却し常圧に戻して成型体を得た。得られ
た成型体の繊維体積含有率は約50%であり、嵩密度は1.
52g/cm3であつた。
Example 1 A carbon fiber bundle of 3000 filaments (tensile strength 200 kg / mm 2 , same elastic modulus 15 ton in a mold having a thickness of 2 mm, a width of 10 mm and a length of 230 mm).
/ mm 2 ) and a powder obtained by heat treatment from coal tar pits and having a softening point of 240 ℃ and a distillate content of less than 10% at 300 ℃ under 60 mesh mesh sieve were alternately laminated. Then, this mold was placed on a pressurizing machine equipped with a heater and heated to 330 ° C. Pressing was started 15 minutes after the temperature of the mold reached 330 ° C., and the mold was held under a pressure of 50 kg / cm 2 for 30 minutes.
After that, the mold was cooled and returned to normal pressure to obtain a molded body. The obtained molded body has a fiber volume content of about 50% and a bulk density of 1.
It was 52 g / cm 3 .

続いてこの成型体を空気雰囲気中で150℃に加熱した
炉内に載置し、320℃の温度に至るまで10℃/Hrの割合で
昇温していつた。さらに320℃に到達後20時間の保持を
行なつた。この熱処理の結果得られた成型体の嵩密度は
1.48g/cm2であり、熱処理による成型体の体積の変化は
+5.2%であつた。
Subsequently, this molded body was placed in a furnace heated to 150 ° C in an air atmosphere, and heated up to a temperature of 320 ° C at a rate of 10 ° C / Hr. After reaching 320 ° C., it was held for 20 hours. The bulk density of the molded product obtained as a result of this heat treatment is
It was 1.48 g / cm 2 , and the change in volume of the molded body due to heat treatment was + 5.2%.

次いでこの成型体をパツキングコークス中に埋め込み
600℃までは10℃/Hr、その後1000℃までは30℃/Hrの割
合で昇温して炭化処理した。炭化処理による成型体の体
積の変化は+7.0%であり、また得られたC/C複合材の嵩
密度は1.43g/cm2であつた。
Then, this molded body is embedded in packing coke.
Carbonization treatment was carried out by raising the temperature up to 600 ° C at a rate of 10 ° C / Hr and then up to 1000 ° C at a rate of 30 ° C / Hr. The change in volume of the molded product due to carbonization was + 7.0%, and the bulk density of the obtained C / C composite material was 1.43 g / cm 2 .

さらにこのC/C複合材をピツチ含浸し、再炭化するプ
ロセスを4回繰返し緻密化されたC/C複合材の嵩密度は
1.62g/cm2であつた。また、緻密化処理による複合材体
積の変化はほとんどなかつた。
Furthermore, the bulk density of the densified C / C composite material is obtained by repeating the process of impregnating this C / C composite material with pitch and re-carbonizing it four times.
It was 1.62 g / cm 2 . In addition, there was almost no change in the composite material volume due to the densification treatment.

このC/C複合材を長さ45mmの試験片に切断し、スパン
間距離40mm、歪速度1mm/minで3点曲げ試験を行ない曲
げ強度、同弾性率の測定を行なつた。その結果3点の試
験片の平均値として曲げ強度37kg/mm2、同弾性率9.8ton
/mm2であつた。
This C / C composite material was cut into a test piece having a length of 45 mm, and a three-point bending test was performed at a span distance of 40 mm and a strain rate of 1 mm / min to measure the bending strength and the elastic modulus. As a result, the bending strength was 37 kg / mm 2 and the elastic modulus was 9.8 tons as an average value of the three test pieces.
It was / mm 2 .

実施例2 実施例1と同じ条件で繊維体積含有率約50%、嵩密度
1.53g/cm3の成型体を得た。この成型体を空気に酸化窒
素ガス5vol%混合した酸化性雰囲気中の120℃に加熱し
た炉内に載置し300℃の温度に至るまで10℃/Hrの割合で
昇温していつた。さらに300℃に到達後10時間の保持を
行なつた。この熱処理の結果得られた成型体の嵩密度は
1.50g/cm3であり、熱処理による成型体の体積の変化は
+4.6%であつた。
Example 2 Under the same conditions as in Example 1, the fiber volume content is about 50%, and the bulk density is
A molded body weighing 1.53 g / cm 3 was obtained. This molded body was placed in a furnace heated to 120 ° C in an oxidizing atmosphere in which 5 vol% of nitrogen oxide gas was mixed with air, and heated up to a temperature of 300 ° C at a rate of 10 ° C / Hr. Further, after reaching 300 ° C., holding was performed for 10 hours. The bulk density of the molded product obtained as a result of this heat treatment is
It was 1.50 g / cm 3 , and the change in volume of the molded body due to heat treatment was + 4.6%.

次いでこの成型体を実施例1と同じ条件で炭化処理し
た。炭化処理による成型体の体積変化は+5.8%であ
り、また得られたC/C複合材の嵩密度は1.46g/cm2であつ
た。さらにこのC/C複合材をピツチ含浸し、再炭化する
プロセスを4回繰返し、緻密化されたC/C複合材を得
た。このC/C複合材の嵩密度は1.64g/cm3であつた。ま
た、緻密化処理による複合材体積の変化はほとんどなか
つた。
Next, this molded body was carbonized under the same conditions as in Example 1. The change in volume of the molded product due to carbonization was + 5.8%, and the bulk density of the obtained C / C composite material was 1.46 g / cm 2 . Further, the process of impregnating the C / C composite material with pitch and re-carbonizing was repeated 4 times to obtain a densified C / C composite material. The bulk density of this C / C composite material was 1.64 g / cm 3 . In addition, there was almost no change in the composite material volume due to the densification treatment.

このC/C複合材の曲げ強度、同弾性率を実施例1と同
様にして測定した結果4点の試験片の平均値としてそれ
ぞれ41kg/mm2、10.4ton/mm2であつた。
The flexural strength and the elastic modulus of this C / C composite material were measured in the same manner as in Example 1. As a result, the average values of the four test pieces were 41 kg / mm 2 and 10.4 ton / mm 2 , respectively.

比較例 実施例1と同じ条件で繊維体積含有率約50%、嵩密度
1.52g/cm3の成型体を得た。
Comparative Example Under the same conditions as in Example 1, fiber volume content of about 50%, bulk density
A molded body of 1.52 g / cm 3 was obtained.

次いで酸化性雰囲気中での熱処理を行なわないことを
除き実施例1と同様にしてこの成型体を炭化処理した結
果、嵩密度1.22g/cm3のC/C複合材が得られた。炭化処理
による成型体の体積変化は+19.8%であつた。さらにこ
のC/C複合材をピツチ含浸し、再炭化するプロセスを4
回繰返し、緻密化されたC/C複合材を得た。このC/C複合
材の嵩密度は1.39g/cm3であつた。また、緻密化処理に
よる複合材体積の変化はほとんどなかつた。
Then, this molded body was carbonized in the same manner as in Example 1 except that the heat treatment was not performed in an oxidizing atmosphere, and as a result, a C / C composite material having a bulk density of 1.22 g / cm 3 was obtained. The volume change of the molded body due to the carbonization treatment was + 19.8%. Furthermore, the process of impregnating this C / C composite material with pitch and re-carbonizing it
Repeated times, a densified C / C composite material was obtained. The bulk density of this C / C composite material was 1.39 g / cm 3 . In addition, there was almost no change in the composite material volume due to the densification treatment.

このC/C複合材の曲げ強度、同弾性率を実施例1と同
様にして測定した結果4点の試験片の平均値26kg/mm2
6.4ton/mm2であつた。
The bending strength and the elastic modulus of this C / C composite material were measured in the same manner as in Example 1, and as a result, the average value of the four test pieces was 26 kg / mm 2 ,
It was 6.4 ton / mm 2 .

比較例2(軟化点の低いピッチ使用) ピッチとして軟化点140℃、300℃における留出分16%
のピッチを用いた以外は本願明細書の実施例1と同じ条
件で成型、熱処理、炭化処理を行なった。成型時に発泡
が生じ、その後の熱処理と炭化処理で更に発泡が激しく
なり、形くずれを激しく起こし、続いての緻密化処理、
その後の複合体の強度と弾性率の測定は共に実施できな
かった。
Comparative Example 2 (use of a pitch having a low softening point) As a pitch, a softening point of 140 ° C and a distillate content of 16% at 300 ° C
Molding, heat treatment, and carbonization were performed under the same conditions as in Example 1 of the present specification except that the pitch was used. Foaming occurs at the time of molding, and further heat treatment and carbonization further intensify foaming, causing severe deformation, and subsequent densification treatment,
Both the strength and elastic modulus of the composite thereafter could not be measured.

比較例3(酸化性雰囲気での熱処理を成型前に実施) 本願実施例1と同様に炭素繊維束とピッチとを交互に
積層した。この積層体を空気雰囲気中で150℃に加熱し
た炉内に載置し、320℃の温度に至るまで10℃/Hrの割合
で昇温していき、さらに320℃に到達後20時間の保持を
行なった。
Comparative Example 3 (Heat Treatment in Oxidizing Atmosphere Performed Before Molding) Similar to Example 1 of the present application, carbon fiber bundles and pitches were alternately laminated. This laminate is placed in a furnace heated to 150 ° C in an air atmosphere, heated up to a temperature of 320 ° C at a rate of 10 ° C / Hr, and held for 20 hours after reaching 320 ° C. Was done.

次いで加熱ヒータを備えた加圧機により実施例1と同
条件の成型を行ない、成型体を得た。得られた成型体の
嵩密度は1.20g/cm3であった。
Next, molding was carried out under the same conditions as in Example 1 by using a pressure machine equipped with a heater to obtain a molded body. The bulk density of the obtained molded body was 1.20 g / cm 3 .

続いて実施例1と同様の炭化処理、緻密化を行った。
得られた複合材中には気孔が生じており、炭化処理、緻
密化、各々の後の複合材の嵩密度は1.24g/cm3、1.39g/c
m3であり、また複合材の曲げ強度は21kg/mm2、曲げ弾性
率は6.4ton/mm2であった。この成型体は、実施例1より
嵩密度、曲げ強度が低いことがわかる。
Subsequently, the same carbonization treatment and densification as in Example 1 were performed.
Porosity is generated in the obtained composite material, and the bulk density of the composite material after each of carbonization treatment and densification is 1.24 g / cm 3 , 1.39 g / c.
m is 3, and the flexural strength of the composite material is 21 kg / mm 2, a flexural modulus of 6.4ton / mm 2. It can be seen that this molded body has lower bulk density and bending strength than Example 1.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−197466(JP,A) 特公 昭59−35841(JP,B2) 特公 昭51−12474(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP 61-197466 (JP, A) JP 59-35841 (JP, B2) JP 51-12474 (JP, B2)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ピッチ類をマトリクス原料として炭素繊維
強化炭素複合材料を製造する方法において、炭素繊維
に、軟化点が200℃〜350℃であって、300℃における留
出分が10%未満のピッチ類を含浸して、成形した後、得
られた成形体を酸化性雰囲気中で熱処理し、次いで炭化
処理を行うことを特徴とする炭素繊維強化炭素複合材料
の製造方法。
1. A method for producing a carbon fiber reinforced carbon composite material using pitches as a matrix raw material, wherein the carbon fiber has a softening point of 200 ° C. to 350 ° C. and a distillate content at 300 ° C. of less than 10%. A method for producing a carbon fiber-reinforced carbon composite material, comprising impregnating pitches and molding, heat-treating the obtained molded body in an oxidizing atmosphere, and then carbonizing the molded body.
JP61089398A 1986-04-18 1986-04-18 Method for producing carbon fiber reinforced carbon composite material Expired - Lifetime JP2566555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61089398A JP2566555B2 (en) 1986-04-18 1986-04-18 Method for producing carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61089398A JP2566555B2 (en) 1986-04-18 1986-04-18 Method for producing carbon fiber reinforced carbon composite material

Publications (2)

Publication Number Publication Date
JPS62246864A JPS62246864A (en) 1987-10-28
JP2566555B2 true JP2566555B2 (en) 1996-12-25

Family

ID=13969540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61089398A Expired - Lifetime JP2566555B2 (en) 1986-04-18 1986-04-18 Method for producing carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JP2566555B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02153737A (en) * 1988-12-06 1990-06-13 Agency Of Ind Science & Technol Manufacture of carbon fiber carbon composite material
JP6358645B2 (en) * 2013-10-31 2018-07-18 東洋炭素株式会社 Coil spring

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112474A (en) * 1974-07-22 1976-01-31 Shunzo Tachikawa Rooraanaisono jidokao kanonishita harijobearinguno kumitatesochi
JPS5935841A (en) * 1982-08-21 1984-02-27 Nitto Shoko Kk Wire straightener
JPS61197466A (en) * 1985-02-22 1986-09-01 出光興産株式会社 Manufacture of carbon formed body

Also Published As

Publication number Publication date
JPS62246864A (en) 1987-10-28

Similar Documents

Publication Publication Date Title
EP0554024B1 (en) Process for preparing carbon/carbon composite preform and carbon/carbon composite
US3943213A (en) Method for manufacturing high temperature graphite fiber-graphite composites
JPH01252577A (en) Production of carbon/carbon composite material
EP0601808B1 (en) Process for producing carbon preform
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
JP2566555B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH0788261B2 (en) Method for producing carbon fiber reinforced carbon composite material
JPH0768064B2 (en) Carbon fiber reinforced composite material
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPH0455991B2 (en)
KR960004374B1 (en) Process for the preparation of composite materials of carbon/carbon
KR970008693B1 (en) Process for the preparation of carbon composite material
KR950011212B1 (en) Caron composite material for friction article
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JP3138939B2 (en) Method for producing carbon / carbon composite material
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
KR940006433B1 (en) Process for the preparation of carbon/carbon composite
JP2676211B2 (en) Method for manufacturing carbon / carbon composite material
JPH04243970A (en) Production of carbon/carbon composite material
JP3138938B2 (en) Manufacturing method of carbon / carbon composite material
JP2806408B2 (en) Self-fusing carbonaceous powder and high density carbon material
JPH03261661A (en) Production of carbon fiber-reinforced carbon composite material
JPH01234367A (en) Production of carbon/carbon composite material
JPH0426547A (en) Production of carbon reinforced carbon composite material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term