JPH0352426B2 - - Google Patents

Info

Publication number
JPH0352426B2
JPH0352426B2 JP61081980A JP8198086A JPH0352426B2 JP H0352426 B2 JPH0352426 B2 JP H0352426B2 JP 61081980 A JP61081980 A JP 61081980A JP 8198086 A JP8198086 A JP 8198086A JP H0352426 B2 JPH0352426 B2 JP H0352426B2
Authority
JP
Japan
Prior art keywords
composite
pitches
carbon
carbonization
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61081980A
Other languages
Japanese (ja)
Other versions
JPS62241871A (en
Inventor
Masaki Shimada
Masaharu Takehara
Masaaki Tadokoro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Original Assignee
Shin Etsu Chemical Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd, Nippon Steel Corp filed Critical Shin Etsu Chemical Co Ltd
Priority to JP61081980A priority Critical patent/JPS62241871A/en
Publication of JPS62241871A publication Critical patent/JPS62241871A/en
Publication of JPH0352426B2 publication Critical patent/JPH0352426B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は炭素繊維強化炭素材料の製造法に関す
るものである。 従来の技術 炭素繊維強化炭素材料(以下、C/Cコンポジ
ツトという)は炭素繊維を補強材とし、炭素をマ
トリツクスとした複合材料である。C/Cコンポ
ジツトは炭素繊維で強化されているために従来の
炭素材料にくらべ常温、高温での機械的特性にま
さり、また摩擦・制動特性、熱・電気伝導性、耐
蝕性などもすぐれていることから、ロケツトノズ
ル、航空機のブレーキデイスクなどの宇宙航空機
部材として欠かせない材料となつている。このよ
うに応用範囲の広いC/Cコンポジツトの製造法
としては現在大別して2つの系統がある。 その1つはポリアクリロニトリルやレーヨンや
ピツチ系繊維を炭化して得られる炭素繊維のト
ウ、クロス、フエルトなどを簡単に成形した後、
炉に入れて1000〜1500℃に加熱し、そこへ炭化水
素ガスを導入して分解炭化させ、炭素を炭素繊維
表面に沈着せしめてC/Cコンポジツトとする方
法である(以下この方法をCVD法と称する)。
CVD法は生産性が低く所定の密度を得るには多
大な時間を要し、また均一な気孔の少ない炭素材
料を得るにはかなり高度な技術を要する。 他の1つはポリアクリロニトリルやレーヨンや
ピツチ系繊維を炭化して得られる炭素繊維のト
ウ、クロス、フエルトなどに、フエノール樹脂等
の炭素材原料となる熱硬化性樹脂を含浸させたプ
リプレグを積層し、加圧加熱し硬化成形体とした
後、非酸化性雰囲気で炭化処理をし、必要ならば
含浸処理、炭化処理を繰り返しC/Cコンポジツ
トとする方法である。 以上大別した2つの系統以外に、マトリツクス
として、ピツチ類も考えられる。しかし、ピツチ
類は、一旦液状となつてから炭化する為に、炭素
繊維のトウ、クロス、フエルト等とピツチ類を積
層した成形体を炭化すると、脹れを生ずる。つま
り、繊維間が広がり大きな空孔を生じて密度が低
くなり、その為C/Cコンポジツト自体の強度も
弱くなる。 したがつて、現在では、ピツチ類は含浸用とし
て、使用されている場合が多い。 発明が解決しようとする問題点 本発明の目的は、ピツチ類と炭素質粉末をマト
リツクスの構成原料として使用し、良好な特性を
示すC/Cコンポジツトを製造することにある。 問題点を解決するための手段 本発明の方法は、炭素繊維を含み、ピツチ類と
炭素質粉末をマトリツクスの構成原料とし、前記
のピツチ類と炭素質粉末の割合がピツチ類20〜95
重量%、炭素質粉末5〜80重量%である炭素材を
予め成形し、得られた成形体を金属、セラミツク
ス、黒鉛、C/Cコンポジツト等の板状体あるい
は型枠状等の固定材で固定することによつて脹れ
を抑えて炭化処理を施し、その後前記固定材を取
り外した後、常法により含浸処理、炭化処理、黒
鉛化処理を適宜施すことを特徴とするものであ
る。 作 用 次に本発明の内容をさらに詳細に説明する。 本発明に用いられる補強用の炭素繊維はポリア
クリロニトリル系、レーヨン系、ピツチ系のいず
れであつてもよく、また炭素質、黒鉛質のいずれ
であつてもよい。炭素繊維の形態は、長さ0.05〜
50mm程度の短繊維であつても、連続繊維であつて
も使用できる。またクロスやフエルト、マツトな
どシート状の形態であつてもよい。上記炭素繊維
は、マトリツクス中にそのままの状態で、または
解繊された状態で全くランダムな方向を向いてい
てもよいし、任意の特定の方向に向けて配列せし
められていてもよい。 また、マトリツクスとなる炭素材の原料は、含
浸ピツチ、バインダーピツチ等のピツチ類と、生
コークス、黒鉛粉末、カーボンブラツク等の炭素
質粉末を混合して使用する。好ましくは、ピツチ
と馴染がよく、炭化時の収縮率の近いピツチを炭
化し揮発分を調整した生コークスを使用する。ま
た、生コークスの揮発分は、炭化時にマトリツク
スが最もよく収縮するように、好ましくは3〜10
%とする。 かかる炭素繊維または炭素繊維の構造物と、前
記マトリツクスを積層もしくは混合したものを、
プレス成形等を行つて成形体とする。 前記成形材料において、炭素繊維または炭素繊
維構造物は20〜90重量%、好ましくは40〜80重量
%含有されていることが望ましい。 炭素繊維が20重量%未満では、得られるC/C
コンポジツトの補強繊維が少なすぎる為、強度が
低くなる。一方90重量%を越えた場合にはマトリ
ツクスの含有量が少なすぎる為、層間における剪
断強度が低下し、炭素繊維の補強効果が充分に発
揮されない。 また、マトリツクスを構成するピツチ類と炭素
質粉末の割合は、ピツチ類を20〜95重量%、炭素
質粉末を5〜80重量%とし揮発分率、粘度等を調
整する。 ピツチ類が少なく、20重量%未満では、粘度が
上がり成形が難しい。また、95重量%を越える
と、炭化時に粘度が下がつてマトリツクス材料の
流出が起こり層間強度が非常に弱くなる。より好
ましくは、ピツチ類を30〜70重量%含有させる。 前記成形体をそのまま炭化すると、ピツチ類が
液状になつた時点で熱分解による生成ガスが成形
体の脹れを引き起こすので、この成形体を金属、
セラミツクス、黒鉛、C/Cコンポジツト等の炭
化時の高温においても変形しない材料からなるた
とえば板状体あるいは型枠状の固定材をボルト等
を用いて固定した状態でそのまま炭化処理を行
う。成形体の全体を固定材で囲むと炭化時に生成
するガスの逃げ場がなくなるので、完全に成形体
の周囲を囲む必要はなく、少なくともガスを逃が
すための開口部あるいは開放部分に設けておくこ
とが肝要である。また炭素繊維とピツチ類と炭素
質粉末からなる炭素材の層とを積層するような場
合には、脹れが最も顕著に起こるのは、成形時の
加圧方向であるので、少なくとも成形加圧方向の
脹れを抑制するように固定することでもよい。成
形体が、板状体あるいは直方体のときには、板状
体の固定材を使用し、また成形体が、異形体のと
きには、予め形状をあわせた型枠状の固定材を使
用して固定する。例えば成形体が円柱状の物であ
れば、第1図の様な型枠状の固定材を、使用して
固定すればよい。 その後、固定材をボルト等を用いて固定した成
形体を窒素、アルゴン等の非酸化性雰囲気中600
℃以上、好ましくは、1000℃以上1500℃以下の温
度で炭化焼成して目的とするC/Cコンポジツト
を得る。この場合、炭化時の昇温速度が速すぎる
とマトリツクス材料の熱分解による収縮と、ガス
発生が激しくなり、大きな亀裂が発生しやすくな
る。その為昇温速度は、通常100℃/hr以下、好
ましくは20℃/hr以下とすることが望ましい。 このようにして得られたC/Cコンポジツト
は、いまだ気孔率がかなり大きく、高密度、高強
度のC/Cコンポジツトを得る為に、さらにこの
C/Cコンポジツトにピツチまたは炭化可能な樹
脂を含浸する含浸処理を施し、ふたたびアルゴン
等の非酸化性雰囲気中で炭化処理したり、アルゴ
ン等の非酸化性雰囲気中で通常1600〜3000℃、望
ましくは2000〜3000℃で黒鉛化処理する。 この含浸処理、炭化処理、黒鉛化処理はC/C
コンポジツトの使用目的特性に応じて適宜行うこ
とができる。 以下、実施例に従つて、本発明を説明する。 実施例 実施例 1 平均粒度10μm、軟化点240℃のピツチ50重量%
と、平均粒度10μmの生コークス(揮発分10%)
50重量%を、ニーダーを使用し270℃で混合し、
その後この混合物を100μm以下に粒度調整したも
のと、炭素繊維束クロス(朱子織り)120×120mm
を、交互に金型に25層積層し、温度300℃、圧力
100Kg/cm2でプレス成形し120×120×9tmmの板状
成形体を得た。 次にこの成形体1をステンレス板(160×160×
10tmm)の固定材2に挟み、ボルト3を使用して
第2図の様に固定した。 これを、窒素雰囲気中10℃/hrの昇温速度で
600℃まで昇温しマトリツクスを炭化した。次に、
固定材を取り外した後、窒素雰囲気中で3℃/hr
の昇温速度で1100℃まで昇温しC/Cコンポジツ
トを得た。さらに、このC/Cコンポジツトに、
含浸用ピツチを真空下、200℃で含浸した後、こ
の成形体を窒素雰囲気中にて10℃/hrの昇温速度
で850℃まで昇温し、含浸したピツチを完全に炭
化させた。続いて、このC/Cコンポジツトをア
ルゴン雰囲気中2000℃まで昇温し黒鉛化した。 この黒鉛化したC/Cコンポジツトに含浸用ピ
ツチを用い上記炭化工程をさらに2回と黒鉛化工
程を1回繰り返してC/Cコンポジツト製品を得
た。 得られたC/Cコンポジツト製品の密度、強度
の試験結果を表1に示す。密度は、縦、横、厚み
の実測長さと重量を測定し計算した。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for producing a carbon fiber reinforced carbon material. BACKGROUND ART A carbon fiber reinforced carbon material (hereinafter referred to as a C/C composite) is a composite material in which carbon fiber is used as a reinforcing material and carbon is used as a matrix. Because C/C composites are reinforced with carbon fiber, they have superior mechanical properties at room and high temperatures compared to conventional carbon materials, as well as superior friction and braking properties, thermal and electrical conductivity, and corrosion resistance. For this reason, it has become an indispensable material for spacecraft components such as rocket nozzles and aircraft brake discs. There are currently two main systems of manufacturing methods for C/C composites, which have a wide range of applications. One is to simply mold carbon fiber tow, cloth, felt, etc. obtained by carbonizing polyacrylonitrile, rayon, or pitch fiber.
This is a method in which the fibers are placed in a furnace and heated to 1000 to 1500°C, and hydrocarbon gas is introduced there to cause decomposition and carbonization, and carbon is deposited on the surface of the carbon fibers to form a C/C composite (hereinafter this method is referred to as the CVD method). ).
The CVD method has low productivity and requires a lot of time to obtain a desired density, and requires fairly advanced technology to obtain a uniform carbon material with few pores. The other is carbon fiber tow, cloth, felt, etc. obtained by carbonizing polyacrylonitrile, rayon, or pitch fiber, and prepreg impregnated with thermosetting resin, which is a raw material for carbon materials such as phenolic resin, is laminated. After applying pressure and heating to form a hardened molded body, carbonization treatment is performed in a non-oxidizing atmosphere, and if necessary, impregnation treatment and carbonization treatment are repeated to form a C/C composite. In addition to the two systems broadly classified above, the Pitsui family can also be considered as a matrix. However, since pitches are carbonized once they are in a liquid state, when a molded article in which pitches are laminated with carbon fiber tow, cloth, felt, etc. is carbonized, swelling occurs. In other words, the fibers spread out to form large pores, resulting in a lower density, and as a result, the strength of the C/C composite itself becomes weaker. Therefore, at present, pitches are often used for impregnation. Problems to be Solved by the Invention An object of the present invention is to produce a C/C composite exhibiting good properties by using pitches and carbonaceous powder as constituent raw materials for a matrix. Means for Solving the Problems The method of the present invention includes carbon fibers, pitches and carbonaceous powder are used as constituent raw materials of the matrix, and the ratio of the pitches and carbonaceous powder is 20 to 95% of the pitches.
A carbon material containing 5 to 80% by weight of carbonaceous powder is pre-molded, and the resulting molded body is molded with a fixing material such as a plate-shaped body or a formwork of metal, ceramics, graphite, C/C composite, etc. It is characterized in that it is carbonized by fixing to suppress swelling, and after the fixing material is removed, impregnation, carbonization, and graphitization are carried out as appropriate using conventional methods. Function Next, the content of the present invention will be explained in more detail. The reinforcing carbon fiber used in the present invention may be polyacrylonitrile-based, rayon-based, or pitch-based, and may also be carbonaceous or graphitic. The shape of carbon fiber is 0.05~
Either short fibers of about 50 mm or continuous fibers can be used. It may also be in the form of a sheet, such as cloth, felt, or mat. The carbon fibers may be oriented in completely random directions in the matrix as they are or in a defibrated state, or may be arranged in any specific direction. In addition, the raw material for the carbon material that becomes the matrix is a mixture of pitches such as impregnated pitch and binder pitch, and carbonaceous powder such as raw coke, graphite powder, and carbon black. Preferably, raw coke is used which is carbonized pitch and whose volatile content is adjusted because it is compatible with pitch and has a similar shrinkage rate during carbonization. In addition, the volatile content of the raw coke is preferably 3 to 10% so that the matrix shrinks best during carbonization.
%. A layered or mixed carbon fiber or carbon fiber structure and the matrix,
Press molding or the like is performed to form a molded body. In the molding material, it is desirable that the carbon fiber or carbon fiber structure is contained in an amount of 20 to 90% by weight, preferably 40 to 80% by weight. If the carbon fiber content is less than 20% by weight, the resulting C/C
There are too few reinforcing fibers in the composite, resulting in low strength. On the other hand, if it exceeds 90% by weight, the matrix content is too small, so the shear strength between the layers decreases, and the reinforcing effect of the carbon fibers is not sufficiently exerted. Further, the ratio of pitches and carbonaceous powder constituting the matrix is such that the pitches are 20 to 95% by weight and the carbonaceous powder is 5 to 80% by weight, and the volatile fraction, viscosity, etc. are adjusted. If the amount of piti is less than 20% by weight, the viscosity will increase and molding will be difficult. Moreover, if it exceeds 95% by weight, the viscosity decreases during carbonization and the matrix material flows out, resulting in a very weak interlaminar strength. More preferably, it contains 30 to 70% by weight of pithus. If the molded body is carbonized as it is, the gas produced by thermal decomposition will cause the molded body to swell when the pitches become liquid.
For example, a plate-shaped or mold-shaped fixing material made of a material such as ceramics, graphite, C/C composite, etc. that does not deform even at high temperatures during carbonization is fixed with bolts or the like, and the carbonization treatment is performed as it is. If the entire molded body is surrounded by a fixing material, there will be no place for the gas generated during carbonization to escape, so it is not necessary to completely surround the molded body, and it is recommended to provide at least an opening or an open part for gas to escape. It is essential. In addition, when laminating layers of carbon fibers, pitches, and carbonaceous powder, swelling occurs most noticeably in the direction of pressure during molding. It may be fixed so as to suppress directional swelling. When the molded body is a plate-shaped body or a rectangular parallelepiped, a plate-shaped body fixing material is used, and when the molded body is an odd-shaped body, a mold-shaped fixing material whose shape has been matched in advance is used to fix it. For example, if the molded object is cylindrical, it may be fixed using a frame-shaped fixing material as shown in FIG. After that, the molded body with the fixing material fixed using bolts etc. is placed in a non-oxidizing atmosphere such as nitrogen or argon for 600 minutes.
The desired C/C composite is obtained by carbonization and firing at a temperature of 1000°C or higher and 1500°C or lower. In this case, if the temperature increase rate during carbonization is too fast, the matrix material will shrink due to thermal decomposition and gas generation will be intense, making it easy for large cracks to occur. Therefore, it is desirable that the temperature increase rate is usually 100°C/hr or less, preferably 20°C/hr or less. The C/C composite thus obtained still has a fairly high porosity, and in order to obtain a high density, high strength C/C composite, this C/C composite is further impregnated with a pitch or carbonizable resin. Then, carbonization treatment is carried out again in a non-oxidizing atmosphere such as argon, or graphitization treatment is carried out in a non-oxidizing atmosphere such as argon, usually at a temperature of 1600 to 3000°C, preferably 2000 to 3000°C. This impregnation treatment, carbonization treatment, graphitization treatment is C/C
This can be carried out as appropriate depending on the characteristics of the intended use of the composite. The present invention will be described below with reference to Examples. Examples Example 1 50% by weight of pitch with an average particle size of 10 μm and a softening point of 240°C
and raw coke with an average particle size of 10 μm (volatile content 10%)
Mix 50% by weight at 270℃ using a kneader,
After that, the particle size of this mixture was adjusted to 100μm or less, and carbon fiber bundle cloth (satin weave) 120×120mm
25 layers are alternately stacked in a mold at a temperature of 300℃ and a pressure of
Press molding was performed at 100 Kg/cm 2 to obtain a plate-shaped molded product measuring 120×120×9 tmm. Next, this molded body 1 was placed on a stainless steel plate (160×160×
It was sandwiched between fixing materials 2 (10 tmm) and fixed using bolts 3 as shown in Figure 2. This was done at a heating rate of 10℃/hr in a nitrogen atmosphere.
The temperature was raised to 600°C to carbonize the matrix. next,
After removing the fixing material, heat at 3℃/hr in a nitrogen atmosphere.
The temperature was raised to 1100° C. at a heating rate of 1,100° C. to obtain a C/C composite. Furthermore, in this C/C composite,
After the pitch for impregnation was impregnated at 200°C under vacuum, the temperature of this molded body was raised to 850°C at a rate of 10°C/hr in a nitrogen atmosphere to completely carbonize the impregnated pitch. Subsequently, this C/C composite was heated to 2000° C. in an argon atmosphere to graphitize it. Using an impregnating pitch for this graphitized C/C composite, the above carbonization step was further repeated twice and the graphitization step was repeated once to obtain a C/C composite product. Table 1 shows the density and strength test results of the obtained C/C composite product. The density was calculated by measuring the length, width, thickness, and weight.

【表】 比較例 1 実施例1と同一条件で成形体を製造し、次にこ
の成形体を固定材で固定せずそのまま実施例1と
同一条件で炭化した。 実施例1と比較例1の炭化前後の密度を求め、
表2に示した。
[Table] Comparative Example 1 A molded body was produced under the same conditions as in Example 1, and then this molded body was carbonized under the same conditions as in Example 1 without being fixed with a fixing material. Determine the density before and after carbonization of Example 1 and Comparative Example 1,
It is shown in Table 2.

【表】 挟みこみをしなかつた比較例1は、脹れの為炭
化後密度が非常に低くなつている。これを実施例
1の場合と同様に、1.67g/cm3まで密度を上げる
には、数十回の含浸、炭化処理が必要となると推
定される。 発明の効果 以上のように本発明の方法によると現在ほとん
ど一般に製造されていないピツチをマトリツクス
とするC/Cコンポジツトを炭化時の脹れなしに
製造することができるようになつた。また、ピツ
チは炭化収率が高いため含浸工程が少なくても高
密度品を得ることができるので、製造工程が少な
くて済むと言う利点もある。 加えて、高強度で、耐熱性に優れた特徴を持つ
C/Cコンポジツト製品が得られる為、工程用途
に適用することが出来る。
[Table] Comparative Example 1, which was not sandwiched, had a very low density after carbonization due to swelling. As in the case of Example 1, it is estimated that dozens of impregnation and carbonization treatments are required to increase the density to 1.67 g/cm 3 . Effects of the Invention As described above, according to the method of the present invention, it has become possible to produce a C/C composite having pitch as a matrix, which is currently not generally produced, without swelling during carbonization. In addition, since pitch has a high carbonization yield, a high-density product can be obtained even with fewer impregnation steps, so it also has the advantage of requiring fewer manufacturing steps. In addition, since a C/C composite product with high strength and excellent heat resistance can be obtained, it can be applied to process applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、円柱状の成形体を固定する為の型枠
状の固定材の説明図で、1は平面図、2は側面図
である。第2図は、予め成形した炭素材(120×
120×9tmm)を、2枚のステンレス体(160×160
×10tmm)の固定材にて挟み、8組のボルトとナ
ツトにより固定する状況の説明図で、1は平面
図、2は側面図である。 1……成形体、2……固定材、3……ボルト。
FIG. 1 is an explanatory diagram of a frame-shaped fixing material for fixing a cylindrical molded body, and 1 is a plan view and 2 is a side view. Figure 2 shows the pre-formed carbon material (120×
120×9tmm) and two stainless steel bodies (160×160
1 is a plan view, and 2 is a side view. 1...Molded body, 2...Fixing material, 3...Bolt.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素繊維を含み、ピツチ類と炭素質粉末から
なり、前記のピツチ類と炭素質粉末の割合がピツ
チ類20〜95重量%、炭素質粉末5〜80重量%であ
る炭素材を予め成形し、得られた成形体を固定材
で固定したまま炭化処理を施し、その後前記固定
材を取り外した後、含浸処理、炭化処理、黒鉛化
処理を適宜施すことを特徴とする炭素繊維強化炭
素材料の製造法。
1. A carbon material containing carbon fibers and consisting of pitches and carbonaceous powder, in which the ratio of pitches and carbonaceous powder is 20 to 95% by weight of pitches and 5 to 80% by weight of carbonaceous powder is preformed. A carbon fiber-reinforced carbon material characterized in that the obtained molded body is carbonized while being fixed with a fixing material, and then after the fixing material is removed, impregnation treatment, carbonization treatment, and graphitization treatment are performed as appropriate. Manufacturing method.
JP61081980A 1986-04-11 1986-04-11 Manufacture of carbon fiber reinforced carbon material Granted JPS62241871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081980A JPS62241871A (en) 1986-04-11 1986-04-11 Manufacture of carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081980A JPS62241871A (en) 1986-04-11 1986-04-11 Manufacture of carbon fiber reinforced carbon material

Publications (2)

Publication Number Publication Date
JPS62241871A JPS62241871A (en) 1987-10-22
JPH0352426B2 true JPH0352426B2 (en) 1991-08-09

Family

ID=13761628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081980A Granted JPS62241871A (en) 1986-04-11 1986-04-11 Manufacture of carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPS62241871A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02129068A (en) * 1988-11-10 1990-05-17 Nippon Steel Chem Co Ltd Production of carbon-fiber reinforced carbon material
JPH09290474A (en) * 1996-04-26 1997-11-11 Nippon Oil Co Ltd Preparation of carbonaceous molded article

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110411A (en) * 1981-12-24 1983-07-01 Toho Rayon Co Ltd Manufacture of carbonaceous material
JPS5969410A (en) * 1982-10-13 1984-04-19 Nissan Motor Co Ltd Manufacture of composite carbon-carbon material
JPS6054270A (en) * 1983-08-31 1985-03-28 Sanyo Electric Co Ltd Soldering device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110411A (en) * 1981-12-24 1983-07-01 Toho Rayon Co Ltd Manufacture of carbonaceous material
JPS5969410A (en) * 1982-10-13 1984-04-19 Nissan Motor Co Ltd Manufacture of composite carbon-carbon material
JPS6054270A (en) * 1983-08-31 1985-03-28 Sanyo Electric Co Ltd Soldering device

Also Published As

Publication number Publication date
JPS62241871A (en) 1987-10-22

Similar Documents

Publication Publication Date Title
US5071700A (en) Carbon fiber-reinforced carbon composite material
US6699427B2 (en) Manufacture of carbon/carbon composites by hot pressing
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
US6432536B1 (en) Articles comprising highly crystalline graphite and method for their preparation
DE68916086T2 (en) Process for the production of carbon / carbon composites.
US20040155382A1 (en) Manufacture of carbon/carbon composites by hot pressing
JPH03150266A (en) Production of carbon/carbon composite material
JPH0352426B2 (en)
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
GB2112827A (en) Carbon fiber materials
JPH05306167A (en) Production of short fiber reinforced c/c composite
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
EP0656331B1 (en) A method for preparing a carbon/carbon composite material
JP4420371B2 (en) Manufacturing method of screw member made of C / C material
JP2665957B2 (en) Carbon fiber / carbon composite
KR970008693B1 (en) Process for the preparation of carbon composite material
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPH04284363A (en) Manufacture of carbon plate
JP2632955B2 (en) Manufacturing method of porous carbon plate
JPH01264967A (en) Production of graphite molding
JPH01275468A (en) Production of brake material comprising carbon fiber-reinforced carbon
JPS62212262A (en) Manufacture of carbon fiber reinforced carbon material
JPH051227B2 (en)
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production