JP3220983B2 - Method for producing carbon fiber reinforced carbon material - Google Patents

Method for producing carbon fiber reinforced carbon material

Info

Publication number
JP3220983B2
JP3220983B2 JP17454890A JP17454890A JP3220983B2 JP 3220983 B2 JP3220983 B2 JP 3220983B2 JP 17454890 A JP17454890 A JP 17454890A JP 17454890 A JP17454890 A JP 17454890A JP 3220983 B2 JP3220983 B2 JP 3220983B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber reinforced
temperature
carbon material
pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17454890A
Other languages
Japanese (ja)
Other versions
JPH0465358A (en
Inventor
勲 持田
隆次 藤浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17454890A priority Critical patent/JP3220983B2/en
Priority to US07/724,892 priority patent/US5205888A/en
Publication of JPH0465358A publication Critical patent/JPH0465358A/en
Application granted granted Critical
Publication of JP3220983B2 publication Critical patent/JP3220983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐熱性、耐薬品性、耐摩耗性、軽量性など
の優れた物性を有する高強度の炭素繊維強化炭素材料の
製造法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a high-strength carbon fiber reinforced carbon material having excellent physical properties such as heat resistance, chemical resistance, abrasion resistance and light weight. .

(従来の技術) プリプレグを用いて炭素繊維強化炭素材料を製造する
方法は、樹脂含浸炭化法とCVD法に大別され、多くの改
良法が提案されている(特開昭53−4011、特公昭58−90
70、特公昭58−48485、特開昭58−79806、特開昭62−21
2263等)。
(Prior Art) Methods of producing carbon fiber reinforced carbon materials using prepregs are roughly classified into a resin impregnated carbonization method and a CVD method, and many improved methods have been proposed (Japanese Patent Application Laid-Open No. 53-4011, Kosho 58-90
70, JP-B-58-48485, JP-A-58-79806, JP-A-62-21
2263).

樹脂含浸炭化法においては、炭素繊維強化炭素材料の
マトリックスとなる炭素原料として、フラン樹脂、フェ
ノール樹脂などの熱硬化性樹脂や、主としてピッチで代
表されるような熱可塑性樹脂が用いられている。この製
造プロセスには、強化剤(骨材)としての炭素繊維集合
体にこれらの樹脂を含浸し、加熱、硬化させてプリプレ
グを作り、このプリプレグを積層したものを不活性雰囲
気下、約1000℃で熱処理してマトリックス樹脂を炭素化
する方法が広く行われている。
In the resin impregnation carbonization method, a thermosetting resin such as a furan resin or a phenol resin or a thermoplastic resin represented mainly by pitch is used as a carbon raw material serving as a matrix of a carbon fiber reinforced carbon material. In this manufacturing process, a carbon fiber aggregate as a reinforcing agent (aggregate) is impregnated with these resins, heated and cured to form a prepreg, and the prepreg is laminated at about 1000 ° C. in an inert atmosphere. A method of carbonizing a matrix resin by heat treatment is widely used.

この樹脂含浸炭化法では、樹脂(ピッチを含む)が溶
融炭化する温度領域において極めて緩慢な昇温速度を必
要とし、また樹脂の炭化収率が40〜60%と低く、揮発留
分による空隙が生成するため樹脂の再含浸、炭化、圧縮
を繰り返すという煩雑な二次処理を必要とするなどの問
題がある。
In this resin impregnation carbonization method, an extremely slow heating rate is required in a temperature region where the resin (including pitch) is molten and carbonized, and the carbonization yield of the resin is as low as 40 to 60%. There is a problem that a complicated secondary treatment such as re-impregnation, carbonization and compression of the resin is repeated to generate the resin.

一方CVD法は、マトリックス原料としてメタン、プロ
パンなどのような低炭素数炭化水素とアルゴンなどの不
活性気体をCVD装置に導入して、減圧下で約800〜1500℃
で反応させた炭素を直接蒸着させる方法である。CVD法
はこのように熱分解炭素を直接基材上に気相で沈着させ
るため、緻密で均質なマトリックスを作りあげることが
できるが、装置コストが高く、長時間を要するので、生
産性や経済性の面から極めて不利である。このため通常
は、樹脂含浸炭化法と組み合わせて、二次的な緻密化処
理に用いられることが多い。
On the other hand, in the CVD method, low-carbon hydrocarbons such as methane and propane and an inert gas such as argon are introduced into a CVD apparatus as a matrix material, and the pressure is reduced to about 800 to 1500 ° C.
This is a method of directly depositing the carbon reacted in the above. Since the CVD method deposits pyrolytic carbon directly on the substrate in the gas phase, a dense and homogeneous matrix can be created. This is extremely disadvantageous in terms of aspects. For this reason, usually it is often used for secondary densification treatment in combination with the resin impregnation carbonization method.

(発明が解決しようとする問題点) 炭素繊維とマトリックスとを複合化する炭素/炭素複
合材料の製造プロセスは複雑である。すなわち上記の従
来技術による炭素繊維強化炭素材料の製造法では、緻密
性を付与するために、CVD処理や樹脂の再含浸、焼成の
繰り返し等による煩雑な後処理が必要であり、極めて高
価となる。このため現状ではその用途が限られており、
広範な分野での利用の妨げとなっている。
(Problems to be Solved by the Invention) The manufacturing process of a carbon / carbon composite material that combines a carbon fiber and a matrix is complicated. That is, in the method for producing a carbon fiber reinforced carbon material according to the above-described conventional technology, in order to impart denseness, a complicated post-treatment such as repetition of CVD treatment or resin re-impregnation and firing is required, and it is extremely expensive. . For this reason, its use is currently limited,
It hinders its use in a wide range of fields.

本発明の目的は、耐熱性、耐薬品性、耐摩耗性、軽量
性などの優れた特性を有する高強度の炭化繊維強化炭素
材料を、簡単な手法により、短時間で製造する方法を提
供することである。
An object of the present invention is to provide a method for producing a high-strength carbonized fiber reinforced carbon material having excellent properties such as heat resistance, chemical resistance, abrasion resistance, and light weight by a simple method in a short time. That is.

(問題点を解決するための手段) 発明者等は、メソフェースピッチの特性に着目し、上
記目的を達成すべく鋭意検討した結果、含浸性が高く、
炭化収率の高いメスフェースピッチをマトリックスに用
いれば、加熱処理により高い粘着性が得られ、バインダ
ーを用いることなく、簡便な方法で高性能の炭素繊維強
化炭素材料が得られることを見出し、本発明に至った。
(Means for Solving the Problems) The inventors paid attention to the characteristics of the mesoface pitch, and as a result of intensive studies to achieve the above object, as a result, the impregnation was high.
Using a female face pitch with a high carbonization yield for the matrix, high tackiness was obtained by heat treatment, and it was found that a high-performance carbon fiber reinforced carbon material could be obtained by a simple method without using a binder. Invented the invention.

すなわち本発明は、炭素繊維集合体を用いた複数のプ
リプレグが積層されてなる炭素繊維強化炭素材料を製造
するに際し、炭素繊維集合体に軟化点350℃以下で粘度
が80ポイズになる温度が400℃以下であり600℃における
炭化収率が70%以上であるメソフェースピッチを溶融含
浸させて予備加熱処理したプリプレグを積層し、プレス
したのち焼成することを特徴とする炭素繊維強化炭素材
料である。
That is, the present invention, when producing a carbon fiber reinforced carbon material obtained by laminating a plurality of prepregs using a carbon fiber aggregate, the temperature at which the viscosity becomes 80 poise at the softening point 350 ° C. or less in the carbon fiber aggregate is 400 A carbon fiber reinforced carbon material characterized by laminating a prepreg pre-heat treated by melting and impregnating a mesoface pitch having a carbonization yield of not less than 70 ° C and a carbonization yield of 70% or more at 600 ° C, followed by pressing and firing. .

本発明において使用される炭素繊維集合体には、PAN
系、ピッチ系等の種々の炭素繊維からのものが用いられ
る。この炭素繊維集合体としては、一方向繊維、二次元
織布、および不織布シートの何れでも良く、またこれら
を組み合わせたものでも良く、用途や要求特性に応じて
決定される。強化材としてこの炭素繊維集合体は、一般
に酸化処理等の表面処理を行って用いることが好まし
い。
The carbon fiber aggregate used in the present invention includes PAN
A variety of carbon fibers such as a carbon fiber and a pitch fiber are used. The carbon fiber aggregate may be any one of a unidirectional fiber, a two-dimensional woven fabric, and a nonwoven fabric sheet, or may be a combination thereof, and is determined according to the use and required characteristics. In general, it is preferable to use the carbon fiber aggregate as a reinforcing material after performing a surface treatment such as an oxidation treatment.

マトリックスとして用いられるメソフェースピッチ
は、偏光顕微鏡による光学的異方性相が少なくとも80%
以上、好ましくは90%以上、更に好ましくは実質的に10
0%あることが望ましい。このメソフェースピッチは炭
素繊維集合体に対して含浸性を有することが必要であ
り、含浸性は炭素繊維集合体の形状等により異なるが、
一般に軟化点の低いピッチほど含浸性が高く、本発明に
おけるメソフェースピッチの軟化点は350℃以下、好ま
しくは300℃以下である。またこのピッチは粘度が80ポ
イズになる温度が400℃以下である必要がある。なおこ
の軟化点は差動走査型熱量計、粘度はフローテスターで
測定される。軟化点および粘度が80ポイズになる温度が
これらの数値より高い温度のメソフェースピッチを用い
る場合には、流動性が低く含浸性が低下するため緻密で
均質なマトリックスができず、強度の高い炭素材料が得
られない。
The mesoface pitch used as the matrix must be at least 80% optically anisotropic by polarization microscopy
Or more, preferably 90% or more, more preferably substantially 10% or more.
Desirably, it is 0%. This mesoface pitch needs to have impregnating properties for the carbon fiber aggregate, and the impregnation varies depending on the shape of the carbon fiber aggregate, etc.
Generally, a pitch having a lower softening point has a higher impregnation property, and the softening point of the mesoface pitch in the present invention is 350 ° C. or lower, preferably 300 ° C. or lower. The pitch must have a temperature of 400 ° C. or less at which the viscosity becomes 80 poise. The softening point is measured by a differential scanning calorimeter, and the viscosity is measured by a flow tester. When a mesoface pitch having a temperature at which the softening point and the viscosity become 80 poise is higher than these values is used, the fluidity is low and the impregnating property is reduced, so that a dense and homogeneous matrix cannot be formed, and the high strength carbon No material available.

更に本発明に用いられるメソフェースピッチは70%以
上、好ましくは80%以上の炭化収率を有するものが用い
られる。この炭化収率は600℃の温度に不活性気流中で
徐々に昇温し2時間程度保持した時の炭化収率である。
炭化収率の低いメソフェースピッチを用いた場合には、
製品中に揮発留分による空隙が生成し易く、得られる炭
素繊維強化炭素材料の強度が低下する。
The mesoface pitch used in the present invention has a carbonization yield of 70% or more, preferably 80% or more. The carbonization yield is the carbonization yield when gradually raising the temperature to 600 ° C. in an inert gas stream and maintaining the temperature for about 2 hours.
When using low mesophase pitch with low carbonization yield,
Voids are easily generated in the product due to volatile fractions, and the strength of the obtained carbon fiber reinforced carbon material is reduced.

これらの条件を満足するメソフェースピッチの一例と
して、特開平1−13621号、特開平1−254796号および
特願平1−309842号に記載されているメソフェースピッ
チが好適である。このメソフェースピッチは、縮合多環
芳香族炭化水素をHF−BF3の存在下で重合して得られる
ピッチであり、高い炭化収率が得られ、軟化点が低く20
0〜350℃で良好な含浸性を示す。
As an example of a mesoface pitch that satisfies these conditions, the mesoface pitch described in JP-A-1-13621, JP-A-1-254796 and Japanese Patent Application No. 1-309842 is preferable. The mesophase pitch is a pitch obtained by condensed polycyclic aromatic hydrocarbons and polymerized in the presence of HF-BF 3, to obtain a high carbonization yield, softening point lower 20
It shows good impregnation at 0-350 ° C.

このメソフェースピッチを、軟化点よりも高い温度、
例えば200〜390℃に加熱溶融して炭化繊維集合体に含浸
させる。なお含浸量を適度に調節するために、含浸性に
必要に応じて過剰のピッチを絞り取る操作が行われる。
This mesoface pitch is set at a temperature higher than the softening point,
For example, it is heated and melted at 200 to 390 ° C. to impregnate the carbonized fiber aggregate. In order to appropriately adjust the impregnation amount, an operation of squeezing out an excessive pitch as necessary for the impregnation property is performed.

こうして得られたピッチ含浸炭素繊維集合体を次に予
備加熱処理する。予備加熱処理は、繊維間に浸み込んだ
メソフェースピッチが完全に炭化しない範囲において、
粘着性を失わない程度の、且つ炭化収率を一層向上でき
るような適度の加熱条件を選択する必要がある。この予
備加熱処理条件はメソフェースピッチの性状や含浸率な
どにより異なるが、一般に非酸化性雰囲気下に2〜10℃
/minの昇温速度で350〜490℃まで短時間加熱することが
行われる。予備加熱処理における圧力は特に制限が無
く、常圧、加圧あるいは減圧下の何れでも良い。
The pitch impregnated carbon fiber aggregate thus obtained is then subjected to a preheating treatment. The pre-heating treatment is to the extent that the mesoface pitch soaked between the fibers is not completely carbonized,
It is necessary to select appropriate heating conditions that do not lose the tackiness and that can further improve the carbonization yield. The preheating conditions vary depending on the properties of the mesoface pitch, the impregnation ratio, etc., but are generally 2 to 10 ° C. in a non-oxidizing atmosphere.
Short-time heating to 350 to 490 ° C. at a heating rate of / min is performed. The pressure in the preheating treatment is not particularly limited, and may be normal pressure, increased pressure, or reduced pressure.

予備加熱処理が不十分であると、次の積層炭化工程に
おいて揮発ガスによる膨張や発泡が起こり易くなり、高
性能の炭素材料が得られない。しかしながら予備加熱処
理工程の途中あるいは終了直前に、少量の空気を吹き込
むことによる酸化処理を行えば、これらの膨張や発泡を
抑制することができる。また予備加熱処理時の僅かな膨
張については、予備加熱処理工程の途中でロールまたは
プレスによって高充填化することにより、粘着性を失う
ことなく緻密化することができる。
If the preheating treatment is insufficient, expansion and foaming due to volatile gas are likely to occur in the next lamination carbonization step, and a high-performance carbon material cannot be obtained. However, if the oxidation treatment is performed by blowing a small amount of air during or immediately before the preheating treatment step, these expansion and foaming can be suppressed. Further, with respect to a slight expansion during the preheating treatment, it is possible to densify without losing the adhesiveness by performing high filling by a roll or a press during the preheating treatment step.

一方、過度の予備加熱処理は、プリプレグの融着性を
妨害し、積層剥離の原因となり易く、所望の強度を持つ
炭素繊維強化炭素材料が得られ無い場合がある。すなわ
ち予備加熱処理を適度に行うことによって、メソフェー
スピッチの粘着性を保持しつつ、炭化工程で発生するガ
スを極力除外することができ、一回の焼成で、高密度、
高強度の炭素繊維強化炭素材料を得ることができる。
On the other hand, excessive preheating treatment hinders the fusibility of the prepreg, which is likely to cause delamination, and a carbon fiber reinforced carbon material having a desired strength may not be obtained. That is, by appropriately performing the preheating treatment, the gas generated in the carbonization step can be excluded as much as possible while maintaining the adhesiveness of the mesoface pitch, and a single baking can provide a high density,
A high-strength carbon fiber reinforced carbon material can be obtained.

次にこの粘着性を維持したプリプレグを積層しプレス
する。この際バインダーは不要であり、積層体の形状に
ついては、目的、用途、要求される性能に応じて、板
状、円筒状等の所望の形状に自由に選択することができ
る。プレスは強化材の炭素繊維の組織が破壊されず、初
期の強度を失わない圧力範囲で行う必要がある。なおプ
レス工程は非酸化性雰囲気下、常温でも高い強度の炭素
材料を得ることができるが、必要に応じて300〜600℃程
度に昇温すれば更に炭素材料の強度を向上させることが
できる。
Next, the prepregs maintaining the adhesiveness are laminated and pressed. At this time, no binder is required, and the shape of the laminate can be freely selected to a desired shape such as a plate shape or a cylindrical shape according to the purpose, application, and required performance. The pressing needs to be performed in a pressure range where the carbon fiber structure of the reinforcing material is not destroyed and the initial strength is not lost. In the pressing step, a high-strength carbon material can be obtained at room temperature in a non-oxidizing atmosphere. However, if necessary, the strength of the carbon material can be further improved by raising the temperature to about 300 to 600 ° C.

プレスして得られた積層体を引続き焼成することによ
って、所望の炭素繊維強化炭素材料が製造される。焼成
工程は非酸化性雰囲気下、積層体を600〜1500℃の温度
に加熱し炭化することによって行われるが、更にこの炭
化物を2000〜3000℃の温度に加熱して黒鉛化する工程を
含めることもできる。
The desired carbon fiber reinforced carbon material is manufactured by successively firing the laminate obtained by pressing. The firing step is performed by heating the laminate to a temperature of 600 to 1500 ° C. and carbonizing under a non-oxidizing atmosphere, and further includes a step of heating the carbide to a temperature of 2000 to 3000 ° C. to graphitize. Can also.

(発明の効果) 本発明においてはマトリックスの原料として、炭化、
黒鉛化が容易で炭化収率が高いメソフェースピッチを使
用するので、短時間で焼成が達成されると共に、一回の
焼成のみで十分な高密度が得られる。また含浸性の高い
メソフェースピッチを用いて本発明の予備加熱処理を行
うことにより高粘着性が得られるので特にバインダーは
不要である。更にメソフェースピッチに由来するマトリ
ックスは、光学的異方性組織を有し、高緻密質で高純度
であるため、高強度の炭素繊維強化炭素材料が得られ
る。
(Effects of the Invention) In the present invention, carbonization,
Since a mesoface pitch which is easy to graphitize and has a high carbonization yield is used, sintering can be achieved in a short time, and a sufficient high density can be obtained by only one sintering. Further, by performing the preheating treatment of the present invention using a mesoface pitch having a high impregnation property, a high tackiness can be obtained, so that a binder is not particularly required. Further, the matrix derived from the mesoface pitch has an optically anisotropic structure, and is highly dense and highly pure, so that a high-strength carbon fiber reinforced carbon material can be obtained.

本発明によれば、耐熱性、耐薬品性、耐摩耗性、軽量
性などの優れた物性を持つ高密度かつ高強度の炭素繊維
強化炭素材料が、上記理由により容易に短時間で安価に
製造できるので、本発明の工業的意義が大きい。
According to the present invention, a high-density and high-strength carbon fiber reinforced carbon material having excellent physical properties such as heat resistance, chemical resistance, abrasion resistance, and light weight can be easily produced in a short time and at a low cost for the above reasons. Therefore, the present invention has great industrial significance.

(実施例) 以下、実施例により本発明を更に具体的に説明する。
但し本発明はこれらの実施例により制限されるものでは
ない。
(Examples) Hereinafter, the present invention will be described more specifically with reference to examples.
However, the present invention is not limited by these examples.

実施例1 PAN系炭素繊維織布(東レ(株)製、トレカクロス#6
343)をアセトンで洗浄した後、HF−BF3の存在下ナフタ
レンを重合して得られたメソフェースピッチ(軟化点21
8℃、粘度が80ポイズになる温度が約300℃、600℃に加
熱した時の炭化収率85%)を減圧下300℃で含浸させ、
余分のピッチをホットロールを通して絞り取った。
Example 1 PAN-based carbon fiber woven fabric (trade cloth # 6, manufactured by Toray Industries, Inc.)
After a 343) was washed with acetone, HF-BF 3 was polymerized in the presence of naphthalene-obtained mesophase pitch (softening point 21
8 ° C, the temperature at which the viscosity becomes 80 poise is about 300 ° C, the carbonization yield 85% when heated to 600 ° C) is impregnated at 300 ° C under reduced pressure,
Excess pitch was squeezed out through a hot roll.

次に予備加熱処理として、この含浸物を昇温速度5℃
/minで370℃まで昇温し、20分間保持することによっ
て、炭素繊維含有率50wt%の融着性を有するプレプリグ
を調製した。
Next, as a pre-heating treatment, the impregnated material was heated at a rate of 5 ° C.
The temperature was raised to 370 ° C. at a rate of 370 ° C./min, and the temperature was maintained for 20 minutes to prepare a prepreg having a carbon fiber content of 50 wt% and having fusibility.

こうして得られたプレプリグを、バインダーを加える
ことなく積層して、窒素雰囲気下500℃までホットプレ
ス装置を用いてプレスした(昇温速度1℃/min、最高プ
レス圧200kgf/cm2)。その後プレス圧を開放し、アルゴ
ン雰囲気下、昇温速度1℃/minで1300℃まで昇温するこ
とにより、直径60mm、厚さ10mmの炭化物を得た。
The prepregs thus obtained were laminated without adding a binder, and pressed in a nitrogen atmosphere to 500 ° C. using a hot press (temperature rising rate: 1 ° C./min, maximum press pressure: 200 kgf / cm 2 ). Thereafter, the press pressure was released, and the temperature was raised to 1300 ° C. at a rate of 1 ° C./min in an argon atmosphere to obtain a carbide having a diameter of 60 mm and a thickness of 10 mm.

実施例2 実施例1で得られた炭化物を更にアルゴン雰囲気下で
2500℃まで昇温し、黒鉛化物を得た。
Example 2 The carbide obtained in Example 1 was further added under an argon atmosphere.
The temperature was raised to 2500 ° C. to obtain a graphitized product.

実施例3 実施例1と同様のプリプレグを用い、バインダーを加
えることなく積層し、常温で直径60mm、厚さ10mmに成型
した(成型圧力200kgf/cm2)。その後、常圧アルゴン雰
囲気下、1300℃まで昇温し、炭化物を得た。
Example 3 The same prepreg as in Example 1 was laminated without adding a binder, and molded at normal temperature into a diameter of 60 mm and a thickness of 10 mm (molding pressure: 200 kgf / cm 2 ). Thereafter, the temperature was raised to 1300 ° C. under an atmosphere of normal pressure argon to obtain a carbide.

実施例4 実施例3で得られた炭化物を更にアルゴン雰囲気下で
2500℃まで昇温し、黒鉛化物を得た。
Example 4 The carbide obtained in Example 3 was further added under an argon atmosphere.
The temperature was raised to 2500 ° C. to obtain a graphitized product.

実施例5 サイジング剤を除去した炭素繊維不織布(呉羽化学工
業(株)製、クレカペーパーE−20)に、HF−BF3の存
在下ナフタレンを重合して得られたメソフェースピッチ
(軟化点285℃、粘度が800ポイズになる温度が約380
℃、600℃に加熱した時の炭化収率87%)を常圧下380℃
で含浸させ、余分のピッチをホットロールを通して絞り
取った。
Example 5 Sizing agent carbon fiber nonwoven fabric obtained by removing (Kureha Chemical Industry Co., Kureka Paper E-20) to, HF-BF 3 was polymerized in the presence of naphthalene-obtained mesophase pitch (softening point 285 ℃, the temperature at which the viscosity becomes 800 poise is about 380
At 380 ℃ under normal pressure
And the excess pitch was squeezed out through a hot roll.

次に予備加熱処理として、この含浸物を昇温速度5℃
/minで430℃まで昇温し、10分間保持することによっ
て、炭素繊維含有率約50wt%の融着性を有するプリプレ
グを調製した。
Next, as a pre-heating treatment, the impregnated material was heated at a rate of 5 ° C.
The temperature was raised to 430 ° C. at a rate of / min and maintained for 10 minutes to prepare a prepreg having a carbon fiber content of about 50% by weight and having fusibility.

バインダーを加えずにこのプリプレグを積層し、100k
gf/cm2の圧力下500℃においてホットプレスした後、常
圧下1300℃で炭化し、直径60mm、厚さ10mmの炭化物を得
た。
Laminate this prepreg without adding binder, 100k
After hot pressing at 500 ° C. under a pressure of gf / cm 2 , carbonization was performed at 1300 ° C. under normal pressure to obtain a carbide having a diameter of 60 mm and a thickness of 10 mm.

実施例6 実施例5で得られた炭化物をアルゴン雰囲気下で2500
℃まで昇温し、黒鉛化物を得た。
Example 6 The carbide obtained in Example 5 was subjected to 2,500 under an argon atmosphere.
The temperature was raised to ° C to obtain a graphitized product.

各実施例で得られた炭化物の評価結果を次に示す。 The evaluation results of the carbide obtained in each example are shown below.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維集合体を用いた複数のプリプレグ
が積層されてなる炭素繊維強化炭素材料を製造するに際
し、炭素繊維集合体に軟化点350℃以下で粘度が80ポイ
ズになる温度が400℃以下であり600℃における炭化収率
が70%以上であるメソフェースピッチを溶融含浸させて
予備加熱処理したプリプレグを積層し、プレスしたのち
焼成することを特徴とする炭素繊維強化炭素材料の製造
方法
When producing a carbon fiber reinforced carbon material in which a plurality of prepregs using a carbon fiber aggregate are laminated, a temperature at which the carbon fiber aggregate has a softening point of 350 ° C. or less and a viscosity of 80 poise is 400 ° C. Production of carbon fiber reinforced carbon material characterized by laminating prepregs pre-heat-treated by melting and impregnating mesoface pitch having a carbonization yield of 70% or higher at 600 ° C or lower and pressing, followed by firing. Method
【請求項2】予備加熱処理工程を、非酸化性雰囲気下35
0〜490℃の温度で行う請求項1の炭素繊維強化炭素材料
の製造方法
2. The preheating step is performed in a non-oxidizing atmosphere.
The method for producing a carbon fiber reinforced carbon material according to claim 1, which is performed at a temperature of 0 to 490 ° C.
【請求項3】プレス工程を非酸化性雰囲気下300〜600℃
で行う請求項1の炭素繊維強化炭素材料の製造方法
3. The pressing step is performed at 300 to 600 ° C. in a non-oxidizing atmosphere.
2. The method for producing a carbon fiber reinforced carbon material according to claim 1, wherein
【請求項4】焼成工程が、プレスした積層体を非酸化性
雰囲気下600〜1500℃の温度で炭化する工程、或いは更
に2000〜3000℃の温度で黒鉛化する工程からなる請求項
1記載の炭素繊維強化炭素材料の製造方法
4. The method according to claim 1, wherein the firing step comprises a step of carbonizing the pressed laminate at a temperature of 600 to 1500 ° C. in a non-oxidizing atmosphere or a step of further graphitizing at a temperature of 2000 to 3000 ° C. Method for producing carbon fiber reinforced carbon material
JP17454890A 1990-07-03 1990-07-03 Method for producing carbon fiber reinforced carbon material Expired - Fee Related JP3220983B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17454890A JP3220983B2 (en) 1990-07-03 1990-07-03 Method for producing carbon fiber reinforced carbon material
US07/724,892 US5205888A (en) 1990-07-03 1991-07-02 Process for producing carbon fiber reinforced carbon materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17454890A JP3220983B2 (en) 1990-07-03 1990-07-03 Method for producing carbon fiber reinforced carbon material

Publications (2)

Publication Number Publication Date
JPH0465358A JPH0465358A (en) 1992-03-02
JP3220983B2 true JP3220983B2 (en) 2001-10-22

Family

ID=15980483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17454890A Expired - Fee Related JP3220983B2 (en) 1990-07-03 1990-07-03 Method for producing carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JP3220983B2 (en)

Also Published As

Publication number Publication date
JPH0465358A (en) 1992-03-02

Similar Documents

Publication Publication Date Title
US5205888A (en) Process for producing carbon fiber reinforced carbon materials
EP1846667A1 (en) Carbon-carbon composite article manufactured with needled fibers
JPH01252577A (en) Production of carbon/carbon composite material
JPH03150266A (en) Production of carbon/carbon composite material
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JP2571251B2 (en) Carbon fiber reinforced carbon composite material for friction material
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
EP0656331B1 (en) A method for preparing a carbon/carbon composite material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP2665957B2 (en) Carbon fiber / carbon composite
JP2632955B2 (en) Manufacturing method of porous carbon plate
JPH04154663A (en) Production of carbon fiber reinforced carbon composite material
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPH01212277A (en) Production of carbon/carbon compound material
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material
JPH0426547A (en) Production of carbon reinforced carbon composite material
JPH03261661A (en) Production of carbon fiber-reinforced carbon composite material
JPH01275468A (en) Production of brake material comprising carbon fiber-reinforced carbon
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JP2003012374A (en) Method of manufacturing carbon fiber reinforcing carbon material
JP3244279B2 (en) Manufacturing method of jig material for glass container manufacturing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees