JPH01212277A - Production of carbon/carbon compound material - Google Patents

Production of carbon/carbon compound material

Info

Publication number
JPH01212277A
JPH01212277A JP63032761A JP3276188A JPH01212277A JP H01212277 A JPH01212277 A JP H01212277A JP 63032761 A JP63032761 A JP 63032761A JP 3276188 A JP3276188 A JP 3276188A JP H01212277 A JPH01212277 A JP H01212277A
Authority
JP
Japan
Prior art keywords
carbon
temperature
pressure
deposited
compound material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63032761A
Other languages
Japanese (ja)
Other versions
JPH0822783B2 (en
Inventor
Taiji Ido
井土 泰二
Yoshiho Hayata
早田 喜穂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP63032761A priority Critical patent/JPH0822783B2/en
Publication of JPH01212277A publication Critical patent/JPH01212277A/en
Publication of JPH0822783B2 publication Critical patent/JPH0822783B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix

Abstract

PURPOSE:To obtain the title compound material having high strength, high elastic modulus and causing no delamination on the surface by precipitating carbon by gaseous phase thermal cracking and filling the voids of a carbon/ carbon compound material with the precipitated carbon, then coating the surface of the carbon/carbon compound material with the precipitated carbon. CONSTITUTION:A fabric or molded body is prepd. from bundles of many continuous carbon fibers, and carbonaceous pitch, phenol resin, etc., is impregnated thereinto, and the impregnated product is carbonized under a press. The tissue is made denser by repeating the impregnation/carbonization cycle necessary times. Thus, a carbon/carbon compound material constituted of 10-70vol.% molded body of carbon fibers and 5-80vol.% carbonaceous matrix, and having 10-55% void is produced. Then, the voids of the carbon/carbon compound material is filled with deposited carbon produced by the gaseous phase thermal cracking. The surface is further coated with carbon deposited by the gaseous phase thermal cracking. Thus, a carbon/carbon compound material is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、炭素/炭素複合材料の製造法に関する。[Detailed description of the invention] Industrial applications The present invention relates to a method for manufacturing carbon/carbon composite materials.

従来の技術および発明が解決しようとする問題点炭素/
炭素複合材料は、不活性ガス中では1000℃以上の高
温においても高強度、高弾性率を維持し、かつ熱膨張率
が小さい等の特異な性質を有する材料であり、航空宇宙
機器の部品、ブレーキ、炉材等への利用が期待されてい
る。この炭素/炭素複合材料の製造としては、炭素化可
能な物質を炭素繊維束に含浸してこれを炭化する方法、
あるいは気相分解炭素を炭素!繊維束内に沈積させる方
法などが知られている。前者の方法では表面にミクロな
欠陥が残抄やす(、これを埋めるために気相分解により
炭素の皮膜を付与することが行われているが、基材と被
膜との接着性不良あるいは熱膨張率の差のためその界面
で剥離を起こしその本来の機能を十分発揮することが出
来ない。また後者の方法では内部に空洞が残りゃす(、
高密度化が行いにくい。
Problems to be solved by conventional techniques and inventions
Carbon composite materials are materials that have unique properties such as maintaining high strength and high modulus of elasticity even at high temperatures of 1000°C or higher in inert gas, and having a small coefficient of thermal expansion. It is expected to be used for brakes, furnace materials, etc. The production of this carbon/carbon composite material includes a method of impregnating a carbon fiber bundle with a carbonizable substance and carbonizing it;
Or gas phase decomposition carbon! A method of depositing it within a fiber bundle is known. The former method leaves microscopic defects on the surface of the paper (in order to fill these defects, a carbon film is applied by vapor phase decomposition, but this may result in poor adhesion between the substrate and the film or thermal expansion). Due to the difference in rate, separation occurs at the interface and the original function cannot be fully demonstrated.In addition, the latter method leaves a cavity inside (,
Difficult to increase density.

問題点を解決するための手段 本発明者らは、前記問題点を解決した炭素/炭素複合材
料の製造法を開発すべく研究した結果、本発明の完成に
至った。
Means for Solving the Problems The present inventors conducted research to develop a method for producing a carbon/carbon composite material that solved the above-mentioned problems, and as a result, they completed the present invention.

本発明は、(1)炭素繊維成形体10〜70VOL%お
よび炭素質マトリックス5〜80VOL%から構成され
、かつ空隙率が10〜55%である炭素/炭素複合材料
の空隙部に気相熱分解により炭素を沈積充填し、続いて
この充填物の表面に気相熱分解により炭素を沈積被覆す
ることを特徴とする炭素/炭素複合材料の製造法、およ
び(2)炭素繊維成形体10〜70VOL%および炭素
質マトリックス5〜80VOL%から構成され、かつ空
隙率が10〜55%である炭素/炭素複合材料の空隙部
に温度圧力係数x1が3.29以下となる温度および圧
力において気相熱分解により炭素を沈積充填し、続いて
この充填物の表面に温度圧力係数X2が3.15以上と
なる温度および圧力において気相熱分解により炭素を沈
積被覆することを特徴とする炭素/炭素複合材料の製造
法に関する。
The present invention provides (1) vapor phase pyrolysis in the voids of a carbon/carbon composite material that is composed of 10 to 70 VOL% of a carbon fiber molded body and 5 to 80 VOL% of a carbonaceous matrix and has a porosity of 10 to 55%. A method for producing a carbon/carbon composite material, characterized in that carbon is deposited and filled with carbon, and then carbon is deposited and coated on the surface of this filling by vapor phase pyrolysis, and (2) a carbon fiber molded article 10 to 70 VOL. % and a carbonaceous matrix of 5 to 80 VOL% and a porosity of 10 to 55%. Gas phase heat is generated at a temperature and pressure such that the temperature pressure coefficient x1 is 3.29 or less A carbon/carbon composite characterized in that carbon is deposited and filled by decomposition, and then carbon is deposited and coated on the surface of this filling by vapor phase pyrolysis at a temperature and pressure such that the temperature-pressure coefficient X2 is 3.15 or more. Concerning the manufacturing method of materials.

但し 温度圧力係数 X、、=log((Tn)×(P
n)0.07)   )ここでT、は気相熱分解を行う
ときの温度(0K)P、は気相熱分解を行うときの圧力
(Torr)以下、本発明による炭素/炭素複合材料の
製造法について詳述する。
However, temperature pressure coefficient X,,=log((Tn)×(P
n) 0.07)) Here, T is the temperature (0K) when performing gas phase pyrolysis, P is the pressure (Torr) when performing gas phase pyrolysis, and the carbon/carbon composite material according to the present invention is The manufacturing method will be explained in detail.

本発明に用いる炭素/炭素複合材料は、炭素繊維成形体
10〜70VOL%、好ましくは20〜60%、さらに
好ましくは30〜55%、および炭素質マトリックス5
〜80VOL%、好ましくは10〜60%、さらに好ま
しくは15〜55%から構成され、かつ空隙率が10〜
55%、好ましくは15〜50%、さらに好ましくは2
0〜45%であるものを示す。
The carbon/carbon composite material used in the present invention contains a carbon fiber molded body 10 to 70 VOL%, preferably 20 to 60%, more preferably 30 to 55%, and a carbonaceous matrix 5
~80VOL%, preferably 10~60%, more preferably 15~55%, and a porosity of 10~
55%, preferably 15-50%, more preferably 2
0 to 45% is shown.

ここでいう炭素繊維成形体とは、連続した炭素繊維の5
00〜25000本の繊維束を一方向積層物、2次元織
物あるいはその積層物、3次元織物、マット状成形物、
フェルト状成形物など炭素繊維を2次元あるいは3次元
の成形体としたものである。炭素繊維としては、ピッチ
系、ポリアクリロニトリル系あるいはレーヨン系などの
炭素繊維が使用できるが、耐酸化性に優れることおよび
熱膨張率が小さいことからピッチ系炭素繊維が好ましい
。また炭素質マトリックスとは炭素質ピッチ、フェノー
ル樹脂、フラン樹脂などの炭化により得られるものであ
り、なかでも炭素質ピッチの炭化により得られるものが
好ましい。炭素質ピッチとしては、軟化点100〜40
0℃、好ましくは150〜350℃を有する石炭系ある
いは石油系のピッチが用いられろ。炭素質ピッチは、光
学的に等方性のピッチあるいは異方性のピッチいずれも
使用できるが、光学的異方性相の含量が60〜100%
、好ましくは80〜100%の光学的異方性ピッチが特
に好ましく用いられる。
The carbon fiber molded article here refers to a 5-piece continuous carbon fiber body.
A unidirectional laminate of 00 to 25,000 fiber bundles, a two-dimensional fabric or its laminate, a three-dimensional fabric, a mat-like molded product,
It is a two-dimensional or three-dimensional molded object made of carbon fiber, such as a felt-like molded object. As the carbon fibers, pitch-based, polyacrylonitrile-based, or rayon-based carbon fibers can be used, but pitch-based carbon fibers are preferred because they have excellent oxidation resistance and a low coefficient of thermal expansion. Further, the carbonaceous matrix is one obtained by carbonizing carbonaceous pitch, phenol resin, furan resin, etc. Among them, one obtained by carbonizing carbonaceous pitch is preferable. As carbonaceous pitch, the softening point is 100-40
A coal-based or petroleum-based pitch having a temperature of 0°C, preferably 150-350°C may be used. As the carbonaceous pitch, either optically isotropic pitch or anisotropic pitch can be used, but the content of the optically anisotropic phase is 60 to 100%.
An optically anisotropic pitch of , preferably 80 to 100% is particularly preferably used.

空隙率が10〜55%である炭素/炭素複合材料は、炭
素質ピッチ、フェノール樹脂、フラン樹脂などを前記し
たような炭素繊維の織物あるいは成形物などに含浸した
後、常圧下、加圧下あるいはプレス下で炭化して得られ
る。
A carbon/carbon composite material with a porosity of 10 to 55% can be produced by impregnating carbon pitch, phenolic resin, furan resin, etc. into a carbon fiber fabric or molded product, etc. under normal pressure, pressure, or Obtained by carbonization under a press.

含浸は、炭素質ピッチを真空下で加熱、溶融することに
より達成されるが、含浸時の粘度を下げるために、溶剤
でカット・バックすることもできる。この際の溶剤とし
ては、芳香族炭化水素、ピリジン、キノリンなどが使用
できる。
Impregnation is achieved by heating and melting the carbonaceous pitch under vacuum, but it can also be cut back with a solvent to reduce the viscosity during impregnation. As the solvent in this case, aromatic hydrocarbons, pyridine, quinoline, etc. can be used.

常圧下の炭化は、不活性ガス雰囲気下400〜2000
℃において実施することが出来る。また、加圧下の炭化
は、不活性ガスにより50〜10000kg/cnrに
加圧し、400〜2000℃において実施することが出
来る。また、プレス下の炭化は、ホットプレスにより1
0〜500kg/e+/の圧力下、400〜2000℃
において実施することが出来る。
Carbonization under normal pressure is 400 to 2000 in an inert gas atmosphere.
It can be carried out at ℃. Further, carbonization under pressure can be carried out at 400 to 2000°C using an inert gas at a pressure of 50 to 10000 kg/cnr. In addition, carbonization under the press can be reduced by hot pressing.
400-2000℃ under pressure of 0-500kg/e+/
It can be implemented in

本発明において、炭化収率向上のため、炭化に先立ち、
含浸物を不融化処理することも出来る。含浸物の不融化
処理は、酸化性ガス雰囲気下、50〜400℃、好まし
くは100〜350℃で行うことができる。酸化性ガス
としては、空気、酸素、窒素酸化物、硫黄酸化物、ハロ
ゲン、あるいはこれらの混合物が使用できる。
In the present invention, in order to improve carbonization yield, prior to carbonization,
The impregnated material can also be treated to be infusible. The infusible treatment of the impregnated material can be carried out at 50 to 400°C, preferably 100 to 350°C, in an oxidizing gas atmosphere. As the oxidizing gas, air, oxygen, nitrogen oxides, sulfur oxides, halogens, or mixtures thereof can be used.

不融化は、含浸物中心まで行っても良いし、後段の炭化
処理で含浸物の形状を維持出来る程度でも良い。
The infusibility may be carried out to the center of the impregnated material, or it may be performed to such an extent that the shape of the impregnated material can be maintained in the subsequent carbonization treatment.

空隙率が10〜55%である炭素/炭素複合材料とする
ために、含浸/炭化のサイクルを必要回数重ねて繊密化
をすることができる。
To obtain a carbon/carbon composite material with a porosity of 10 to 55%, densification can be achieved by repeating the necessary number of impregnation/carbonization cycles.

本発明においては、空隙率が10〜55%である炭素/
炭素複合材料の空隙部に気相分解により炭素を沈積充填
し、続いてこの充填物の表面に気相分解により炭素を沈
積被覆する。空隙部に気相分解により炭素を沈積充填す
る操作はCVI(CI−。
In the present invention, carbon/carbon having a porosity of 10 to 55% is used.
Carbon is deposited and filled into the voids of the carbon composite material by vapor phase decomposition, and then carbon is deposited and coated on the surface of this filling by vapor phase decomposition. The operation of depositing and filling carbon into voids by vapor phase decomposition is CVI (CI-).

EMICAL VAPORINFILTRATION)
 ト呼ばtti”オリ、マタコノ充填物の表面に気相分
解により炭素を沈積被覆する操作はCVD(CHEMI
CAL VAPORDEPO5ITION) ト呼ばれ
ている。Cv■あるいはCVDにより、炭素を沈積する
場合、炭素を得るための熱分解ガスとしては炭化水素、
好ましくはC8〜C6の炭化水素、具体的には、メタン
、天然ガス、プロパン、ベンゼン等が用いられる。
EMICAL VAPORIN FILTRATION)
CVD (CHEMI
CAL VAPORDEPO5ITION) is called. When depositing carbon by Cv■ or CVD, the pyrolysis gas used to obtain carbon is hydrocarbons,
Preferably, C8 to C6 hydrocarbons, specifically methane, natural gas, propane, benzene, etc., are used.

CVIにより炭素/炭素複合材料の空隙部に炭素を沈積
充填する場合、反応条件は、温度T、が900−150
0℃、圧力P。
When carbon is deposited and filled into the voids of a carbon/carbon composite material by CVI, the reaction conditions are a temperature T of 900-150.
0°C, pressure P.

が0.1〜50Torrである。一方CVDにより、充
填物の表面に気相熱分解により炭素を沈積被覆する場合
、温度T2は1200〜2000℃、圧力P2は5〜7
60Torrである。より具体的には、CVIにおいて
は、温度圧力係数Xが3.29以下となる温度および圧
力において気相熱分解により炭素を沈積充填し、またC
VDにおいては、前記充填物の表面に温度圧力係数x2
が315以上となる温度および圧力において気相熱分解
により炭素を沈積被覆する。CVIは、好ましくは温度
圧力係数X、が268以上3.25以下、より好ましく
は3.21以下、またCVDは、温度圧力係数x2が3
18以上3.44以下、より好ましくは321以上とな
る温度および圧力で行う。また一般に温度圧力係数がx
1≦x2であることが好ましい。これらの温度と圧力と
の関係は、第1図に示した。
is 0.1 to 50 Torr. On the other hand, when carbon is deposited and coated on the surface of the filling by vapor phase pyrolysis using CVD, the temperature T2 is 1200 to 2000°C and the pressure P2 is 5 to 7.
It is 60 Torr. More specifically, in CVI, carbon is deposited and filled by vapor phase pyrolysis at a temperature and pressure such that the temperature-pressure coefficient X is 3.29 or less, and
In VD, the temperature-pressure coefficient x2 is applied to the surface of the filling.
The carbon is deposited and coated by vapor phase pyrolysis at a temperature and pressure such that the carbon is 315 or higher. CVI preferably has a temperature-pressure coefficient X of 268 to 3.25, more preferably 3.21 or less, and CVD has a temperature-pressure coefficient x2 of 3.
It is carried out at a temperature and pressure of 18 or more and 3.44 or less, more preferably 321 or more. In general, the temperature-pressure coefficient is x
It is preferable that 1≦x2. The relationship between these temperatures and pressures is shown in FIG.

但し 温度圧力係数 X、、= log((Tn) X
 (P、)   )ここでT、、は気相熱分解を行うと
きの温度(0K)Pnは気相熱分解を行うときの圧力(
Torr)X、が前記範囲を超える場合には炭素/炭素
複合材料の空隙部への気相熱分解による炭素の沈積充填
が不十分となり、内部に空洞を残す。またx2が前記範
囲に満たない場合には最終製品の耐酸化性が低下し、ま
た反応速度も低下するので工業的見地から好ましくない
However, temperature pressure coefficient X,, = log((Tn)
(P, )) Here, T, is the temperature (0K) when performing gas phase pyrolysis, and Pn is the pressure (0K) when performing gas phase pyrolysis.
When Torr)X exceeds the above range, carbon deposition and filling by vapor phase pyrolysis into the voids of the carbon/carbon composite material becomes insufficient, leaving voids inside. Furthermore, if x2 is less than the above range, the oxidation resistance of the final product will decrease and the reaction rate will also decrease, which is not preferred from an industrial standpoint.

さらに、この2つの反応を連続して行う場合にはこれら
の条件を連続的に変化させるのが好ましい。
Furthermore, when these two reactions are carried out consecutively, it is preferable to change these conditions continuously.

衷廊1 以下に実施例をあげ、本発明を具体的に説明する。Corridor 1 EXAMPLES The present invention will be specifically explained below with reference to Examples.

(実施例1) 直径10μmのピッチ系炭素繊維2000本を用いた直
交3次元織物に軟化点280℃、光学的異方性相の含有
率が100%の光学的異方性ピッチを含浸した。含浸物
を100kg/cnfのプレス圧で、700℃において
ホットプレスし、さらに常圧下、1200℃で1時間炭
化処理して炭素/炭素複合材料を得た。得られた炭素/
炭素複合材料は炭素繊維30VOL%および炭素質マト
リックス47.5VOL%から構成され、かつ空隙率が
22.5%であった。この炭素/炭素複合材料を加熱炉
中におき、メタンを流しながら、温度T L= 120
0℃、圧力P K= 2 Torrで熱CVIを行い、
空隙部に気相分解により炭素を沈積充填し、続いて条件
を温度T2= 1200℃、圧力P2= 20Torr
まで連続的に変化させたのち、表面に熱CVDにより炭
素を沈積被覆した。この場合CVIの温度圧力係数X、
=3.19、CVDの温度圧力係数X=3.26である
。得られたものは、炭素/炭素複合材料の空隙部にCV
Iによる炭素が均一に沈着しており、表面にはCVDに
よる炭素の沈着があった。また表面の剥離も見られなか
った。
(Example 1) An orthogonal three-dimensional fabric using 2000 pitch-based carbon fibers with a diameter of 10 μm was impregnated with optically anisotropic pitch having a softening point of 280° C. and an optically anisotropic phase content of 100%. The impregnated material was hot pressed at 700° C. under a pressing pressure of 100 kg/cnf, and then carbonized at 1200° C. for 1 hour under normal pressure to obtain a carbon/carbon composite material. Obtained carbon/
The carbon composite material was composed of 30 VOL% carbon fiber and 47.5 VOL% carbonaceous matrix, and had a porosity of 22.5%. This carbon/carbon composite material was placed in a heating furnace, and while methane was flowing, the temperature T L = 120
Thermal CVI was performed at 0 °C and pressure P K = 2 Torr,
The voids are filled with carbon by vapor phase decomposition, and the conditions are as follows: temperature T2 = 1200°C, pressure P2 = 20 Torr.
After that, the surface was deposited and coated with carbon by thermal CVD. In this case, the CVI temperature-pressure coefficient X,
= 3.19, and CVD temperature-pressure coefficient X = 3.26. What was obtained was that CV was added to the voids of the carbon/carbon composite material.
Carbon due to I was deposited uniformly, and carbon due to CVD was deposited on the surface. Moreover, no peeling on the surface was observed.

(比較例1) 炭素繊:[30VOL%および炭素質マトリックス62
VOL%から構成され、かつ空隙率が8%の炭素/炭素
複合材料を加熱炉中におき、メタンを流しながら、12
00℃、20Torrにおいて表面に熱CVDにより炭
素を沈積被覆した。得られたものを走査電子顕微鏡で観
察したところ、眉間剥離を起こしていた。
(Comparative Example 1) Carbon fiber: [30VOL% and carbonaceous matrix 62
A carbon/carbon composite material composed of VOL% and having a porosity of 8% was placed in a heating furnace, and heated for 12 hours while flowing methane.
Carbon was deposited on the surface by thermal CVD at 00° C. and 20 Torr. When the obtained product was observed with a scanning electron microscope, it was found that peeling between the eyebrows had occurred.

(実施例2) 実施例1における空隙率が22.5%を有する炭素/炭
素複合材料を、メタンを原料ガスとして、温度T I=
 1270℃、圧力P=2TorrにおいてCVIを行
い、ついで温度T2= 1270℃、圧力p2= 2 
TorrにおいてCVDを行った。
(Example 2) The carbon/carbon composite material having a porosity of 22.5% in Example 1 was prepared using methane as a raw material gas at a temperature T I=
CVI was performed at 1270°C, pressure P = 2 Torr, then temperature T2 = 1270°C, pressure p2 = 2
CVD was performed at Torr.

この場合、温度圧力係数X、=X2=3.21であった
。得られたものは、炭素/炭素複合材料の空隙部にCV
Iによる炭素が均一に沈着しており、表面にはCVDに
よる炭素の沈着があった。また表面の剥離も見られなか
った。
In this case, the temperature-pressure coefficient X,=X2=3.21. What was obtained was that CV was added to the voids of the carbon/carbon composite material.
Carbon due to I was deposited uniformly, and carbon due to CVD was deposited on the surface. Moreover, no peeling on the surface was observed.

(実施例3) 実施例1で用いたピッチ系炭素繊維の直交3次元織物に
光学的異方性ピッチを含浸した含浸物を100kg/c
arのプレス圧で、700℃においてホットプレスして
炭素/炭素複合材料を得た。得られた炭素/炭素複合材
料は炭素繊維30VOL%および炭素質マトリックス4
7.5VOL%から構成され、かつ空隙率が225%で
あった。これを、メタンを原料ガスとして、温度T =
1300℃、圧力P=5TorrにおいてCVIを行い
、ついで温度T2..=1300℃、圧力P2=5To
rrにおいrCVDe行つた。この場合、温度圧力係数
X、=X2=3.20であった。得られたものは、炭素
/炭素複合材料の空隙部にCVIによる炭素が均一に沈
着しており、表面にはCVDによる炭素の沈着があった
。かき密度1.43g/cc、曲げ強度18 kg /
 wa’ テあった。また表面の剥離も見られなかった
(Example 3) An impregnated product obtained by impregnating the pitch-based carbon fiber orthogonal three-dimensional fabric used in Example 1 with optically anisotropic pitch was applied at 100 kg/cm.
A carbon/carbon composite material was obtained by hot pressing at 700° C. with a pressing pressure of ar. The obtained carbon/carbon composite material contains 30 VOL% carbon fiber and 4% carbonaceous matrix.
It was composed of 7.5 VOL% and had a porosity of 225%. Using methane as the raw material gas, the temperature T =
CVI was performed at 1300° C. and pressure P=5 Torr, and then at temperature T2. .. =1300℃, pressure P2=5To
I went to rCVDe in rr. In this case, the temperature-pressure coefficient X,=X2=3.20. In the obtained material, carbon was uniformly deposited by CVI in the voids of the carbon/carbon composite material, and carbon was deposited by CVD on the surface. Scraping density 1.43g/cc, bending strength 18kg/
wa'te was there. Moreover, no surface peeling was observed.

(実施例4) 直径lOμmのピッチ系炭素繊1i2000本をZ軸方
向に、また同じ繊維4000本をXおよびY軸方向に用
いた直交3次元織物に、実施例1で用いた光学的異方性
ピッチを含浸した。含浸物を200kg/cdの圧力下
、550℃において加圧炭化し、さらに常圧下、120
0℃で1時間炭化処理して炭素/炭素複合材料を得た。
(Example 4) The optical anisotropy used in Example 1 was applied to an orthogonal three-dimensional fabric using 2000 1i pitch-based carbon fibers with a diameter of 10 μm in the Z-axis direction and 4000 of the same fibers in the X and Y-axis directions. Impregnated with sex pitch. The impregnated material was pressurized and carbonized at 550°C under a pressure of 200 kg/cd, and then carbonized at 120° C. under normal pressure.
Carbonization treatment was performed at 0° C. for 1 hour to obtain a carbon/carbon composite material.

得られた炭素/炭素複合材料は炭素繊維40VOL%お
よび炭素質マトリックス30VOL%から構成され、か
つ開孔空隙率が30%であった。この炭素/炭素複合材
料を加熱炉中におき、プロパンを流しながら、温度T1
=1150℃、圧力P 、 == 5 Torrで熱C
VIを行い、開孔空隙部に気相分解により炭素を沈積充
填し、続いて条件を温度T2= 1500℃、圧力P2
= 300Torrまで連続的に変化させたのち、表面
に熱CVDにより炭素を沈積被覆した。この場合CVt
の温度圧力係数X=3.20、CVDの温度圧力係数X
2= 3.42である。得られたものは、炭素/炭素複
合材料の空隙部にCVIによる炭素が均一に沈着してお
り、表面にはCVDによる炭素の沈着があった。また表
面の剥離も見られなかった。
The obtained carbon/carbon composite material was composed of 40 VOL% of carbon fibers and 30 VOL% of carbonaceous matrix, and had an open porosity of 30%. This carbon/carbon composite material is placed in a heating furnace, and while propane is flowing, the temperature is T1.
=1150℃, pressure P, heat C at ==5 Torr
VI was performed to fill the open pores with carbon by vapor phase decomposition, followed by the following conditions: temperature T2 = 1500°C, pressure P2
After the pressure was continuously changed to 300 Torr, the surface was deposited and coated with carbon by thermal CVD. In this case CVt
Temperature-pressure coefficient X = 3.20, CVD temperature-pressure coefficient X
2=3.42. In the obtained material, carbon was uniformly deposited by CVI in the voids of the carbon/carbon composite material, and carbon was deposited by CVD on the surface. Moreover, no surface peeling was observed.

(実施例5) 実施例1で用いたピッチ系炭素繊維の3次元織物に光学
的異方性ピッチを含浸した含浸物を100kg/dの圧
力下、700℃においてホットプレスし、さらに常圧下
、1300℃で1時間炭化処理して炭素/炭素複合材料
を得た。得られた炭素/炭素複合材料は炭素繊維30V
OL%および炭素質マトリックス40VOL%から構成
され、かつ開孔空隙率が30%であった。
(Example 5) An impregnated product obtained by impregnating the three-dimensional pitch-based carbon fiber fabric used in Example 1 with optically anisotropic pitch was hot pressed at 700°C under a pressure of 100 kg/d, and further under normal pressure. Carbonization treatment was performed at 1300° C. for 1 hour to obtain a carbon/carbon composite material. The obtained carbon/carbon composite material is carbon fiber 30V
OL% and a carbonaceous matrix of 40VOL%, and the open pore porosity was 30%.

この炭素/炭素複合材料を加熱炉中におき、03H8を
流しながら、温度T、=1150℃、圧力P 1= 5
 Torrで熱CVIを行い、開孔空隙部に気相分解に
より炭素を沈積充填し、続いて条件を温度T2=115
0℃、圧力P2=100Torrまで連続的に変化させ
たのち、表面に熱CVDにより炭素を沈積被覆した。
This carbon/carbon composite material was placed in a heating furnace, and while flowing 03H8, the temperature T = 1150°C and the pressure P 1 = 5.
Thermal CVI was performed at Torr, and carbon was deposited and filled into the open pore cavity by vapor phase decomposition, and then the conditions were set to temperature T2 = 115.
After continuously changing the temperature to 0° C. and the pressure P2 to 100 Torr, the surface was deposited and coated with carbon by thermal CVD.

この場合CVIの温度圧力係数X 、 = 3.20、
CVDの温度圧力係数X2=3.29である。得られた
ものは、炭素/炭素複合材料の空隙部にCVIによる炭
素が均一に沈着しており、表面にはCVDによる炭素の
沈着があった。また表面の剥離も見られなかった。
In this case, the CVI temperature-pressure coefficient X, = 3.20,
The temperature-pressure coefficient X2 of CVD is 3.29. In the obtained material, carbon was uniformly deposited by CVI in the voids of the carbon/carbon composite material, and carbon was deposited by CVD on the surface. Moreover, no peeling on the surface was observed.

(実施例6) 実施例1で用いたピッチ系炭素繊維の直交3次元織物に
光学的異方性ピッチを含浸した含浸物を空気中、240
℃で100時間不融化した後、100kg/c++fの
圧力下、700℃においてホットプレスし、さらに常圧
下、1300℃で1時間炭化処理して炭素/炭素複合材
料を得た。得られた炭素/炭素複合材料は炭素繊維35
VOL%および炭素質マトリックス30VOL%から構
成され、かつ開孔空隙率が35%であった。この炭素/
炭素複合材料を加熱炉中におき、メタンを流しながら、
温度T =1200℃、圧力P、 = 10Torrで
熱CVIを行い、開孔空隙部に気相分解により炭素を沈
積充填し、続いて条件を温度T =1300℃、圧力P
2= 100Torrまで連続的に変化させたのち、表
面に熱CVDにより炭素を沈積被覆した。この場合CV
Iの温度圧力係数X、=3.24、CVIM)温度圧力
係数X2= 3.34テアル。得られたものは、炭素/
炭素複合材料の空隙部にCVIによる炭素が均一に沈着
しており、表面にはCVDによる炭素の沈着があった。
(Example 6) An impregnated product obtained by impregnating the orthogonal three-dimensional pitch-based carbon fiber fabric used in Example 1 with optically anisotropic pitch was heated in air at 240°C.
After being infusible at 100°C for 100 hours, it was hot pressed at 700°C under a pressure of 100 kg/c++f, and then carbonized at 1300°C for 1 hour under normal pressure to obtain a carbon/carbon composite material. The obtained carbon/carbon composite material is carbon fiber 35
It was composed of VOL% and carbonaceous matrix of 30VOL%, and the open pore porosity was 35%. This carbon/
Place the carbon composite material in a heating furnace, and while flowing methane,
Thermal CVI was performed at a temperature T = 1200 °C and a pressure P = 10 Torr, and carbon was deposited and filled into the open pore cavity by gas phase decomposition, and then the conditions were changed to a temperature T = 1300 °C and a pressure P.
After continuously changing the pressure to 2=100 Torr, the surface was deposited and coated with carbon by thermal CVD. In this case CV
Temperature-pressure coefficient of I, X, = 3.24, CVIM) Temperature-pressure coefficient of X2 = 3.34 theal. What was obtained was carbon/
Carbon was uniformly deposited by CVI in the voids of the carbon composite material, and carbon was deposited by CVD on the surface.

また表面の剥離も見られなかった。Moreover, no surface peeling was observed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は温度圧力係数の温度と圧力との関係を示す。 ・−/ 温度(’C) FIG. 1 shows the relationship between temperature and pressure of the temperature-pressure coefficient. ・-/ Temperature (’C)

Claims (2)

【特許請求の範囲】[Claims] (1)炭素繊維成形体10〜70VOL%および炭素質
マトリックス5〜80VOL%から構成され、かつ空隙
率が10〜55%である炭素/炭素複合材料の空隙部に
気相熱分解により炭素を沈積充填し、続いてこの充填物
の表面に気相熱分解により炭素を沈積被覆することを特
徴とする炭素/炭素複合材料の製造法。
(1) Carbon is deposited by vapor phase pyrolysis into the voids of a carbon/carbon composite material that is composed of 10 to 70 VOL% of a carbon fiber molded body and 5 to 80 VOL% of a carbonaceous matrix and has a porosity of 10 to 55%. 1. A method for producing a carbon/carbon composite material, which comprises filling the material and then depositing and coating carbon on the surface of the filling material by vapor phase pyrolysis.
(2)炭素繊維成形体10〜70VOL%および炭素質
マトリックス5〜80VOL%から構成され、かつ空隙
率が10〜55%である炭素/炭素複合材料の空隙部に
温度圧力係数X_1が3.29以下となる温度および圧
力において気相熱分解により炭素を沈積充填し、続いて
この充填物の表面に温度圧力係数X_2が3.15以上
となる温度および圧力において気相熱分解により炭素を
沈積被覆することを特徴とする炭素/炭素複合材料の製
造法。 但し温度圧力係数X_n=log((T_n)×(P_
n)^0^.^0^7) ここでT_nは気相熱分解を行うときの温度(゜K)P
_nは気相熱分解を行うときの圧力(Torr)
(2) Temperature-pressure coefficient Carbon is deposited and filled by vapor phase pyrolysis at the following temperature and pressure, and then carbon is deposited and coated on the surface of this filling by vapor phase pyrolysis at a temperature and pressure such that the temperature-pressure coefficient X_2 is 3.15 or more. A method for producing a carbon/carbon composite material characterized by: However, temperature-pressure coefficient X_n=log((T_n)×(P_
n) ^0^. ^0^7) Here, T_n is the temperature (°K) P when performing gas phase pyrolysis.
_n is the pressure (Torr) when performing gas phase pyrolysis
JP63032761A 1988-02-17 1988-02-17 Method for manufacturing carbon / carbon composite material Expired - Lifetime JPH0822783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032761A JPH0822783B2 (en) 1988-02-17 1988-02-17 Method for manufacturing carbon / carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032761A JPH0822783B2 (en) 1988-02-17 1988-02-17 Method for manufacturing carbon / carbon composite material

Publications (2)

Publication Number Publication Date
JPH01212277A true JPH01212277A (en) 1989-08-25
JPH0822783B2 JPH0822783B2 (en) 1996-03-06

Family

ID=12367825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032761A Expired - Lifetime JPH0822783B2 (en) 1988-02-17 1988-02-17 Method for manufacturing carbon / carbon composite material

Country Status (1)

Country Link
JP (1) JPH0822783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155660A (en) * 1991-12-05 1993-06-22 Nippon Oil Co Ltd Production of carbon/carbon composite material
JP2009084150A (en) * 2008-11-25 2009-04-23 Toyo Tanso Kk Manufacturing method of carbon fiber-reinforced carbon composite material for single crystal drawing-up unit
JP2009155203A (en) * 1998-06-04 2009-07-16 Toyo Tanso Kk Carbon fiber-reinforced carbon composite and component for pulling single crystal apparatus
CN108409351A (en) * 2018-03-26 2018-08-17 甘肃新西北碳素科技有限公司 The carbon of high temperature-resistant acid-resistant liquid/carbon template quick molding method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137005U (en) * 1974-09-09 1976-03-19
JPS62182160A (en) * 1985-10-02 1987-08-10 ソシエテ ヨ−ロペンヌ ドウ プロピユルシヨン,ソシエテ アノニム Carbon-carbon composite material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5137005U (en) * 1974-09-09 1976-03-19
JPS62182160A (en) * 1985-10-02 1987-08-10 ソシエテ ヨ−ロペンヌ ドウ プロピユルシヨン,ソシエテ アノニム Carbon-carbon composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155660A (en) * 1991-12-05 1993-06-22 Nippon Oil Co Ltd Production of carbon/carbon composite material
JP2009155203A (en) * 1998-06-04 2009-07-16 Toyo Tanso Kk Carbon fiber-reinforced carbon composite and component for pulling single crystal apparatus
JP2009084150A (en) * 2008-11-25 2009-04-23 Toyo Tanso Kk Manufacturing method of carbon fiber-reinforced carbon composite material for single crystal drawing-up unit
CN108409351A (en) * 2018-03-26 2018-08-17 甘肃新西北碳素科技有限公司 The carbon of high temperature-resistant acid-resistant liquid/carbon template quick molding method

Also Published As

Publication number Publication date
JPH0822783B2 (en) 1996-03-06

Similar Documents

Publication Publication Date Title
JP2722198B2 (en) Method for producing carbon / carbon composite material having oxidation resistance
US5217657A (en) Method of making carbon-carbon composites
US5093156A (en) Process for preparing carbon material
JP3151580B2 (en) Manufacturing method of carbon material
JPH01212277A (en) Production of carbon/carbon compound material
JPH069270A (en) Preparation of carbon/carbon composite material part using mesophase powder
JPH0710753B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
US5523035A (en) Process for producing carbonaceous material
JP2521795B2 (en) Method for producing carbon fiber reinforced composite material having oxidation resistance
JPH01203267A (en) Production of carbon/carbon composite material
EP0656331B1 (en) A method for preparing a carbon/carbon composite material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3138939B2 (en) Method for producing carbon / carbon composite material
JPH01212276A (en) Production of carbon/carbon compound material
JP3324653B2 (en) Manufacturing method of ceramic coated carbon / carbon composite material
JP2529148B2 (en) Method for manufacturing carbon / carbon composite material
JP2001048664A (en) Production of carbon fiber-reinforced carbon material
JP3220983B2 (en) Method for producing carbon fiber reinforced carbon material
JP3138937B2 (en) Manufacturing method of carbon / carbon composite material
JP2000169250A (en) Production of carbon fiber reinforced carbon composite material
JP2676211B2 (en) Method for manufacturing carbon / carbon composite material
JP3138938B2 (en) Manufacturing method of carbon / carbon composite material
JPH0426547A (en) Production of carbon reinforced carbon composite material
JPS63182256A (en) Manufacture of carbon/carbon composite material
JP2529148C (en)