KR970007019B1 - Process for the preparation of carbon fiber reinforced carbon composite using pitch - Google Patents
Process for the preparation of carbon fiber reinforced carbon composite using pitch Download PDFInfo
- Publication number
- KR970007019B1 KR970007019B1 KR1019930023757A KR930023757A KR970007019B1 KR 970007019 B1 KR970007019 B1 KR 970007019B1 KR 1019930023757 A KR1019930023757 A KR 1019930023757A KR 930023757 A KR930023757 A KR 930023757A KR 970007019 B1 KR970007019 B1 KR 970007019B1
- Authority
- KR
- South Korea
- Prior art keywords
- pitch
- carbon
- carbon fiber
- molded body
- carbon composite
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/78—Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
- C04B35/80—Fibres, filaments, whiskers, platelets, or the like
- C04B35/83—Carbon fibres in a carbon matrix
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/52—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
- C04B35/521—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained by impregnation of carbon products with a carbonisable material
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Composite Materials (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Products (AREA)
Abstract
Description
본 발명은 탄소섬유강화 탄소복합재의 제조방법에 관한 것이며, 보다 상세히는 강화재로서 탄소섬유를 사용하고 매트릭스(Matrix)의 원료로서 핏치를 사용하는 고밀도 탄소/탄소 복합재의 제조방법에 관한 것이다.The present invention relates to a method for producing a carbon fiber-reinforced carbon composite material, and more particularly, to a method for producing a high-density carbon / carbon composite using carbon fiber as a reinforcing material and pitch as a raw material of a matrix.
탄소/탄소 복합재는 경량이고 강도가 높고 내열성과 내식성이 우수하기 때문에 항공기용 브레이크, 로켓노줄, 우주왕복선의 내열구조재등 우주항공재료나, 원자로용 재료 및 기타 기계부품 등에 널리 이용되고 있다.Carbon / carbon composites are widely used in aerospace materials such as brakes for aircrafts, rockets, heat-resistant structural materials of space shuttles, nuclear reactor materials and other mechanical parts because of their light weight, high strength, and excellent heat resistance and corrosion resistance.
종래에는 이같은 탄소/탄소 복합재 제조에 있어서, 탄소섬유에 수치나 핏치류등 유기물을 액상으로 함침하고, 이를 성형 및 경화시킨후 탄화하거나, 혹은 탄화수소기체의 화학기상 증착법에 의해 탄소섬유사이에 열분해 탄소를 충진시키는 방법으로 제조하였다.Conventionally, in the production of such carbon / carbon composites, carbon fibers are impregnated with organic materials such as numerical values or pitches in a liquid phase, molded and cured, carbonized, or pyrolytic carbon between carbon fibers by chemical vapor deposition of hydrocarbon gas. It was prepared by the method of filling.
상기 2가지 방법중 전자(前者)의 경우는 원료의 값이싸고 탄소수율이 높으며 탄화후 얻어지는 탄소질의 흑연화성이 우수하여 탄소/탄소 복합재의 성능을 향상시킬 수 있는 장점이 있는 반면, 액상함침후, 탄화시킬때 핏치류 매트릭스 원료중에 함유되어 있는 성분중 일부가 휘발함으로써 탄화후의 탄소/탄소복합재 내부에 기공이 형성되기 때문에, 액상함침 및 탄화과정을 여러번 반복하여 치밀화를 꾀하지 않으면 안되었다.In the former method, the former has the advantages of low cost of raw materials, high carbon yield, and excellent graphitization of carbonaceous carbon obtained after carbonization, thereby improving the performance of the carbon / carbon composite material, whereas after liquid impregnation. When carbonization, some of the components contained in the pitch matrix matrix volatilize to form pores inside the carbon / carbon composite material after carbonization. Therefore, the liquid impregnation and carbonization process must be repeated several times to densify.
그러나 액상함침 및 탄화과정을 반복하는 횟수가 많아질수록 탄소/탄소 복합재를 제조하는데 소요되는 시간 및 비용이 증대하여 경제성이 떨어지게 된다. 이를 해결하기 위하여 매트릭스 원료의 탄화수율을 높여 액상함침 및 탄화과정의 반복횟수를 줄이거나 단 한번에 밀도가 높은 탄소/탄소 복합제를 제조하고자 하는 여러가지 접근이 시도되었다.However, as the number of times of repeating the liquid impregnation and carbonization process increases, the time and cost required for manufacturing the carbon / carbon composite material increases, thereby reducing economic efficiency. In order to solve this problem, various approaches have been attempted to increase the carbonization yield of matrix raw materials to reduce the number of repetitions of liquid impregnation and carbonization process or to produce a dense carbon / carbon composite material at once.
첫째는, 탄화할때 오토플레이브(Autoclave) 또는 열간 정수압 기기(Hot Isotatic press)등의 압력 반응기를 이용하는 방법으로, 유럽특허 323750호, 유럽특허 335736호, 일본특허공개(평) 2-258676호등에 제시되어 있으며, 둘째는 탄화수율이 높은 코크스 분말(철과강, 제72권, 5호, 306쪽, 1986년)이나 탄소분말(일본특허공개(소) 60-200867호 및 일본특허공개(소) 62-148366호)를 혼합하여 함침하는 방법이며, 셋째는 원료 핏치를 열처리하거나 용매추출하여 고탄화수율을 갖는 핏치류를 매트릭스 원료로 이용하는 방법으로, 이방성 액정핏치를 이용하는 방법(탄소, 제123호, 150쪽, 1985년), 자기소결정 코크스를 이용하는 방법(일본특허공개(소) 60-54974호 및 일본특허공개(소) 61-21973호), 핏치 미소구체(微小球體)를 이용하는 방법(일본특허공개(평) 1-239060호)등이다.First, a method of using a pressure reactor such as an autoclave or a hot isotatic press when carbonizing, European Patent No. 323750, European Patent 335736, Japanese Patent Publication No. 2-258676 And the second is coke powder having high carbonization yield (Iron and Steel, Vol. 72, No. 5, p. 306, 1986) or carbon powder (Japanese Patent Publication No. 60-200867 and Japanese Patent Publication ( Sub) 62-148366) is mixed and impregnated, and third is a method of heat treatment or extraction of solvent to use pitches having a high carbon yield as a matrix material, using anisotropic liquid crystal pitch (carbon, first 123, p. 150, 1985), methods of using self-crystallized coke (Japanese Patent Laid-Open No. 60-54974 and Japanese Patent Laid-Open No. 61-21973), and Pitch Microspheres (Japanese Patent Laid-Open No. 1-239060).
그러나 상기 첫째방법은 압력반응기의 가격이 비쌀뿐 아니라 제조하고자 하는 탄소/탄소 복합재의 크기가 증가하면 제조하기 곤란한 점이 있으며, 둘째 방법은 혼합하는 분말의 입도를 조절하여 분쇄하는 공정이 추가될 뿐만아니라 매트릭스 원료의 점도가 상승하여 함침시키기 어려워진다. 또한 세째방법은 매트릭스 원료의 제조수율이 낮으며, 제조조건이 까다로와서 제조비용이 많이 들며, 또한 점도가 높기 때문에 함침이 쉽지 않은 문제점이 있는 것이다. 이에 본 발명의 목적은 상기와 같은 종래의 문제점을 해결한 보다 개선된 고밀도의 탄소/탄소 복합재 제조방법을 제공하는 데 있다.However, the first method is difficult to manufacture if the pressure reactor is expensive and the size of the carbon / carbon composite material to be manufactured is increased, the second method is added to the process of grinding by adjusting the particle size of the powder to be mixed. The viscosity of the matrix raw material rises, making it difficult to impregnate. In addition, the third method is a low production yield of the matrix raw material, the manufacturing conditions are difficult, the manufacturing cost is high, and the viscosity is high, there is a problem that the impregnation is not easy. Accordingly, an object of the present invention is to provide a more improved high-density carbon / carbon composite manufacturing method that solves the conventional problems as described above.
나아가 본 발명의 목적은 핏치를 매트릭스 원료로 사용하여 보다 간단하게 고밀도의 탄소/탄소 복합재를 제조하는 방법을 제공하는 데 있다.It is further an object of the present invention to provide a method for producing a high density carbon / carbon composite more simply by using pitch as a matrix raw material.
본 발명에 의한 탄소섬유강화 탄소복합재 제조방법은 탄소섬유에 핏치를 함침시키고 성형체를 형성하고, 그 형성된 성형체를 고정치구내에 놓은후 불활성 분위기 하에서 열처리하여 핏치의 연화점을 상승시킨 다음, 이어 불활성 분위기하에서 가열압축하고 탄화처리함을 포함하다.In the carbon fiber-reinforced carbon composite material manufacturing method according to the present invention, the pitch is impregnated in the carbon fiber, and a molded body is formed. Under heat compression and carbonization.
이하 본 발명예 대하여 상세히 설명하다.Hereinafter, the present invention will be described in detail.
본 발명자들은 핏치를 열처리하여 연화점을 상승시킬 경우, 탄화시의 수율이 증가하는 잇점이 있는 반면에 점도가 증가하여 함침이 어려운 단점이 있음에 유의하여, 우선 점도가 낮은 핏치를 탄소섬유에 함침시키고 성형체를 만든뒤, 전술한 성형체를 열처리하여 핏치의 연화점을 상승시킨후 탄화할 경우, 함침시에는 점도를 낮게 유지할 수 있으면서 탄화시에는 수율을 증가시킬 수 있다는 것을 발견하였으며, 이같은 방법을 이용하는 경우, 광범위한 연화점을 지닌 핏치를 탄소/탄소 복합재의 원료로 이용할수 있다.The present inventors note that when the pitch is heat-treated, the softening point is increased, the yield of carbonization is increased while the viscosity is increased, so that impregnation is difficult. After forming the molded body and heat-treating the above-mentioned molded body to increase the softening point of the pitch and carbonize it, it was found that the viscosity can be kept low during impregnation and the yield can be increased during carbonization. Pitches with a wide range of softening points can be used as raw materials for carbon / carbon composites.
본 발명에서 사용될 수 있는 탄소섬유로는 레이온계, 폴라아크릴로니트릴계, 핏치계 등 공지된 어떠한 종류의 탄소섬유도 모두 사용가능하며, 탄소섬유의 형태로는 얀(Yarn), 클로스(Cloth), 테이프(Tape)등의 연속섬유 형태와 촙드 파이버(Chopped fiber), 매트(Met), 펠트(Felt)등의 불연속 섬유형태 모두 가능하다.As the carbon fiber that can be used in the present invention, any known carbon fiber such as rayon-based, polyacrylonitrile-based, or pitch-based can be used, and carbon fiber can be used in the form of yarn or cloth. , Continuous fiber type such as tape, and discontinuous fiber type such as chopped fiber, mat and felt.
매트릭스 원료인 핏치는 석유계 중질유(重質油)나 콜타르(Coal tar)로부터 제조된 석유계 및 석탄계 핏치 또는 기타 유기물로부터 합성된 핏치 중 연화점이 25℃ 이상 300℃이하인 핏치는 모두 사용할 수 있다.Pitch, which is a matrix raw material, can be used for pitches having a softening point of 25 ° C. or higher and 300 ° C. or lower among the pitches synthesized from petroleum-based heavy oil, coal tar or petroleum-based coal pitch or other organic matter.
상기의 핏치를 용융시켜 탄소섬유에 도포하여 함침시키거나, 또는 상기 핏치를 분쇄하여 분말형태로 만들고 탄소섬유에 균일하게 뿌린뒤 요융시켜 함침시킨다. 함침시 턴소섬유와 핏치의 량은 최종 요구되는 제품에 따라 적절히 조정될 수 있다.The pitch is melted and applied to carbon fiber to be impregnated, or the pitch is pulverized into a powder form and sprinkled uniformly on the carbon fiber and then melted to impregnate. The amount of turno fibers and pitch during impregnation can be adjusted accordingly depending on the final product required.
핏치가 함침된 상기 탄소섬유를 원하는 용도에 맞게 치구 내에 적층, 배열, 또는 분산시키고, 이어서 핫 프레스(Hot press)를 이용하여, 가열하여 적절한 온도에서 가압한 후 냉각시킴으로써 성형체를 제조한다. 이때 가열온도는 사용한 핏치의 연화점도다 50℃ 내지 150℃ 더 높은 온도가 좋으나 가열온도가 350℃를 넘어서면 핏치의 열중합 반응이 활발히 일어나므로 바람직하지 않다.The molded article is prepared by stacking, arranging, or dispersing the pitch-impregnated carbon fibers in a jig according to a desired use, followed by heating using a hot press, pressing at an appropriate temperature, and cooling. At this time, the heating temperature is the softening viscosity of the used pitch is 50 ℃ to 150 ℃ higher temperature is good, but if the heating temperature exceeds 350 ℃ thermal polymerization reaction of the pitch is not preferable.
상기의 성형체를 고정치구에 넣고 불활성 분위기 하에서 열처리한다. 이때 고정치구의 역할은 열처리하는 동안에 핏치가 외부로 흘러나오지 않도록 함과 동시에 성형체가 팽창하거나 변형되는 것을 방지하는 것이다.The molded article is placed in a fixture and heat treated in an inert atmosphere. At this time, the role of the fixing jig is to prevent the pitch from flowing to the outside during the heat treatment and to prevent the molded body from expanding or deforming.
또한 성형체의 열처리는 1Torr이상 760Torr이하의 감압열처리, 1kg/㎠이상 200kg/㎠이하의 가압 열처리, 또는 상압(常壓)열처리 모두 가능하며, 열처리 온도는 300℃이상 600℃이하의 온도에서 행하는것이 바람직하다. 300℃이하의 온도에서 열처리하면 시간이 너무 오래 걸리고, 반면에 600℃이상에서 열처리하면 핏치가 급속히 굳어지게 되어 이후의 가열압축시 압축이 불가능하게 된다. 상기 열처리에 따라 매트릭스 원료인 핏치 성분중에 비점이 낮은 저분자량 성분을 휘발시킴과 동시에 중축합반응을 일으켜, 결국 평균분자량이 증가하면서 연화점이 증가하여, 이후의 단계인 가열압축시 또는 탄화시의 수율을 증가시킬 수 있다.In addition, the heat treatment of the molded body may be performed under reduced pressure heat treatment of 1 Torr or more and 760 Torr or less, pressurized heat treatment of 1 kg / cm 2 or more and 200 kg / cm 2 or normal pressure heat treatment, and the heat treatment temperature is performed at a temperature of 300 ° C. or higher and 600 ° C. or lower. desirable. If the heat treatment at a temperature of less than 300 ℃ takes too long, while the heat treatment at 600 ℃ or more harden the pitch rapidly, it is impossible to compress during subsequent heating compression. According to the heat treatment, low-molecular-weight components having low boiling point are volatilized in the pitch component, which is a matrix raw material, and polycondensation reaction occurs, and as a result, the softening point increases as the average molecular weight increases. Can be increased.
열처리가 끝난 성형체는 고정치구 또는 적절한 다른 치구로 옮겨 넣고, 핫프레스에 장착한 뒤 불활성분위기 하에서 450℃ 내지 700℃온도로 가열하고, 10kg/㎠ 내지 500kg/㎠의 압력으로 압축하여 성형체의 원래두께의 30% 내지 90%로 압축하여 10분 내지 10시간 유지한 후 냉각시킨다. 이때 압축을 시키는 이유는, 성형체를 열처리하는 동안에 성형체 내부의 핏치중 일부가 휘발하여 외부로 유출하거나 또 중축합반응의 결과로 핏치가 수축하여 형성된 기공을 다시 메워 주어 밀도를 증가시킬 수 있기 때문이다. 상기의 가열합출 후 냉각된 성형체를 불활성 분위기 하에서 900℃이상의 온도로 탄화하여 바라는 탄소/탄소 복합재가 제조된다.After the heat treatment, the molded body is transferred to a fixed fixture or another suitable jig, mounted on a hot press, heated to a temperature of 450 ° C. to 700 ° C. under an inert atmosphere, compressed to a pressure of 10 kg / cm 2 to 500 kg / cm 2, and then to the original thickness of the molded body. It is compressed to 30% to 90% of and maintained for 10 minutes to 10 hours and then cooled. At this time, the compression is performed because part of the pitch inside the molded body volatilizes during the heat treatment of the molded body and flows out, or the pores formed by shrinking the pitch as a result of the polycondensation reaction can increase the density. . The carbon / carbon composite material desired by carbonization of the cooled molded body after heat-coating at a temperature of 900 ° C. or more under an inert atmosphere is produced.
이하 본 발명의 실시예에 대하여 설명한다.Hereinafter, embodiments of the present invention will be described.
(실시예 1)(Example 1)
연화점이 163℃인 석탄계 핏치 분말을 폴리아크릴로니크릴계 탄소섬유 12,000가닥으로 짠 8매 주자직 구조의 천에 뿌린후 250℃에서 10분간 유지하여, 핏치를 클로스에 함침시킨 다음 냉각하여 핏치 프리프레그(Prepreg)를 만들었다. 그후 프리프레그를 치구내에 적층하고 핫프레스를 이용하여 250℃에서 성형체를 제조하였다. 성형체를 고정치구 내에 넣고, 이 고정치구를 다시 파이렉스(Pyrex) 반응기 속에 넣어 질소가스를 불어 넣어주면서 분당 5℃로 승온하여 480℃에서 70분간 열처리한 후 냉각하였다. 이어서 성형체를 고정치구에서 꺼내어 흑연으로 제조된 치구에 넣고 핫프레스에 장착하여 불활성 분위기를 유지하면서 분당 5℃로 승온하여 500℃에서 50kg/㎠의 압력으로 눌러 원래 두께의 77%가 되도록 가열합축한 뒤 60분간 유지하고 냉각시켰으며, 다시 1000℃에서 1시간 탄화하여 탄소/탄소 복합재를 제조하였다. 가열압축한 후 냉각된 성형체의 밀도를 측정한 결과 1.51g/㎠이었으며, 탄화한 뒤에는 1.46g/㎤ 이었다.Coal-based pitch powder having a softening point of 163 ° C was sprinkled on 8 sheets of woven fabric of 12,000 strands of polyacrylonitrile-based carbon fiber, and then maintained at 250 ° C for 10 minutes. I made Prepreg. Then, the prepreg was laminated in the jig and a molded product was prepared at 250 ° C. using a hot press. The molded body was placed in a fixture, and the fixture was placed in a Pyrex reactor again, and heated to 5 ° C. per minute while blowing nitrogen gas, followed by heat treatment at 480 ° C. for 70 minutes, followed by cooling. Subsequently, the molded body was removed from the fixed jig and placed in a jig made of graphite, mounted on a hot press, heated to 5 ° C. per minute while maintaining an inert atmosphere, and heated and condensed at 500 ° C. at a pressure of 50 kg / cm 2 to reach 77% of the original thickness. After maintaining for 60 minutes and cooling, it was again carbonized at 1000 ℃ for 1 hour to prepare a carbon / carbon composite material. After heat compression, the density of the cooled compact was measured to be 1.51 g / cm 2, and after carbonization, it was 1.46 g / cm 3.
(비교예 1)(Comparative Example 1)
상기 발명예 1과 동일한 조건으로 성형체를 제조한 뒤, 이 성형체를 고정치구 내에 넣고, 이 고정치구를 다시 파이렉스(Pyrex) 반응기 속에 넣어 질소가스를 불어 넣어주면서 분당 5℃로 승온하여 480℃에서 120분간 열처리한 후 냉각하였다. 냉각후 상기 성형체를 가열압축단계를 거치지 않고 직접 1000℃에서 1시간 탄화하였다.After the molded article was manufactured under the same conditions as in Inventive Example 1, the molded article was placed in a fixture, and the fixture was placed in a Pyrex reactor again, and heated to 5 ° C. per minute while blowing nitrogen gas at 120 ° C. at 480 ° C. After heat treatment for minutes, it cooled. After cooling, the molded product was directly carbonized at 1000 ° C. for 1 hour without undergoing a heat compression step.
탄화이전의 성형체의 밀도는 1.43g/㎤으로 측정되었는데, 그러나 탄화한뒤에는 팽창하고 프리프레그 층간의 균열이 발생하였다.The density of the molded body before carbonization was measured to be 1.43 g / cm 3, but after carbonization, it expanded and cracked between prepreg layers.
(실시예 2)(Example 2)
연화점이 103℃인 석탄계 핏치 분말을 폴리아크릴로니트릴계 탄소섬유 3,000가닥으로 짠 8매 주자직 형태의 클로스(Cloth)에 뿌린후 210℃에서 10분간 유지하여, 핏치를 클로스에 함침시킨 후 냉각하여 핏치 프리프레그(Prepreg)를 만들었다. 다음으로 프리프레그를 치구내에 적층하고 핫프레스를 이용하여 210℃에서 성형체를 제조하였다. 이 성형체를 고정치구 내에 넣고, 이 고정치구를 다시 파이렉스(Pyrex)반응기 속에 넣오 20Torr의 감압하에서 분당 5℃로 승온하여 350℃에서 60분간 열처리한 후 냉각하였다. 이어서 성형체를 고정치구에서 꺼내어 흑연으로 제조된 치구에 넣고 핫프레스에 장착하여 불활성 분위기를 유지하면서 분당 5℃로 승온하여 550℃에서 30kg/㎠의 압력으로 눌러 원래 두께의 85%가 되도록 가열압축한 뒤 60분간 유지하고 냉각시켰으며, 이를 다시 1000℃에서 1시간 탄화하여 탄소/탄소 복합재를 제조하였다.The coal-based pitch powder having a softening point of 103 ° C. was sprinkled on 8 sheets of cloth-shaped cloth woven from 3,000 strands of polyacrylonitrile-based carbon fiber, and kept at 210 ° C. for 10 minutes. Pitch Prepreg was made. Next, the prepreg was laminated | stacked in the jig and the molded object was manufactured at 210 degreeC using the hot press. The molded article was placed in a fixture, and the fixture was placed again in a Pyrex reactor, heated to 5 ° C per minute under a reduced pressure of 20 Torr, heat treated at 350 ° C for 60 minutes, and cooled. Subsequently, the molded body was removed from the fixed jig and placed in a jig made of graphite, mounted on a hot press, heated to 5 ° C. per minute while maintaining an inert atmosphere, and heated and compressed at a pressure of 30 kg / cm 2 at 550 ° C. to reach 85% of the original thickness. After maintaining for 60 minutes and cooling, it was again carbonized at 1000 ℃ for 1 hour to prepare a carbon / carbon composite material.
가열압축 후의 성형체의 밀도를 측정한 결과 1.47g/㎤이었고, 탄화한 뒤에는 1.43g/㎤이었다.It was 1.47 g / cm <3> as a result of measuring the density of the molded object after heat compression, and it was 1.43 g / cm <3> after carbonization.
(실시예 3)(Example 3)
상기 발명예 1과 동일한 조건으로 성형체를 제조한 뒤, 이 성형체를 고정치구 내에 넣고, 이 고정치구를 다시 파이렉스(Pyrex) 반응기 속에 넣어 질소가스를 불어 넣어주면서 분당 5℃로 승온하여 420℃에서 240분간 열처리한 후 냉각하였다. 이어서 상기 성형체를 고정치구에서 꺼내어 흑연으로 제조된 치구에 넣고 핫프레스에 장착하여 불활성 분위기를 유지하면서 분당 5℃로 승온하여 550℃에서 100kg/㎠의 압력으로 눌러 원래두께의 72%가 되도록 가열압축한 뒤 60분간 유지하고 냉각시켰으며, 이어서 1100℃에서 1시간 탄화하여 탄소/탄소 복합재를 제조하였다.After the molded article was manufactured under the same conditions as in Inventive Example 1, the molded article was placed in a fixture, and the fixture was put again in a Pyrex reactor, and heated at 5 ° C. per minute while blowing nitrogen gas at 240 ° C. at 420 ° C. After heat treatment for minutes, it cooled. Subsequently, the molded body was removed from the fixed jig and placed in a jig made of graphite, mounted on a hot press, heated to 5 ° C. per minute while maintaining an inert atmosphere, and heated at 550 ° C. at a pressure of 100 kg / cm 2 to be 72% of the original thickness. After 60 minutes and then cooled, and then carbonized at 1100 ℃ 1 hour to prepare a carbon / carbon composite material.
가열합축 후의 성형체의 밀도를 측정한 결과 1.54g/㎤이었으며, 탄화후의 밀도는 1.50g/㎤이었다.The density of the molded body after heat-consolidation was measured to be 1.54 g / cm 3 and the density after carbonization was 1.50 g / cm 3.
(비교예 2)(Comparative Example 2)
상기 발명예 3에 있어서, 가열압축단계에서 압축을 행하지 않고 단지 550℃에서 60분간 유지한 후, 1000℃에서 1시간 탄화하여 탄소/탄소 복합재를 제조하였다. 탄화후의 밀도는 1.27g/㎤이었다.In Inventive Example 3, the carbon / carbon composite material was prepared by carbonization at 1000 ° C. for 1 hour after holding at 550 ° C. for 60 minutes without performing compression in the heat compression step. The density after carbonization was 1.27 g / cm 3.
(비교예 3)(Comparative Example 3)
상기 발명예 3에 있어서, 성형체의 열처리단계를 거치지 않고 직접 핫프레스에서 발명예 3과 같은 조건으로 가열압축하였다. 냉각후 성형체는 층간 균열이 심하게 일어났다In Inventive Example 3, heat compression was performed under the same conditions as Inventive Example 3 in a direct hot press without undergoing a heat treatment step of the molded product. After cooling, the molded body had severe interlayer cracking.
상기한 바와같이, 본 발명의 방법에 의하면 폭넓은 범위의 연화점을 갖는 핏치를 별도의 전처리 과정없이 그대로 이용하는 간단한 방법으로 고밀도의 탄소/탄소 복합재를 제조할 수 있는 것이다.As described above, according to the method of the present invention, a high-density carbon / carbon composite material can be manufactured by a simple method using a pitch having a wide range of softening points as it is, without a separate pretreatment process.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930023757A KR970007019B1 (en) | 1993-11-09 | 1993-11-09 | Process for the preparation of carbon fiber reinforced carbon composite using pitch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019930023757A KR970007019B1 (en) | 1993-11-09 | 1993-11-09 | Process for the preparation of carbon fiber reinforced carbon composite using pitch |
Publications (2)
Publication Number | Publication Date |
---|---|
KR950013980A KR950013980A (en) | 1995-06-15 |
KR970007019B1 true KR970007019B1 (en) | 1997-05-02 |
Family
ID=19367691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019930023757A KR970007019B1 (en) | 1993-11-09 | 1993-11-09 | Process for the preparation of carbon fiber reinforced carbon composite using pitch |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR970007019B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR970042374A (en) * | 1995-12-30 | 1997-07-24 | 석진철 | Method for manufacturing primary carbides of carbon / carbon composites |
-
1993
- 1993-11-09 KR KR1019930023757A patent/KR970007019B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR950013980A (en) | 1995-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4986943A (en) | Method for oxidation stabilization of pitch-based matrices for carbon-carbon composites | |
EP0335736B1 (en) | Process for producing carbon/carbon composites | |
US5061414A (en) | Method of making carbon-carbon composites | |
CA2088383C (en) | A method of manufacturing parts made of ceramic matrix composite material | |
US4101354A (en) | Coating for fibrous carbon material in boron containing composites | |
JP2519042B2 (en) | Carbon-carbon composite material manufacturing method | |
JPH03150266A (en) | Production of carbon/carbon composite material | |
KR970007019B1 (en) | Process for the preparation of carbon fiber reinforced carbon composite using pitch | |
EP0803487B1 (en) | Process for producing carbonaceous preform | |
JP3058180B2 (en) | Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same | |
EP0656331B1 (en) | A method for preparing a carbon/carbon composite material | |
JPH08245273A (en) | Production of carbon fiber reinforced carbon composite material | |
JP2566555B2 (en) | Method for producing carbon fiber reinforced carbon composite material | |
JP4420371B2 (en) | Manufacturing method of screw member made of C / C material | |
KR940006433B1 (en) | Process for the preparation of carbon/carbon composite | |
JP2762461B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
JP3345437B2 (en) | Method for producing carbon fiber reinforced carbon composite | |
KR970008693B1 (en) | Process for the preparation of carbon composite material | |
KR950011212B1 (en) | Caron composite material for friction article | |
JPS6126563A (en) | Manufacture of oxidation-resistant carbon fiber reinforced carbon material | |
JPH0352426B2 (en) | ||
JP2000169250A (en) | Production of carbon fiber reinforced carbon composite material | |
JP3220983B2 (en) | Method for producing carbon fiber reinforced carbon material | |
JPH03197360A (en) | Production of carbon fiber-reinforced carbon material | |
KR960004374B1 (en) | Process for the preparation of composite materials of carbon/carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
J2X1 | Appeal (before the patent court) |
Free format text: APPEAL AGAINST DECISION TO DECLINE REFUSAL |
|
G160 | Decision to publish patent application | ||
G160 | Decision to publish patent application | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20000428 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |