JPH08245273A - Production of carbon fiber reinforced carbon composite material - Google Patents

Production of carbon fiber reinforced carbon composite material

Info

Publication number
JPH08245273A
JPH08245273A JP7074386A JP7438695A JPH08245273A JP H08245273 A JPH08245273 A JP H08245273A JP 7074386 A JP7074386 A JP 7074386A JP 7438695 A JP7438695 A JP 7438695A JP H08245273 A JPH08245273 A JP H08245273A
Authority
JP
Japan
Prior art keywords
composite
pitch
densification
impregnated
bulk density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7074386A
Other languages
Japanese (ja)
Inventor
Masayuki Hirabayashi
昌之 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP7074386A priority Critical patent/JPH08245273A/en
Publication of JPH08245273A publication Critical patent/JPH08245273A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE: To efficiently produce a high density and high strength carbon fiber reinforced carbon composite material. CONSTITUTION: A matrix binder is impregnated into carbon fibers, combined, molded and carbonized by firing in a nonoxidizing atmosphere to obtain a C/C composite as a base material. This C/C base material is densified through 1st and 2nd densifying processes. In the 1st process, pitch is impregnated into the base material and carbonized by firing at 800-1,200 deg.C in a nonoxidizing atmosphere and the impregnation-carbonization is repeated plural times so as to increase the bulk density of the resultant material to 1.1-1.5g/cc. In the 2nd process, a liq. thermosetting resin is impregnated, cured and carbonized by firing at 800-1,200 deg.C in a nonoxidizing atmosphere and the impregnation- curing-carbonization is repeated plural times so as to increase the bulk density of the resultant material to >=1.6g/cc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高密度で高強度、とく
に高度の層間剪断強度を備える炭素繊維強化炭素複合材
(以下「C/C」材という)の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon fiber reinforced carbon composite material (hereinafter referred to as "C / C" material) having a high density and a high strength, particularly a high interlaminar shear strength.

【0002】[0002]

【従来の技術】C/C材は、炭素繊維の複合化による卓
越した比強度、比弾性率を有するうえに炭素材特有の軽
量性と優れた耐熱性および化学的安定性を備えているた
め、航空・宇宙機用の構造材料をはじめホットプレス用
ダイス、高温炉用部材など高温苛酷な条件下で使用され
る用途分野で有用されている。このC/C材を製造する
代表的な技術としては、 (1)マトリックス結合材を含浸
した炭素繊維の織布を積層し、プレス等で所定形状に圧
縮成形したのちプリプレグ成形体を非酸化性雰囲気下で
焼成炭化処理する方法、 (2)マトリックス結合材に浸し
た炭素繊維のトウをフィラメントワインディング法で所
定形状に成形し、このプリプレグ成形体を同様に焼成炭
化処理する方法、 (3)炭素繊維のプリフォーム組織中に
CVD(化学的気相蒸着法)を用いて炭素を沈着させる
方法等が知られている。
2. Description of the Related Art C / C materials have excellent specific strength and specific elastic modulus due to the composite of carbon fibers, and also have the light weight characteristic of carbon materials and excellent heat resistance and chemical stability. , Structural materials for aviation and spacecraft, dies for hot pressing, members for high temperature furnaces, etc. Typical techniques for producing this C / C material are: (1) Lamination of carbon fiber woven fabric impregnated with a matrix binder, compression molding to a predetermined shape by pressing, etc., and then non-oxidizing the prepreg molded body. A method of calcining and carbonizing in an atmosphere, (2) a method of forming a tow of carbon fibers soaked in a matrix binder into a predetermined shape by a filament winding method, and calcining and carbonizing this prepreg molded body in the same manner, (3) carbon A method of depositing carbon in a preform structure of a fiber by using CVD (Chemical Vapor Deposition) is known.

【0003】このうち、 (3)のCVDを用いて複合化す
る方法は、大規模な気相反応装置を必要とするために大
型材の製造が困難となり、工業的手段としては実用性に
乏しい。これに対し、マトリックス結合材の複合炭化に
よる (1)および(2) の方法は装置上の制約が少なく、工
業的に有利な製造手段とされている。ところが、これら
の方法を採る場合には、圧縮成形時に相当量のマトリッ
クス結合材が外部に圧出したり、プリプレグ成形体を焼
成炭化する段階でマトリックス結合材に含まれる揮発成
分が揮散する等の現象が起こり、得られるC/C複合体
の材質組織は極めて低密度、低強度となる。このような
現象を補うため、C/C複合体の多孔組織に炭化性のフ
ェノール樹脂やフラン樹脂などのバインダー樹脂あるい
は石炭系や石油系のピッチを強制含浸したのち焼成する
二次的な緻密化処理が一般に行われている。
Of these, the method (3) for compounding using CVD requires a large-scale vapor phase reaction apparatus, which makes it difficult to manufacture large materials, and is not practical as an industrial means. . On the other hand, the methods (1) and (2) by the composite carbonization of the matrix binder are considered to be industrially advantageous manufacturing means because there are few restrictions on the equipment. However, when adopting these methods, a considerable amount of matrix binder is extruded to the outside during compression molding, or volatile components contained in the matrix binder are volatilized at the stage of firing and carbonizing the prepreg molded body. Occurs, the material structure of the obtained C / C composite has extremely low density and low strength. In order to compensate for such a phenomenon, secondary densification is carried out by forcibly impregnating the porous structure of the C / C composite with a binder resin such as a carbonizing phenol resin or furan resin, or a coal-based or petroleum-based pitch, and then firing. Processing is generally done.

【0004】例えば、特開平2−283666号公報に
は二次元乃至三次元に配向させたピッチ系の炭素繊維に
コールタールピッチ及び/又は石油系ピッチを含浸さ
せ、次いで含浸させた状態で炭化処理を施し、次いでこ
の処理材に2000〜3000℃で黒鉛化処理を施し、
次いで緻密化処理として、黒鉛化されたものに軟化点が
150〜250℃で実質的にキノリン不溶分を含まない
コールタールピッチ及び/又は石油系ピッチを含浸さ
せ、続いて炭化−黒鉛化処理を施す工程を所望の密度に
なるまで繰り返すC/C材の製造方法が、また特開平5
−139832号公報には軟化点が200〜300℃の
光学的等方性コールタールピッチを10〜60重量%含
む熱硬化性樹脂との混合物を炭素繊維に含浸させプリプ
レグをつくり、これを成形し次いで炭化処理を行って得
られた一次焼成体に、実質的にキノリン不溶分を含まず
軟化点が150〜250℃の高軟化点ピッチを含浸さ
せ、引き続き空気中で200〜350℃で不融化した
後、不活性雰囲気下で炭化−黒鉛化処理を行う工程を、
嵩密度が1.6g/cc以上になるまで繰り返す炭素材料の
製造方法が提案されている。
For example, in JP-A-2-283666, a pitch-based carbon fiber oriented two-dimensionally or three-dimensionally is impregnated with coal tar pitch and / or petroleum pitch, and then carbonized in the impregnated state. And then subjecting this treated material to a graphitization treatment at 2000 to 3000 ° C.,
Then, as a densification treatment, the graphitized material is impregnated with coal tar pitch and / or petroleum-based pitch having a softening point of 150 to 250 ° C. and substantially containing no quinoline insoluble matter, followed by carbonization-graphitization treatment. A method for producing a C / C material, in which the steps of applying are repeated until a desired density is obtained, is also disclosed in Japanese Patent Application Laid-Open No. Hei 5
No. 139832 discloses that carbon fiber is impregnated with a mixture of a thermosetting resin containing 10 to 60% by weight of an optically isotropic coal tar pitch having a softening point of 200 to 300 ° C. to form a prepreg, which is molded. Next, the primary fired body obtained by carrying out the carbonization treatment is impregnated with a high softening point pitch having a softening point of 150 to 250 ° C substantially containing no quinoline insoluble matter, and subsequently infusible at 200 to 350 ° C in air. After that, a step of performing carbonization-graphitization treatment under an inert atmosphere,
A method for producing a carbon material has been proposed which is repeated until the bulk density becomes 1.6 g / cc or more.

【0005】また、本出願人は炭素繊維を残炭率45%
以上の熱硬化性樹脂液からなるマトリックス結合材とと
もに複合成形したのち非酸化性雰囲気下で1400〜1
700℃の温度範囲により炭化処理して気孔率1%以下
の一次焼成体を形成し、該一次焼成体に残炭率45%以
上の熱硬化性樹脂液を含浸硬化し、ついで非酸化性雰囲
気下で2000℃以上の温度域で加熱処理するC/C材
の製造方法(特開平5−229868号公報)を開発、提案し
た。
In addition, the applicant of the present invention uses carbon fiber with a residual carbon rate of 45%.
After composite molding with the matrix binder composed of the above thermosetting resin liquid, 1400 to 1 in a non-oxidizing atmosphere.
Carbonization is performed in a temperature range of 700 ° C. to form a primary fired body having a porosity of 1% or less, and the primary fired body is impregnated with a thermosetting resin liquid having a residual carbon rate of 45% or more, and then cured in a non-oxidizing atmosphere. A method for producing a C / C material, which is heat-treated under a temperature range of 2000 ° C. or higher (JP-A-5-229868), has been developed and proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、C/C
材の複合性能はフィラーである炭素繊維とマトリックス
となるマトリックス結合材との結合力ばかりでなく基材
組織と緻密化処理により含浸する結合材との結合力にも
大きな影響を受け、ピッチを含浸して緻密化処理を行う
と炭素繊維間の接着力が増大し層間剪断強度が向上する
が異方性が発達するので、炭素六角網面の配向した面に
沿って亀裂が発生し易くなる。一方、熱硬化性樹脂液を
含浸して緻密化処理を施すと、ピッチ含浸に比べて炭素
繊維間の接着力が低下するため層間剪断強度が低くなる
うえ、組織が等方性となる関係で脆性破壊を起こし易く
なる欠点がある。
[Problems to be Solved by the Invention] However, C / C
The composite performance of the material is greatly affected not only by the bonding force between the carbon fiber that is the filler and the matrix binder that forms the matrix, but also by the bonding force between the base material structure and the binder that is impregnated by the densification treatment, impregnating the pitch. Then, the densification treatment increases the adhesive force between the carbon fibers and improves the interlaminar shear strength, but develops anisotropy, and thus cracks easily occur along the oriented surface of the carbon hexagonal mesh plane. On the other hand, when the thermosetting resin liquid is impregnated and subjected to a densification treatment, the adhesive strength between the carbon fibers is reduced as compared with the pitch impregnation, so that the interlaminar shear strength is reduced and the structure is isotropic. There is a drawback that brittle fracture is likely to occur.

【0007】また、ピッチと熱硬化性樹脂液とを混合し
て一次焼成体に含浸して緻密化する方法は、均一な混合
物の調製が難しいため粘度調整が困難であるばかりでな
く、焼成炭化時のピッチと熱硬化性樹脂の挙動が異なっ
て効果的な緻密化処理をすることができないという問題
点がある。
In the method of mixing pitch and thermosetting resin liquid and impregnating the primary fired body to densify it, not only is it difficult to adjust the viscosity because a uniform mixture is difficult to prepare, but also firing carbonization. There is a problem in that the pitch and the behavior of the thermosetting resin are different at the time and an effective densification treatment cannot be performed.

【0008】本発明者は、一次焼成体、すなわちC/C
複合体を緻密化する方法について検討を重ねた結果、先
にピッチを含浸して緻密化したのち、次いで熱硬化性樹
脂液により含浸緻密化する二段階処理を施すと、高密度
で材質強度の高いC/C材が得られることを見出した。
The present inventor has found that the primary fired body, that is, C / C
As a result of repeated studies on the method of densifying the composite, the pitch was first impregnated for densification, and then the two-step treatment of impregnating and densifying with a thermosetting resin liquid was performed, resulting in high density and high strength of the material. It has been found that a high C / C material can be obtained.

【0009】本発明は上記の知見に基づいて完成された
もので、その目的は、緻密化処理法を改良することによ
り高密度で層間剪断強度などの材質強度の高いC/C材
を能率よく、工業的に生産することのできる製造方法を
提供することにある。
The present invention has been completed based on the above findings, and its object is to improve the efficiency of a C / C material having a high density and a high material strength such as interlaminar shear strength by improving a densification treatment method. , To provide a manufacturing method that can be industrially produced.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めの本発明によるC/Cの製造方法は、炭素繊維にマト
リックス結合材を含浸して複合成形したのち非酸化性雰
囲気下で焼成炭化して得られたC/C複合体を基材と
し、該C/C基材にピッチを含浸し非酸化性雰囲気下8
00〜1200℃で焼成炭化する処理を複数回反復して
材質の嵩密度を1.1〜1.5g/ccにする第1緻密化工
程と、次いで熱硬化性樹脂液を含浸硬化し非酸化性雰囲
気下800〜1200℃で焼成炭化する処理を複数回反
復して材質の嵩密度を1.6g/cc以上にする第2緻密化
工程を、順次に施すことを構成上の特徴とする。
In order to achieve the above object, a method for producing C / C according to the present invention is such that carbon fiber is impregnated with a matrix binder to carry out composite molding, followed by firing carbonization in a non-oxidizing atmosphere. The C / C composite obtained as described above is used as a base material, and the C / C base material is impregnated with pitch under a non-oxidizing atmosphere.
The first densification step to make the bulk density of the material 1.1 to 1.5 g / cc by repeating the process of firing and carbonizing at 0 to 1200 ° C. a plurality of times, and then impregnating and hardening the thermosetting resin liquid to non-oxidize The constitutional feature is that a second densification step for sequentially increasing the bulk density of the material to 1.6 g / cc or more by sequentially repeating the process of firing and carbonizing at 800 to 1200 ° C. under a strong atmosphere is performed.

【0011】本発明において強化材となる炭素繊維とし
ては、ポリアクリロニトリル系、レーヨン系、ピッチ系
等の各種原料から製造された平織、朱子織、綾織などの
織布を一次元または多次元方向に配向した繊維体、フエ
ルト、トウが使用される。また、マトリックス結合材に
はフェノール系、フラン系など残炭率が50重量%以上
の熱硬化性樹脂液あるいは石炭系や石油系のピッチ等が
使用される。
In the present invention, as the carbon fiber to be the reinforcing material, plain weave, satin weave, twill weave and the like woven fabrics produced from various raw materials such as polyacrylonitrile type, rayon type and pitch type can be used in one-dimensional or multi-dimensional directions. Oriented fibrous bodies, felts and tows are used. Further, as the matrix binder, a thermosetting resin liquid having a residual carbon content of 50% by weight or more, such as phenol or furan, or coal or petroleum pitch is used.

【0012】炭素繊維はマトリックス結合材に浸漬また
は塗布することにより、炭素繊維にマトリックス結合材
を含浸し、その表面を結合材で充分に濡らしたのち半硬
化してプリプレグを形成し、ついで積層加圧成形して複
合成形体を作製する。なお、この複合段階においては、
炭素繊維量がC/C複合体とした場合の繊維体積含有率
(Vf)として50〜65%になるように予め設定すること
が強度確保の面から望ましい。
The carbon fiber is impregnated with the matrix binder by dipping or coating it in the matrix binder, and the surface of the carbon fiber is sufficiently wet with the binder and then semi-cured to form a prepreg. Pressure molding is performed to produce a composite molded body. In addition, in this compound stage,
Fiber volume content when carbon fiber amount is C / C composite
It is desirable to set (Vf) in advance so as to be 50 to 65% from the viewpoint of ensuring strength.

【0013】形成された複合成形体は、ついで非酸化性
雰囲気に保持された炭化炉中で焼成炭化することにより
C/C複合体が得られる。炭化炉としては、コークス粉
のような炭素質パッキング材で被包しながら焼成炭化す
る形式のリードハンマー炉や系内を窒素、アルゴン等の
非酸化性ガスで保持された電気炉等が用いられ、焼成炭
化は通常800℃以上の温度で行われる。
The formed composite compact is then fired and carbonized in a carbonization furnace maintained in a non-oxidizing atmosphere to obtain a C / C composite. As the carbonization furnace, there are used a lead hammer furnace of a type in which firing and carbonization are performed while being covered with a carbonaceous packing material such as coke powder, or an electric furnace in which the system is held by a non-oxidizing gas such as nitrogen or argon. The burning carbonization is usually performed at a temperature of 800 ° C. or higher.

【0014】本発明は、このようにして得られたC/C
複合体を基材として、このC/C基材に第1緻密化工程
および第2緻密化工程の2段階の緻密化処理を、順次に
施すことを特徴とするものであり、図1に本発明の緻密
化処理のフローシートを系統図に示した。
The present invention provides the C / C thus obtained.
The composite is used as a base material, and the C / C base material is sequentially subjected to a two-step densification treatment of a first densification step and a second densification step. The flow chart of the densification process of the invention is shown in the system diagram.

【0015】図1に示すように、第1緻密化工程はC/
C複合体の基材にピッチを含浸し非酸化性雰囲気下で8
00〜1200℃の温度に加熱して焼成炭化する処理を
基材材質の嵩密度が1.1〜1.5g/ccになるまで複数
回反復して施す工程であり、ピッチとしては石炭系や石
油系のピッチが用いられる。ピッチの含浸は例えば、C
/C複合体をピッチに浸漬し圧力5〜15Kg/cm2、温度
200〜350℃の加圧加熱下に強制含浸する方法で行
うことが好ましい。ピッチを含浸したC/C基材を窒
素、アルゴンなどの非酸化性雰囲気に保持された炭化炉
中800〜1200℃の温度に加熱処理して焼成炭化す
ることにより、含浸したピッチは炭化物に転化する。こ
の第1緻密化工程はC/C基材の嵩密度が1.1〜1.
5g/ccの範囲になるまで複数回反復して行うことが必要
である。嵩密度が1.5g/ccを越えると第2緻密化工程
で熱硬化性樹脂液を円滑に含浸することが困難となり、
一方、嵩密度が1.1g/ccを下回る場合にはピッチ含浸
による緻密化効果が不十分となり、炭素繊維間の接着力
が低下して層間剪断強度の向上を図ることが困難とな
る。
As shown in FIG. 1, the first densification step is C /
Pitch impregnate the base material of the C composite in a non-oxidizing atmosphere for 8
This is a step of repeatedly performing a process of heating and carbonizing by heating at a temperature of 00 to 1200 ° C. a plurality of times until the bulk density of the base material becomes 1.1 to 1.5 g / cc. Petroleum pitch is used. Impregnation of the pitch is, for example, C
The / C composite is preferably immersed in a pitch and forcedly impregnated under pressure and heating at a pressure of 5 to 15 kg / cm 2 and a temperature of 200 to 350 ° C. The C / C base material impregnated with pitch is heat-treated at a temperature of 800 to 1200 ° C. in a carbonization furnace held in a non-oxidizing atmosphere such as nitrogen or argon to be calcined and carbonized, whereby the impregnated pitch is converted into a carbide. To do. In the first densification step, the bulk density of the C / C base material is 1.1 to 1.
It is necessary to repeat it several times until it reaches the range of 5 g / cc. When the bulk density exceeds 1.5 g / cc, it becomes difficult to smoothly impregnate the thermosetting resin liquid in the second densification step,
On the other hand, when the bulk density is less than 1.1 g / cc, the effect of densification by pitch impregnation becomes insufficient, the adhesive force between the carbon fibers decreases, and it becomes difficult to improve the interlaminar shear strength.

【0016】上記の第1緻密化工程の処理を施したC/
C基材は、次いで図1に示した第2緻密化工程の処理を
施す。該第2緻密化工程は、熱硬化性樹脂液を含浸硬化
し非酸化性雰囲気下で800〜1200℃の温度に加熱
して焼成炭化する処理を基材材質の嵩密度が1.6g/cc
以上になるまで複数回反復して施す工程である。熱硬化
性樹脂液にはフェノール樹脂、フラン樹脂、エポキシ樹
脂などの初期縮合物が用いられ、第1緻密化工程の処理
を施したC/C基材に室温で熱硬化性樹脂液を5〜15
Kg/cm2の圧力で加圧含浸したのち、200〜300℃の
温度に加熱して樹脂を硬化し、次いで、窒素、アルゴン
などの非酸化性雰囲気に保持された炭化炉で800〜1
200℃の温度に加熱することにより樹脂を焼成炭化す
る。この第2緻密化工程は材質の嵩密度が1.6g/cc以
上になるまで反復して複数回行うことが必要である。嵩
密度が1.6g/cc未満では材質強度の向上が十分に果た
されないためである。
C / which has been subjected to the first densification step treatment
The C base material is then subjected to the treatment of the second densification step shown in FIG. The second densification step is a treatment in which a thermosetting resin liquid is impregnated and cured, and the mixture is heated to a temperature of 800 to 1200 ° C. in a non-oxidizing atmosphere and calcined and carbonized so that the bulk density of the base material is 1.6 g / cc.
This is a process of repeating the process a plurality of times until the above. An initial condensate such as a phenol resin, a furan resin, or an epoxy resin is used as the thermosetting resin liquid, and the thermosetting resin liquid is added to the C / C base material treated in the first densification step at room temperature. 15
After pressure impregnation at a pressure of Kg / cm 2 , the resin is cured by heating at a temperature of 200 to 300 ° C., then 800 to 1 in a carbonization furnace kept in a non-oxidizing atmosphere such as nitrogen or argon.
The resin is calcined and carbonized by heating to a temperature of 200 ° C. This second densification step needs to be repeated a plurality of times until the bulk density of the material reaches 1.6 g / cc or more. This is because if the bulk density is less than 1.6 g / cc, the material strength cannot be sufficiently improved.

【0017】この第1緻密化工程および第2緻密化工程
の処理を施したC/C材は、更に窒素、アルゴンなどの
非酸化性雰囲気下で2000℃以上の温度に加熱処理す
ることが好ましく、この加熱処理によりC/C材の材質
組織を一層強固なものとすることができる。なお、この
ようにして製造されたC/C材は、必要に応じて表面に
耐酸化コーティングを施すこともできる。
It is preferable that the C / C material subjected to the first densification step and the second densification step is further heat-treated at a temperature of 2000 ° C. or higher in a non-oxidizing atmosphere such as nitrogen or argon. By this heat treatment, the material structure of the C / C material can be further strengthened. The surface of the C / C material manufactured in this manner may be coated with an oxidation resistant coating, if necessary.

【0018】[0018]

【作用】本発明は、C/C材の緻密化処理をピッチを含
浸して焼成炭化する第1緻密化工程と、熱硬化性樹脂液
を含浸して焼成炭化する第2緻密化工程との2段階に分
けて順次に行い、各緻密化工程を特定の嵩密度になるま
で反復して複数回行う点に技術的な特徴がある。第1緻
密化工程としてピッチを含浸するのは一次焼成体の多孔
組織を充填し炭素繊維間の接着力を高めるためであり、
その結果層間剪断強度の増大を図ることができる。
According to the present invention, the C / C material is densified by the first densification step of impregnating pitch and firing carbonization, and the second densification step of impregnating thermosetting resin liquid and firing carbonization. It is technically characterized in that the densification process is carried out in two stages and is repeated a plurality of times until each densification process reaches a specific bulk density. The reason why the pitch is impregnated as the first densification step is to fill the porous structure of the primary fired body and enhance the adhesive force between the carbon fibers,
As a result, the interlaminar shear strength can be increased.

【0019】また、含浸したピッチは焼成炭化過程で1
μm 程度のポアを発生するが、第2緻密化工程で含浸す
る熱硬化性樹脂液によりこのポアが効果的に充填されて
緻密化するとともに材質強度の向上がもたらされる。
Further, the impregnated pitch is 1 in the firing carbonization process.
Although pores of about μm are generated, the thermosetting resin liquid impregnated in the second densification step effectively fills the pores and densifies them, and improves the material strength.

【0020】このように、含浸材として、第1緻密化工
程ではピッチを用い、第2緻密化工程では熱硬化性樹脂
液を用いることにより、各機能が相乗的に作用して、高
密度と優れた強度特性を備えるC/C材を効率よく製造
することが可能となる。
As described above, by using the pitch as the impregnating material in the first densification step and the thermosetting resin liquid in the second densification step, the respective functions act synergistically to achieve high density. It is possible to efficiently manufacture a C / C material having excellent strength characteristics.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。
Hereinafter, examples of the present invention will be described in comparison with comparative examples.

【0022】実施例1 (1)C/C複合体の作製:ポリアクリロニトリル系の平
織炭素繊維布〔東邦レーヨン(株)製、W6101 〕の表面
にマトリックス結合材としてフェノール樹脂初期縮合物
〔大日本インキ化学工業(株)製〕を塗布して十分に含
浸させ、48時間風乾してプリプレグシートを作製し
た。このプリプレグシートを16枚積層して200×1
00mmのモールドに入れ、110℃の温度に加熱しなが
ら20Kg/cm2の圧力で加圧して複合成形した。該複合成
形体を250℃の温度に加熱して完全に硬化した後、窒
素ガス雰囲気に保持された電気炉に移し5℃/hrの昇温
速度で1000℃に加熱して5hr保持し、焼成炭化する
ことによりC/C複合体を作製した。得られたC/C複
合体の繊維体積含有率(Vf)は60%、嵩密度は1.09
g/ccであった。
Example 1 (1) Preparation of C / C composite: polyacrylonitrile-based plain-woven carbon fiber cloth [W6101 manufactured by Toho Rayon Co., Ltd.] on the surface of a phenol resin initial condensate as a matrix binder [Dainippon Ink Chemical Industry Co., Ltd.] was applied and sufficiently impregnated, and air-dried for 48 hours to prepare a prepreg sheet. 200 x 1 by stacking 16 sheets of this prepreg sheet
The mixture was put into a mold of 00 mm and heated at a temperature of 110 ° C. and pressurized at a pressure of 20 kg / cm 2 to perform composite molding. After heating the composite molded body to a temperature of 250 ° C. to completely cure it, it is transferred to an electric furnace kept in a nitrogen gas atmosphere, heated to 1000 ° C. at a temperature rising rate of 5 ° C./hr, and held for 5 hrs, and baked. A carbon / carbon composite was produced by carbonization. The obtained C / C composite has a fiber volume content (Vf) of 60% and a bulk density of 1.09.
It was g / cc.

【0023】(2)第1緻密化工程:このC/C複合体を
石炭系ピッチ中に浸漬し、系内を7Kg/cm2の圧力に加圧
しながら240℃に加熱してピッチを含浸したのち、窒
素ガス雰囲気に保持された電気炉に入れ、10℃/hrの
昇温速度で1000℃の温度に加熱し、1時間保持して
焼成炭化処理した。この処理を3回反復することにより
嵩密度1.30g/ccのC/C複合体を得た。
(2) First densification step: This C / C composite was dipped in a coal-based pitch, and the pitch was impregnated by heating to 240 ° C. while applying a pressure of 7 kg / cm 2 to the system. After that, it was placed in an electric furnace maintained in a nitrogen gas atmosphere, heated to a temperature of 1000 ° C. at a temperature rising rate of 10 ° C./hr, and held for 1 hour for calcination and carbonization. By repeating this treatment three times, a C / C composite having a bulk density of 1.30 g / cc was obtained.

【0024】(3)第2緻密化工程:上記の第1緻密化工
程の処理を施したC/C複合体をフェノール樹脂初期縮
合物〔大日本インキ化学工業(株)製〕中に浸漬し、室
温で系内を7Kg/cm2に加圧してフェノール樹脂初期縮合
物を含浸したのち、250℃に加熱して樹脂を硬化し
た。次いで窒素ガス雰囲気に保持された電気炉に入れ、
5℃/hrの昇温速度で1000℃の温度に加熱し、1時
間保持して焼成炭化した。この処理を3回反復して行
い、嵩密度1.76g/ccのC/C材を得た。
(3) Second densification step: The C / C composite subjected to the treatment of the first densification step described above is dipped in a phenol resin initial condensate [manufactured by Dainippon Ink and Chemicals, Inc.]. At room temperature, the system was pressurized to 7 kg / cm 2 to impregnate the phenol resin initial condensate, and then heated to 250 ° C. to cure the resin. Then put in an electric furnace maintained in a nitrogen gas atmosphere,
It was heated to a temperature of 1000 ° C. at a temperature rising rate of 5 ° C./hr, held for 1 hour, and calcined and carbonized. This treatment was repeated 3 times to obtain a C / C material having a bulk density of 1.76 g / cc.

【0025】得られたC/C材は、更に窒素ガス雰囲気
に保持された電気炉中で10℃/hrの昇温速度により2
000℃の温度で加熱処理した。このようにして製造し
たC/C材の曲げ強度ならびに層間剪断強度を測定し
て、その結果を緻密化処理条件とともに表1に示した。
なお、曲げ強度および層間剪断強度の測定は下記によっ
た。
The obtained C / C material was further heated to 2 ° C. in an electric furnace kept in a nitrogen gas atmosphere at a temperature rising rate of 10 ° C./hr.
Heat treatment was performed at a temperature of 000 ° C. The bending strength and the interlaminar shear strength of the C / C material thus manufactured were measured, and the results are shown in Table 1 together with the densification treatment conditions.
The flexural strength and the interlaminar shear strength were measured as follows.

【0026】曲げ強度:長さ150mm、幅12.5mm、
厚さ4mmの試験片を支点間距離64mm、クロスヘッドス
ピード6mm/minの条件で3点曲げ試験を行った。なお、
その他の条件はASTM D790に準じた。 層間剪断強度:長さ40mm、幅6mm、厚さ4mmの試験片
を支点間距離20mm、クロスヘッドスピード1.25mm
/minの条件で測定した。なお、その他の条件はASTM
D2344−67のshort beam法に準じた。
Bending strength: length 150 mm, width 12.5 mm,
A test piece having a thickness of 4 mm was subjected to a three-point bending test under conditions of a fulcrum distance of 64 mm and a crosshead speed of 6 mm / min. In addition,
Other conditions were in accordance with ASTM D790. Interlaminar shear strength: length 40mm, width 6mm, thickness 4mm test piece distance between fulcrums 20mm, crosshead speed 1.25mm
It was measured under the condition of / min. Other conditions are ASTM
D2344-67 short beam method was applied.

【0027】実施例2 実施例1と同一の方法により作製したC/C複合体につ
いて、第1緻密化工程として実施例1と同一の方法によ
り石炭系ピッチを含浸し、焼成炭化する処理を4回反復
して嵩密度1.46g/ccのC/C複合体を得た。次い
で、第2緻密化工程としてフェノール樹脂初期縮合物に
代えてフラン樹脂初期縮合物〔住友デュレス(株)製〕
を用いた他は実施例1と同一の方法により、フラン樹脂
初期縮合物を含浸硬化し、焼成炭化した。この処理を3
回反復して嵩密度1.78g/ccのC/C材を得た。この
C/C材を実施例1と同一の方法により2000℃に加
熱処理してC/C材を製造し、実施例1と同一の方法で
曲げ強度ならびに層間剪断強度を測定して、その測定結
果を緻密化処理条件とともに表1に併載した。
Example 2 A C / C composite produced by the same method as in Example 1 was impregnated with coal-based pitch by the same method as in Example 1 as the first densification step, followed by treatment by calcining and carbonizing. Repeated times to obtain a C / C composite with a bulk density of 1.46 g / cc. Then, in the second densification step, a furan resin initial condensate is used instead of the phenol resin initial condensate [Sumitomo Durres Co., Ltd.].
In the same manner as in Example 1 except that was used, the furan resin initial condensate was impregnated and cured, and carbonized by firing. This process 3
Repeated times to obtain a C / C material having a bulk density of 1.78 g / cc. This C / C material was heated at 2000 ° C. by the same method as in Example 1 to produce a C / C material, and the bending strength and the interlaminar shear strength were measured by the same method as in Example 1, and the measurement was performed. The results are also shown in Table 1 together with the densification treatment conditions.

【0028】実施例3 C/C複合体の作製時に複合成形圧力を15Kg/cm2に変
えた他は実施例1と同一の方法によりC/C複合体を作
製した。得られたC/C複合体の嵩密度は1.08g/cc
であった。このC/C複合体について、第1緻密化工程
として実施例1と同一の方法により石炭系ピッチを含浸
し、焼成炭化する処理を3回反復して嵩密度1.14g/
ccにしたのち、第2緻密化工程として実施例1と同一の
方法によりフェノール樹脂初期縮合物を含浸硬化し、焼
成炭化する処理を3回反復して嵩密度1.76g/ccのC
/C材を得た。次いで実施例1と同一の方法により20
00℃に加熱処理してC/C材を製造し、実施例1と同
一の方法により曲げ強度ならびに層間剪断強度を測定し
て、その測定結果を緻密化処理条件とともに表1に併載
した。
Example 3 A C / C composite was prepared in the same manner as in Example 1 except that the composite molding pressure was changed to 15 kg / cm 2 when the C / C composite was prepared. The bulk density of the obtained C / C composite is 1.08 g / cc
Met. The C / C composite was impregnated with coal-based pitch by the same method as in Example 1 as the first densification step and calcined and carbonized, and the bulk density was 1.14 g /
After making cc, the second densification step was carried out by impregnating and curing the phenol resin initial condensate by the same method as in Example 1 and repeating the firing carbonization three times to obtain C having a bulk density of 1.76 g / cc.
/ C material was obtained. Then, using the same method as in Example 1, 20
C / C material was manufactured by heat treatment at 00 ° C., bending strength and interlaminar shear strength were measured by the same method as in Example 1, and the measurement results are also shown in Table 1 together with the densification treatment conditions.

【0029】比較例1 C/C複合体の作製時に複合成形圧力を10Kg/cm2に変
えた他は実施例1と同一の方法によりC/C複合体を作
製した。得られたC/C複合体の嵩密度は1.02g/cc
であった。このC/C複合体について、第1緻密化工程
として実施例1と同一の方法により石炭系ピッチを含浸
し、焼成炭化する処理を1回行って嵩密度を1.08g/
ccにしたのち、第2緻密化工程として実施例1と同一の
方法によりフェノール樹脂初期縮合物を含浸硬化し、焼
成炭化する処理を5回反復して嵩密度1.69g/ccのC
/C材を得た。次いで実施例1と同一の方法により20
00℃に加熱処理してC/C材を製造し、実施例1と同
一の方法により曲げ強度ならびに層間剪断強度を測定し
て、その測定結果を緻密化処理条件とともに表1に併載
した。
Comparative Example 1 A C / C composite was prepared in the same manner as in Example 1 except that the composite molding pressure was changed to 10 kg / cm 2 when the C / C composite was prepared. The bulk density of the obtained C / C composite is 1.02 g / cc
Met. The C / C composite was impregnated with coal-based pitch by the same method as in Example 1 as the first densification step and calcined and carbonized once to obtain a bulk density of 1.08 g /
After making cc, the process of impregnating and curing the initial condensation product of the phenol resin by the same method as in Example 1 as the second densification step and firing carbonization were repeated 5 times to obtain C having a bulk density of 1.69 g / cc.
/ C material was obtained. Then, using the same method as in Example 1, 20
C / C material was manufactured by heat treatment at 00 ° C., bending strength and interlaminar shear strength were measured by the same method as in Example 1, and the measurement results are also shown in Table 1 together with the densification treatment conditions.

【0030】比較例2 実施例1と同一の方法により作製したC/C複合体につ
いて、第1緻密化工程として実施例1と同一の方法によ
り石炭系ピッチを含浸し、焼成炭化する処理を5回反復
して嵩密度1.63g/ccのC/C複合体を得た。次い
で、第2緻密化工程として実施例1と同一の方法により
フェノール樹脂初期縮合物を含浸硬化し、焼成炭化する
処理を2回反復して嵩密度1.70g/ccのC/C材を製
造した。このC/C材を実施例1と同一の方法により2
000℃に加熱処理したのち、実施例1と同一の方法で
曲げ強度ならびに層間剪断強度を測定し、その測定結果
を緻密化処理条件とともに表1に併載した。
Comparative Example 2 A C / C composite produced by the same method as in Example 1 was impregnated with coal-based pitch by the same method as in Example 1 as the first densification step, and treated by firing and carbonization. Repeated times to obtain a C / C composite having a bulk density of 1.63 g / cc. Then, as a second densification step, a process of impregnating and curing a phenol resin initial condensate and calcining and carbonizing is repeated twice in the same manner as in Example 1 to produce a C / C material having a bulk density of 1.70 g / cc. did. This C / C material was made into 2 by the same method as in Example 1.
After heat treatment at 000 ° C., bending strength and interlaminar shear strength were measured by the same method as in Example 1, and the measurement results are also shown in Table 1 together with the densification treatment conditions.

【0031】比較例3 実施例1と同一の方法により作製したC/C複合体につ
いて、第1緻密化工程としてC/C複合体をフェノール
樹脂初期縮合物中に浸漬し、室温で系内を7Kg/cm2に加
圧してフェノール樹脂初期縮合物を含浸したのち、25
0℃に加熱して樹脂を硬化した。次いで窒素ガス雰囲気
に保持された電気炉に入れ、5℃/hrの昇温速度で10
00℃の温度に加熱し、1時間保持して焼成炭化した。
この処理を3回反復して行い、嵩密度を1.42g/ccと
し、次いで第2緻密化工程として石炭系ピッチ中に浸漬
し、系内を7Kg/cm2の圧力に加圧しながら240℃に加
熱してピッチを含浸した後、窒素ガス雰囲気に保持され
た電気炉に入れ、10℃/hrの昇温速度で1000℃の
温度に加熱し、1時間保持して焼成炭化処理した。この
処理を3回反復することにより嵩密度1.65g/ccのC
/C材を得た。このC/C材を実施例1と同一の方法に
より窒素ガス雰囲気に保持された電気炉中で10℃/hr
の昇温速度により2000℃の温度で加熱処理した。こ
のようにして製造したC/C材について、実施例1と同
一の方法により曲げ強度ならびに層間剪断強度を測定し
て、その測定結果を緻密化処理条件とともに表1に併載
した。
Comparative Example 3 With respect to the C / C composite prepared by the same method as in Example 1, the C / C composite was immersed in the phenol resin initial condensate in the first densification step, and the system was allowed to stand at room temperature. After pressurizing to 7 kg / cm 2 and impregnating the phenolic resin initial condensate, 25
The resin was cured by heating to 0 ° C. Then, it was placed in an electric furnace maintained in a nitrogen gas atmosphere and heated at a heating rate of 5 ° C./hr for 10
It was heated to a temperature of 00 ° C. and held for 1 hour for calcination and carbonization.
This treatment was repeated 3 times to obtain a bulk density of 1.42 g / cc, and then, as a second densification step, immersing the coal-based pitch in the system and applying a pressure of 7 Kg / cm 2 to the temperature of 240 ° C. After being heated to 1 to impregnate the pitch, it was placed in an electric furnace maintained in a nitrogen gas atmosphere, heated to a temperature of 1000 ° C. at a temperature rising rate of 10 ° C./hr, and held for 1 hour to perform a calcination carbonization treatment. By repeating this treatment three times, C having a bulk density of 1.65 g / cc was obtained.
/ C material was obtained. This C / C material was subjected to the same method as in Example 1 at 10 ° C./hr in an electric furnace maintained in a nitrogen gas atmosphere.
The heat treatment was carried out at a temperature of 2000 ° C. at a heating rate of. The bending strength and the interlaminar shear strength of the C / C material thus manufactured were measured by the same method as in Example 1, and the measurement results are also shown in Table 1 together with the densification treatment conditions.

【0032】比較例4 実施例1と同一の方法により作製したC/C複合体をフ
ェノール樹脂初期縮合物中に浸漬し、室温で系内を7Kg
/cm2に加圧してフェノール樹脂初期縮合物を含浸したの
ち、250℃に加熱して樹脂を硬化した。次いで、窒素
ガス雰囲気に保持した電気炉に入れ、5℃/hr の昇温速
度で2000℃に加熱して焼成炭化する処理を6回反復
して嵩密度1.70g/ccのC/C材を製造した。このよ
うにして製造したC/C材について、実施例1と同一の
方法により曲げ強度ならびに層間剪断強度を測定して、
その測定結果を緻密化処理条件とともに表2に示した。
Comparative Example 4 A C / C composite prepared by the same method as in Example 1 was immersed in a phenol resin initial condensate, and the inside of the system was heated to 7 kg at room temperature.
After the pressure was increased to / cm 2 to impregnate the phenol resin initial condensate, it was heated to 250 ° C. to cure the resin. Next, the C / C material with a bulk density of 1.70 g / cc was placed 6 times by placing it in an electric furnace maintained in a nitrogen gas atmosphere and heating it to 2000 ° C. at a temperature rising rate of 5 ° C./hr to calcinate and carbonize. Was manufactured. The bending strength and the interlaminar shear strength of the C / C material thus manufactured were measured by the same method as in Example 1,
The measurement results are shown in Table 2 together with the densification treatment conditions.

【0033】比較例5 フェノール樹脂初期縮合物に代えてフラン樹脂初期縮合
物を用いた他は、比較例4と同一の方法によりC/C複
合体にフラン樹脂初期縮合物を含浸硬化し、次いで焼成
炭化する処理を6回反復して、嵩密度1.73g/ccのC
/C材を製造した。得られたC/C材について、実施例
1と同一の方法により曲げ強度ならびに層間剪断強度を
測定して、その測定結果を緻密化処理条件とともに表2
に併載した。
Comparative Example 5 The C / C composite was impregnated and cured with the furan resin precondensate in the same manner as in Comparative Example 4 except that the furan resin precondensate was used in place of the phenol resin precondensate. The carbonization treatment by firing was repeated 6 times to obtain C having a bulk density of 1.73 g / cc.
/ C material was manufactured. The bending strength and the interlaminar shear strength of the obtained C / C material were measured by the same method as in Example 1, and the measurement results are shown in Table 2 together with the densification treatment conditions.
It was also published in.

【0034】比較例6 実施例1と同一の方法により作製したC/C複合体を石
油油ピッチ中に浸漬し、系内を7Kg/cm2の圧力に加圧し
ながら240℃に加熱してピッチを含浸したのち、窒素
ガス雰囲気に保持された電気炉に入れ、10℃/hrの昇
温速度で2000℃の温度に加熱し、1時間保持して焼
成炭化処理した。この処理を6回反復することにより嵩
密度1.65g/ccのC/C材を得た。このC/C材につ
いて、実施例1と同一の方法により曲げ強度ならびに層
間剪断強度を測定して、その測定結果を緻密化処理条件
とともに表2に併載した。
Comparative Example 6 A C / C composite prepared by the same method as in Example 1 was immersed in petroleum oil pitch and heated to 240 ° C. while pressurizing the inside of the system to a pressure of 7 kg / cm 2 to obtain a pitch. Was impregnated, then placed in an electric furnace maintained in a nitrogen gas atmosphere, heated to a temperature of 2000 ° C. at a temperature rising rate of 10 ° C./hr, and held for 1 hour to perform a calcination carbonization treatment. By repeating this treatment 6 times, a C / C material having a bulk density of 1.65 g / cc was obtained. The bending strength and the interlaminar shear strength of this C / C material were measured by the same method as in Example 1, and the measurement results are also shown in Table 2 together with the densification treatment conditions.

【0035】比較例7 石油系ピッチに代えて石炭系ピッチを用いた他は、比較
例6と同一の方法によりC/C複合体に石炭系ピッチを
含浸したのち、焼成炭化する処理を6回反復して嵩密度
1.68g/ccのC/C材を得た。得られたC/C材につ
いて、実施例1と同一の方法により曲げ強度ならびに層
間剪断強度を測定して、その測定結果を緻密化処理条件
とともに表2に併載した。
Comparative Example 7 A C / C composite was impregnated with coal-based pitch in the same manner as in Comparative Example 6 except that coal-based pitch was used instead of petroleum-based pitch, and then calcined and carbonized 6 times. Repeatedly, a C / C material having a bulk density of 1.68 g / cc was obtained. Bending strength and interlayer shear strength of the obtained C / C material were measured by the same method as in Example 1, and the measurement results are also shown in Table 2 together with the densification treatment conditions.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】表1、2の結果から、本発明の製造方法に
よるC/C材は比較例のC/C材に比べて嵩密度、強度
特性とも向上していることが判る。すなわち、第1緻密
化工程のピッチ含浸、焼成炭化処理による嵩密度が小さ
い比較例1はピッチによる緻密化が少ないために層間剪
断強度の低下が著しく、一方第1緻密化工程のピッチ含
浸、焼成炭化処理による嵩密度が高い比較例2では熱硬
化性樹脂液の含浸量が少ないために曲げ強度の低下が大
きいことが認められる。更に、第1緻密化工程で熱硬化
性樹脂液を含浸し、第2緻密化工程でピッチを含浸した
比較例3では曲げ強度、層間剪断強度とも低位にあるこ
とが明らかである。また、熱硬化性樹脂液のみによる緻
密化処理である比較例4、5では層間剪断強度が著しく
低く、一方ピッチのみにより緻密化処理した比較例6、
7は曲げ強度が著しく低位にあることが判明する。
From the results shown in Tables 1 and 2, it is understood that the C / C material produced by the manufacturing method of the present invention has improved bulk density and strength characteristics as compared with the C / C material of the comparative example. That is, in Comparative Example 1 in which the bulk density by the pitch impregnation and firing carbonization in the first densification step is small, the interlaminar shear strength is significantly reduced because the densification by the pitch is small, while the pitch impregnation and firing in the first densification step are performed. It is recognized that in Comparative Example 2 in which the bulk density due to the carbonization treatment is high, the bending strength is largely reduced because the amount of the thermosetting resin liquid impregnated is small. Furthermore, in Comparative Example 3 in which the thermosetting resin liquid was impregnated in the first densification step and the pitch was impregnated in the second densification step, it is clear that the bending strength and the interlaminar shear strength are low. Further, in Comparative Examples 4 and 5 which are densification treatments using only the thermosetting resin liquid, the interlaminar shear strength is remarkably low, while Comparative Example 6 in which the densification treatment is performed using only the pitch.
It was found that No. 7 had a significantly low bending strength.

【0039】[0039]

【発明の効果】以上のとおり、本発明によれば特定条件
下に第1緻密化工程および第2緻密化工程の2段階の緻
密化処理を施すことにより、高密度で曲げ強度および層
間剪断強度の優れたC/C材を効率よく製造することが
可能である。したがって、高性能のC/C材を工業的に
製造する方法として極めて有用である。
As described above, according to the present invention, the bending strength and the interlaminar shear strength can be increased at a high density by performing the two-step densification treatment of the first densification step and the second densification step under specific conditions. It is possible to efficiently manufacture the excellent C / C material. Therefore, it is extremely useful as a method for industrially producing a high performance C / C material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1緻密化工程および第2緻密化工程
のフローシートを示した系統図である。
FIG. 1 is a system diagram showing a flow sheet of a first densification step and a second densification step of the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 炭素繊維にマトリックス結合材を含浸し
て複合成形したのち非酸化性雰囲気下で焼成炭化して得
られたC/C複合体を基材とし、該C/C基材にピッチ
を含浸し非酸化性雰囲気下800〜1200℃で焼成炭
化する処理を複数回反復して材質の嵩密度を1.1〜
1.5g/ccにする第1緻密化工程と、次いで熱硬化性樹
脂液を含浸硬化し非酸化性雰囲気下800〜1200℃
で焼成炭化する処理を複数回反復して材質の嵩密度を
1.6g/cc以上にする第2緻密化工程を、順次に施すこ
とを特徴とする炭素繊維強化炭素複合材の製造方法。
1. A C / C composite obtained by impregnating a carbon fiber with a matrix binder to form a composite and then firing and carbonizing it in a non-oxidizing atmosphere is used as a base material, and the C / C base material is provided with a pitch. The treatment of impregnating and calcining at 800 to 1200 ° C. in a non-oxidizing atmosphere is repeated a plurality of times so that the bulk density of the material is 1.1 to
First densification step to 1.5g / cc, then impregnation and hardening with thermosetting resin liquid, 800-1200 ° C under non-oxidizing atmosphere
A method for producing a carbon fiber reinforced carbon composite material, which comprises sequentially performing a second densification step of making the bulk density of the material 1.6 g / cc or more by repeating the treatment for firing and carbonizing a plurality of times.
【請求項2】 請求項1において、第1緻密化工程と、
次いで第2緻密化工程を順次に施した後、非酸化性雰囲
気下2000℃以上の温度で加熱処理する炭素繊維強化
炭素複合材の製造方法。
2. The first densification step according to claim 1,
Next, a method for producing a carbon fiber reinforced carbon composite material, in which a second densification step is sequentially performed and then heat treatment is performed at a temperature of 2000 ° C. or higher in a non-oxidizing atmosphere.
JP7074386A 1995-03-07 1995-03-07 Production of carbon fiber reinforced carbon composite material Pending JPH08245273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7074386A JPH08245273A (en) 1995-03-07 1995-03-07 Production of carbon fiber reinforced carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7074386A JPH08245273A (en) 1995-03-07 1995-03-07 Production of carbon fiber reinforced carbon composite material

Publications (1)

Publication Number Publication Date
JPH08245273A true JPH08245273A (en) 1996-09-24

Family

ID=13545693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7074386A Pending JPH08245273A (en) 1995-03-07 1995-03-07 Production of carbon fiber reinforced carbon composite material

Country Status (1)

Country Link
JP (1) JPH08245273A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139382A (en) * 1999-11-05 2001-05-22 Nippon Carbon Co Ltd Method for manufacturing carbon fiber reinforced carbon material of which reactivity with silicon is suppressed
JP2006045442A (en) * 2004-08-09 2006-02-16 Toho Tenax Co Ltd Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material
KR101240112B1 (en) * 2010-08-04 2013-03-07 이비덴 가부시키가이샤 Carbon fiber structured body and method for manufacturing the same
CN114477147A (en) * 2022-03-02 2022-05-13 中国科学院苏州纳米技术与纳米仿生研究所 Post-treatment method for improving densification degree of carbon nanotube fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001139382A (en) * 1999-11-05 2001-05-22 Nippon Carbon Co Ltd Method for manufacturing carbon fiber reinforced carbon material of which reactivity with silicon is suppressed
JP2006045442A (en) * 2004-08-09 2006-02-16 Toho Tenax Co Ltd Preform for heat-resistant carbon fiber-reinforced composite material and method for producing heat-resistant carbon fiber-reinforced composite material
KR101240112B1 (en) * 2010-08-04 2013-03-07 이비덴 가부시키가이샤 Carbon fiber structured body and method for manufacturing the same
CN114477147A (en) * 2022-03-02 2022-05-13 中国科学院苏州纳米技术与纳米仿生研究所 Post-treatment method for improving densification degree of carbon nanotube fiber
CN114477147B (en) * 2022-03-02 2023-05-16 中国科学院苏州纳米技术与纳米仿生研究所 Post-treatment method for improving densification degree of carbon nano tube fibers

Similar Documents

Publication Publication Date Title
JP3096716B1 (en) Method for producing fiber-reinforced silicon carbide composite
US4178413A (en) Fiber reinforced carbon and graphite articles and a method of producing said articles
US5071700A (en) Carbon fiber-reinforced carbon composite material
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
EP0335736B1 (en) Process for producing carbon/carbon composites
US5061414A (en) Method of making carbon-carbon composites
CA2088383C (en) A method of manufacturing parts made of ceramic matrix composite material
JP2519042B2 (en) Carbon-carbon composite material manufacturing method
KR20000009035A (en) Ceramic-contained carbon-carbon composite material and process for producing the same
JPH03150266A (en) Production of carbon/carbon composite material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3829964B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JP3433473B2 (en) Carbon fiber reinforced carbon composite, method for producing the same and sliding material using the same
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP4356870B2 (en) C / C composite manufacturing method, rocket nozzle and re-entry capsule
JP3345437B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JP3957229B2 (en) Method for producing carbon fiber reinforced carbon composite material
JP2889878B2 (en) Pitch-based carbon fiber reinforced carbon composite and method for producing the same