JP2665957B2 - Carbon fiber / carbon composite - Google Patents

Carbon fiber / carbon composite

Info

Publication number
JP2665957B2
JP2665957B2 JP63288458A JP28845888A JP2665957B2 JP 2665957 B2 JP2665957 B2 JP 2665957B2 JP 63288458 A JP63288458 A JP 63288458A JP 28845888 A JP28845888 A JP 28845888A JP 2665957 B2 JP2665957 B2 JP 2665957B2
Authority
JP
Japan
Prior art keywords
carbon
carbon fiber
fiber
fibers
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63288458A
Other languages
Japanese (ja)
Other versions
JPH02133373A (en
Inventor
英彦 岩城
信吾 森本
武夫 植村
斉 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63288458A priority Critical patent/JP2665957B2/en
Publication of JPH02133373A publication Critical patent/JPH02133373A/en
Application granted granted Critical
Publication of JP2665957B2 publication Critical patent/JP2665957B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、炭素繊維/炭素複合材に関する。特に、気
相成長法炭素繊維と固相炭素化により得られる炭素繊維
の織布又は不織布を併用することにより、比強度が高
く、耐熱性、低熱膨張性等に優れた炭素繊維/炭素複合
材に関する。
The present invention relates to a carbon fiber / carbon composite. In particular, a carbon fiber / carbon composite material having high specific strength, excellent heat resistance, low thermal expansion properties, etc. by using a vapor-grown carbon fiber and a carbon fiber woven or nonwoven fabric obtained by solid-phase carbonization in combination. About.

[従来の技術] 炭素繊維/炭素複合材(以下C−C複合材という。)
は、比強度(強度/重量)、耐熱性、耐熱衝撃性に優
れ、熱膨張率も小さく、高い弾性率を有し、熱伝導率、
電気伝導率が共に高く、独特の優れた物性を有するとこ
ろから、航空機、ロケットなどの部品あるいは飛翔体の
外装材、耐食性、耐摩耗性を必要とする機械装置等の分
野に欠かせない材料として確固たる地位を築いている。
[Prior art] Carbon fiber / carbon composite material (hereinafter referred to as CC composite material)
Has excellent specific strength (strength / weight), excellent heat resistance and thermal shock resistance, small thermal expansion coefficient, high elastic modulus, thermal conductivity,
Because of its high electrical conductivity and excellent unique physical properties, it is an indispensable material for components such as aircraft and rockets, exterior materials for flying objects, and mechanical devices that require corrosion resistance and wear resistance. Has a solid position.

これら従来のC−C複合材は、多くの場合に固相炭素
化により得られた長繊維の炭素繊維を、織布として積層
したり、あるいは一旦短繊維にカットした後、不織布と
して積層したり、更にはこの織布と不織布を交互積層
し、これを樹脂等(ピッチ等を含む。以下同様とす
る。)と共に賦形したのち、不活性気体中で加熱炭化
し、その後更に複数回これに樹脂を含浸せしめ、炭化を
繰り返す等の方法によって得られたものである。
In these conventional CC composite materials, in many cases, long fibers obtained by solid-phase carbonization are laminated as a woven fabric, or once cut into short fibers and laminated as a nonwoven fabric. Further, the woven fabric and the non-woven fabric are alternately laminated, shaped with a resin or the like (including pitch, etc .; the same applies hereinafter), and then heated and carbonized in an inert gas, and then further repeated several times. It is obtained by a method of impregnating a resin and repeating carbonization.

これ以外に、化学気相析出法により熱分解炭素を炭素
繊維の周囲に沈着させる方法、あるいは熱可塑性樹脂
(ピッチ等を含む。)を結合材として炭素繊維を成形し
たものを熱間静水圧プレスで加圧下、焼成する方法等の
提案があるが、これらの方法は極めて高価になるため、
特殊なケースに使用されているにすぎない。
In addition, a method of depositing pyrolytic carbon around carbon fibers by a chemical vapor deposition method, or a method in which a carbon fiber is molded using a thermoplastic resin (including a pitch or the like) as a binder is subjected to hot isostatic pressing. There is a proposal of a method of baking under pressure, but since these methods are extremely expensive,
It is only used in special cases.

[発明が解決しようとする課題] ところで、従来一般に行なわれているC−C複合材の
製造法(炭素繊維を樹脂等で成形した後、焼成炭化する
方法)は、一段焼成程度では、得られるC−C複合材の
密度が低く、強度も低い欠点があった。
[Problems to be Solved by the Invention] By the way, the conventional method of producing a C-C composite material (a method of forming carbon fibers with a resin or the like, followed by firing and carbonizing) can be obtained by about one-step firing. There were drawbacks in that the density of the CC composite was low and the strength was low.

したがって、通常は焼成品を樹脂含浸(ピッチ含浸で
も可)後、焼成をする操作を数回繰り返すことを必要と
していた。この操作の繰り返し、回数の増加に伴って工
程が長くなり、コストもこれに比例して高くなっていく
ことになる。しかし、このように複数回の含浸、焼成を
行なっても、上記の方法では充分に密度が高くならず、
又強度も充分高くならない点に問題があり、これらの原
因の一つとして樹脂結合材の炭化歩留りが低いことに起
因しているとされていた。
Therefore, usually, it is necessary to repeat the operation of sintering several times after impregnating the fired product with the resin (pitch impregnation is also possible). As this operation is repeated and the number of times increases, the process becomes longer, and the cost also increases in proportion to this. However, even if the impregnation and firing are performed a plurality of times in this manner, the density is not sufficiently increased by the above method,
In addition, there is a problem that the strength is not sufficiently high, and it is said that one of the causes is that the carbonization yield of the resin binder is low.

この欠点を改善する手段として、いくつかの提案があ
るが、その一つとして気相成長法炭素繊維を樹脂等と共
に焼成する方法(特願昭63−168276号)があるが、この
方法によるときは、密度を高くし、耐熱性(熱伝導率、
熱膨張率、耐熱衝撃性など)の改善は成功しているが、
強度の面の改善は充分とは言えなかった。
There are several proposals for remedying this drawback. One of them is a method of firing carbon fiber grown by vapor deposition together with a resin (Japanese Patent Application No. 63-168276). Increases the density and the heat resistance (thermal conductivity,
Thermal expansion coefficient, thermal shock resistance, etc.)
The improvement in strength was not sufficient.

[課題を解決するための手段] 本願発明は、製作工程が短く(コストが安く)、かつ
機械的強度の高い炭素材料を目的として研究を行ない、
微細な気相成長法炭素繊維の不織布と、固相炭素化によ
り得られる炭素繊維の織布又は不織布の交互に積層し、
これらを有機結合材の炭化物で結合してなる炭素繊維/
炭素複合材がこの目的を達成することができることを見
出した。
[Means for Solving the Problems] The present invention has been studied for the purpose of a carbon material having a short manufacturing process (low cost) and high mechanical strength.
Non-woven fabric of fine vapor grown carbon fiber and woven or non-woven fabric of carbon fiber obtained by solid phase carbonization are alternately laminated,
A carbon fiber obtained by bonding these with a carbide of an organic binder /
It has been found that carbon composites can achieve this purpose.

すなわち、機械的強度の優れている固相炭素化により
得られる炭素繊維(例えばPAN系炭素繊維)とC−C複
合材の密度を高く出来る気相成長法炭素繊維を組み合わ
せると、短い製作工程で密度を高くでき、かつ機械的強
度の優れたC−C複合材が原理的には製造できることに
なるが、PAN系繊維は長繊維であり、本質的に短繊維で
ある気相成長法炭素繊維とは簡単にはブレンドできな
い。PAN系炭素繊維を切断して短繊維としても、機械的
切断では気相成長法炭素繊維ほどの短繊維とすることが
できず、繊維の太さの差のみならず繊維長にも大きな差
があるので、均一に混合することは困難である。
In other words, when carbon fibers (for example, PAN-based carbon fibers) obtained by solid-phase carbonization having excellent mechanical strength are combined with vapor-grown carbon fibers that can increase the density of the CC composite material, a short manufacturing process is possible. In principle, a C-C composite material having a high density and excellent mechanical strength can be manufactured. However, PAN-based fibers are long fibers, and are vapor-grown carbon fibers which are essentially short fibers. Cannot be blended easily. Even when PAN-based carbon fibers are cut into short fibers, mechanical cutting cannot produce short fibers as large as vapor grown carbon fibers, and there is a large difference not only in fiber thickness but also in fiber length. Therefore, it is difficult to mix them uniformly.

この両者の組み合わせの仕方を種々検討した結果、そ
れぞれの繊維を一旦シート状とし、それを積層し、更に
この積層物を有機結合材の炭化物で結合させることによ
って、優れたC−C複合材が得られることが分かった。
As a result of various studies on the combination of the two, as a result, the respective fibers are once made into a sheet form, laminated, and further bonded by the carbide of the organic binder, whereby an excellent CC composite material is obtained. It turned out to be obtained.

この場合に使用する気相成長法炭素繊維は、通常得ら
れる微細なもの、例えば太さ0.05〜1μm、長さ1mm以
下のものであり、充填量は最終のC−C複合材の要求さ
れる性質により異なり、密度の高いものであれば多い配
合を、強度の高いもののときは固相炭素化により得られ
る炭素繊維の割合を多くする変更が必要であるが、通常
はC−C複合材の1〜20重量%程度の充填が好ましい。
The vapor grown carbon fiber used in this case is a fine one usually obtained, for example, one having a thickness of 0.05 to 1 μm and a length of 1 mm or less, and the filling amount is required for the final CC composite material. Depending on the properties, it is necessary to change the proportion of the carbon fiber obtained by solid-phase carbonization to increase the blending if the density is high and to increase the proportion of the carbon fiber obtained by solid-phase carbonization if the strength is high. A filling of about 1 to 20% by weight is preferred.

この微細な気相成長法炭素繊維そのまま、あるいはこ
れにフェノール樹脂、フラン樹脂、エポキシ樹脂、ポリ
エステル樹脂等の樹脂を炭素繊維の2〜20重量%添加混
合し、加圧しながら上記添加樹脂の硬化温度まで加熱
し、シート状とする。この際のシートの目的は、通常は
10〜100g/m2になるが、この範囲以外の目付になっても
製作上問題となるものではない。
A resin such as phenol resin, furan resin, epoxy resin, or polyester resin is added to the fine vapor grown carbon fiber as it is, or 2 to 20% by weight of the carbon fiber is added and mixed. Until it becomes a sheet. The purpose of the sheet in this case is usually
Although it becomes 10-100 g / m 2 , even if the basis weight is out of this range, there is no problem in production.

また、固相炭素化により得られる炭素繊維としてはPA
N系、ピッチ系、繊維素系など各種の炭素繊維が使用で
きる。この炭素繊維は織布でも不織布でもよいが、好ま
しくは気相成長法炭素繊維が細くて短いので、この組み
合わせた特徴を生かそうとするときは不織布のほうが良
い。この場合の織布あるいは不織布は市販品そのままで
も使用できる。使用量は最終複合体の1〜20重量%程度
である。
In addition, carbon fibers obtained by solid-phase carbonization include PA
Various carbon fibers such as N-based, pitch-based, and fibrous-based can be used. The carbon fiber may be a woven or non-woven fabric, but the vapor-grown carbon fiber is preferably thin and short, and therefore, the non-woven fabric is preferred in order to take advantage of this combined characteristic. The woven or nonwoven fabric in this case can be used as it is as a commercial product. The amount used is of the order of 1 to 20% by weight of the final composite.

上記の繊維シートを交互に積層し、密度0.03〜0.5位
に圧縮し、樹脂等に含浸し、ついで窒素等の不活性雰囲
気中で800〜1200℃に焼成・炭化する。この場合、樹脂
等の炭化率は樹脂の種類によっても異なるが50%程度で
あり、一回だけの浸漬ではそのポアを埋め切れないの
で、樹脂等に含浸、不活性雰囲気中での焼成・炭化を繰
り返す。得られた炭素塊を2000℃以上、特に2500℃前後
に熱処理すると、熱収縮により見掛け密度の高いC−C
複合体が得られる。
The above fiber sheets are alternately laminated, compressed to a density of about 0.03 to 0.5, impregnated with a resin or the like, and then fired and carbonized at 800 to 1200 ° C. in an inert atmosphere such as nitrogen. In this case, the carbonization rate of the resin and the like varies depending on the type of the resin, but is about 50%. Since the pores cannot be completely filled by only one dipping, the resin is impregnated with the resin, and the carbonization is performed in an inert atmosphere. repeat. When the obtained carbon mass is heat-treated at 2,000 ° C. or more, especially around 2500 ° C., it has a high apparent density CC due to heat shrinkage.
A complex is obtained.

[作 用] 本発明のC−C複合材は従来の技術では多数回の焼成
によっても達成できなかった高密度製品を少数回の焼成
で達成できるだけでなく、同密度の製品を得るために
は、従来方法に比してより少ない回数の焼成でこれを達
成できることはもちろんである。また、従来のC−C複
合材が高強度製品を必要とする場合には、多数回の焼成
により高密度製品とする必要があったが、本発明のC−
C複合材は従来方法より低密度の製品で同じ強度の製品
を得ることができるため、製品の用途によっては同じ品
質の製品が極めて少数回の焼成、すなわち極めて低コス
トで同品質の製品が得られることになる。
[Operation] The C-C composite material of the present invention can not only achieve a high-density product that could not be achieved by a large number of firings with the conventional technology but also achieve a product of the same density with a small number of firings. Of course, this can be achieved with a smaller number of firings than in the conventional method. When the conventional C-C composite material requires a high-strength product, it has been necessary to obtain a high-density product by firing many times.
The C-composite can obtain a product of the same strength with a lower density product than the conventional method. Therefore, depending on the application of the product, a product of the same quality can be baked very few times, that is, a product of the same quality can be obtained at a very low cost. Will be done.

なお、シート化したものを交互積層する利点は、単に
両者の特徴を生かして、強度が強く、高密度のC−C複
合材が得られるというだけでなく、次のような利点があ
る。
The advantage of alternately laminating the sheets is not only that a strong and high-density C-C composite material can be obtained by simply utilizing the characteristics of both, but also has the following advantages.

第1に、PAN系等の炭素繊維と気相法炭素繊維の混合
比率を任意にかつ正確にコントロールできる。
First, it is possible to arbitrarily and accurately control the mixing ratio of PAN-based carbon fiber and vapor grown carbon fiber.

第2に、PAN系等の炭素繊維は繊維径が太く、繊維間
の空間が多いが、気相法炭素繊維は細いので、その空間
を埋めて、繊維密度を上げることができる。
Secondly, PAN-based carbon fibers have a large fiber diameter and many spaces between fibers, but vapor-grown carbon fibers are thin, so that the spaces can be filled and the fiber density can be increased.

[実施例] (実施例1) 旭化成(株)製フィブリルポリアクリロニトリル繊維
30g(カシミロンA104)、長さ10mmをヘンシエルミキサ
ーにて5分間解砕後、気相成長法炭素繊維(径0.2〜0.5
μm、長さ約100μm)を170g混合後、200℃、圧力1Kg/
cm2で圧接し、シート化した。このものの目付は30g/m2
であった。
[Example] (Example 1) Fibril polyacrylonitrile fiber manufactured by Asahi Kasei Corporation
After crushing 30 g (Cashmilon A104), length 10 mm with a Hensiel mixer for 5 minutes, vapor grown carbon fiber (diameter 0.2 to 0.5)
μm, length about 100μm), and after mixing 170g, 200 ℃, pressure 1kg /
The sheet was pressed into a sheet with a pressure of 2 cm 2 . The basis weight of this is 30g / m 2
Met.

PAN系炭素繊維の短繊維をマット状にしたもの(東レ
(株)製B0−050、目付50g/m2)と上記気相法炭素繊維
シートを交互積層し、圧縮して見掛け密度0.3の縦、
横、高さそれぞれ10cm立方体としたものにコールタール
ピッチ(新日本製鉄化学(株)製IP−90)を含浸し板状
に成型した。成型品を1000℃で焼成し、さらにコールタ
ールピッチの含浸・焼成を4回繰り返した後、2500℃で
熱処理してC−C複合材を得た。
A PAN-based carbon fiber short fiber in a mat shape (B0-050, manufactured by Toray Industries, Inc., weight: 50 g / m 2 ) and the vapor-grown carbon fiber sheet are alternately laminated, and compressed to obtain a vertical density of 0.3. ,
A cube having a width of 10 cm and a height of 10 cm was impregnated with coal tar pitch (IP-90 manufactured by Nippon Steel Corporation) and molded into a plate shape. The molded product was fired at 1000 ° C., and the impregnation and firing of the coal tar pitch were repeated four times, followed by heat treatment at 2500 ° C. to obtain a CC composite material.

(実施例2) 実施例1と同様に試作した気相法炭素繊維シート(た
だし目付は50g/m2)とPAN系炭素繊維の織布(東レ
(株)製#6341)を交互積層したものにフェノール樹脂
(昭和高分子(株)製BRL−120Z)を含浸し、加圧加熱
成型した。成型品を焼成し、更にコールタールピッチの
含浸・焼成を4回繰り返した後2500℃で熱処理してC−
C複合材を得た。
(Example 2) A vapor-grown carbon fiber sheet (produced by 50 g / m 2 ) and a PAN-based carbon fiber woven fabric (# 6341 manufactured by Toray Industries, Inc.) alternately laminated in the same manner as in Example 1 Was impregnated with a phenolic resin (BRL-120Z, manufactured by Showa Polymer Co., Ltd.) and molded by heating under pressure. The molded product is fired, and the impregnation and firing of coal tar pitch is repeated four times, and then heat-treated at 2500 ° C.
C composite was obtained.

(比較例1) 太さ0.2〜0.5μm、長さ1mm以下(10μm〜1mm)の気
相成長法炭化水素にフェノール樹脂2重量%を添加し、
見掛け密度0.3のブロックを作り、これにコールタール
ピッチ(新日本製鉄化学(株)製、IP−90)を含浸し、
1000℃で焼成、更にピッチ含浸、焼成を含み4回繰り返
した後、2500℃で熱処理してC−C複合材を得た。
(Comparative Example 1) 2% by weight of a phenol resin was added to a vapor-grown hydrocarbon having a thickness of 0.2 to 0.5 µm and a length of 1 mm or less (10 µm to 1 mm),
Make a block with an apparent density of 0.3, impregnate it with coal tar pitch (IP-90, manufactured by Nippon Steel Chemical Co., Ltd.)
The process was repeated four times including firing at 1000 ° C., pitch impregnation, and firing, and then heat-treated at 2500 ° C. to obtain a CC composite material.

(比較例2) PAN系炭素繊維マット(東レ(株)製BO−050)を見掛
け密度0.3に積層したものにコールタールピッチを含浸
し、ブロック状に成型した。成型品を焼成した後、コー
ルタールピッチの含浸・焼成を合計6回繰り返した後、
2500℃で熱処理してC−C複合材を得た。
(Comparative Example 2) A PAN-based carbon fiber mat (BO-050, manufactured by Toray Industries, Inc.) was laminated at an apparent density of 0.3, impregnated with coal tar pitch, and molded into a block shape. After firing the molded product, the impregnation and firing of coal tar pitch was repeated a total of 6 times,
Heat treatment was performed at 2500 ° C. to obtain a CC composite material.

上記、実施例・比較例で試作したC−C複合材の物性
測定結果を表−1に示す。
Table 1 shows the measurement results of the physical properties of the CC composite materials experimentally manufactured in the above-described Examples and Comparative Examples.

[発明の効果] 高強度の炭素繊維と気相法炭素繊維を組み合わせるこ
とにより、短い工程で高密度であり高強度のC−C複合
材を得ることができる。
[Effect of the Invention] By combining a high-strength carbon fiber and a vapor-grown carbon fiber, a high-density and high-strength C-C composite material can be obtained in a short process.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】微細な気相成長法炭素繊維の不織布と、固
相炭素化により得られる炭素繊維の織布又は不織布を交
互積層し、これらを有機結合材の炭化物で結合してなる
炭素繊維/炭素複合材。
1. A carbon fiber obtained by alternately laminating a nonwoven fabric of fine vapor-grown carbon fibers and a woven or nonwoven fabric of carbon fibers obtained by solidification of carbon, and bonding these with a carbide of an organic binder. / Carbon composite.
【請求項2】微細な気相成長法炭素繊維が直径0.05〜1
μm、長さ1mm以下であることを特徴とする特許請求の
範囲第1項の炭素繊維/炭素複合材。
2. The method according to claim 1, wherein the fine carbon fibers have a diameter of 0.05-1.
2. The carbon fiber / carbon composite material according to claim 1, wherein the carbon fiber / carbon composite material has a length of 1 μm or less.
JP63288458A 1988-11-14 1988-11-14 Carbon fiber / carbon composite Expired - Lifetime JP2665957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288458A JP2665957B2 (en) 1988-11-14 1988-11-14 Carbon fiber / carbon composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288458A JP2665957B2 (en) 1988-11-14 1988-11-14 Carbon fiber / carbon composite

Publications (2)

Publication Number Publication Date
JPH02133373A JPH02133373A (en) 1990-05-22
JP2665957B2 true JP2665957B2 (en) 1997-10-22

Family

ID=17730470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288458A Expired - Lifetime JP2665957B2 (en) 1988-11-14 1988-11-14 Carbon fiber / carbon composite

Country Status (1)

Country Link
JP (1) JP2665957B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2282827A (en) * 1993-10-07 1995-04-19 Rolls Royce Plc A method of manufacturing a fibre reinforced composite component
JP2002020179A (en) * 2000-06-28 2002-01-23 Mitsubishi Pencil Co Ltd Combined carbon-molded body and its manufacturing method
JP2002307867A (en) * 2001-04-18 2002-10-23 Dainippon Printing Co Ltd Slip with label

Also Published As

Publication number Publication date
JPH02133373A (en) 1990-05-22

Similar Documents

Publication Publication Date Title
US4983451A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
US5217657A (en) Method of making carbon-carbon composites
JPS6256103B2 (en)
CN1260747A (en) Carbon-carbon parts having filamentized fiber substrates and method of producing same
EP0335736B1 (en) Process for producing carbon/carbon composites
JPH11505205A (en) Fast molding process for fiber preforms and structural composites
US5061414A (en) Method of making carbon-carbon composites
JP2665957B2 (en) Carbon fiber / carbon composite
JPH03150266A (en) Production of carbon/carbon composite material
JP2571251B2 (en) Carbon fiber reinforced carbon composite material for friction material
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JP2019043099A (en) Carbon fiber sheet laminate and manufacturing method therefor
JPH0347348B2 (en)
JPH03109266A (en) Carbon fiber reinforced carbon composite material
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3560768B2 (en) Method for producing carbon-based wet friction material
JPH052625B2 (en)
JP2889878B2 (en) Pitch-based carbon fiber reinforced carbon composite and method for producing the same
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH0551257A (en) Production of carbon fiber reinforced carbon material
JPS61122162A (en) Manufacture of carbon fiber reinforced carbon material
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JPH0352426B2 (en)
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080627

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090627

Year of fee payment: 12