JPH0426547A - Production of carbon reinforced carbon composite material - Google Patents
Production of carbon reinforced carbon composite materialInfo
- Publication number
- JPH0426547A JPH0426547A JP2132237A JP13223790A JPH0426547A JP H0426547 A JPH0426547 A JP H0426547A JP 2132237 A JP2132237 A JP 2132237A JP 13223790 A JP13223790 A JP 13223790A JP H0426547 A JPH0426547 A JP H0426547A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- fibers
- carbonization
- fiber
- composite material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002131 composite material Substances 0.000 title claims description 35
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title abstract description 10
- 229910052799 carbon Inorganic materials 0.000 title abstract description 9
- 239000000835 fiber Substances 0.000 claims abstract description 73
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 28
- 239000004917 carbon fiber Substances 0.000 claims abstract description 28
- 239000011159 matrix material Substances 0.000 claims abstract description 23
- 238000003763 carbonization Methods 0.000 claims abstract description 22
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 claims description 14
- 239000011203 carbon fibre reinforced carbon Substances 0.000 claims description 14
- 239000011295 pitch Substances 0.000 claims description 9
- 239000011336 carbonized pitch Substances 0.000 claims 1
- 239000002994 raw material Substances 0.000 abstract description 21
- 238000005087 graphitization Methods 0.000 abstract description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 7
- 239000011148 porous material Substances 0.000 abstract description 7
- 239000005011 phenolic resin Substances 0.000 abstract description 6
- 239000012298 atmosphere Substances 0.000 abstract description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 3
- 239000001301 oxygen Substances 0.000 abstract description 3
- 229910052760 oxygen Inorganic materials 0.000 abstract description 3
- 229920001568 phenolic resin Polymers 0.000 abstract description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 abstract description 2
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000010304 firing Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 238000005470 impregnation Methods 0.000 description 12
- 239000011300 coal pitch Substances 0.000 description 6
- 238000000465 moulding Methods 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000011302 mesophase pitch Substances 0.000 description 4
- 238000010000 carbonizing Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 239000011301 petroleum pitch Substances 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 239000012779 reinforcing material Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000011074 autoclave method Methods 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- -1 felt Substances 0.000 description 1
- 238000009730 filament winding Methods 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000002074 melt spinning Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011208 reinforced composite material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Ceramic Products (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、炭素繊維を強化材とする炭素−炭素複合材の
製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a carbon-carbon composite material using carbon fiber as a reinforcing material.
〔従来の技術と発明が解決しようとする課題]炭素−炭
素複合材は、通常、炭素繊維の織布、フェルト、不織布
、一方向シートまたは短繊維などに、炭化又は黒鉛化可
能な液状物質を含浸させ、焼成して炭化又は黒鉛化する
ことにより、製造されている。この方法では、焼成に伴
ない、揮発分の分解により低密度化が生じる。しかも、
炭素繊維とマトリックスとの界面接着力が小さく、炭素
繊維とマトリックスとの剥離や、複合材にクラックが生
し易いのて、炭素−炭1i:Fi合材の強度を高めるの
が困難である。そこで、通常、液状物質の含浸工程、焼
成工程を繰返し行なうことにより、複合材を緻密化して
いる。しかしながら、含浸、炭化工程を繰返すので、生
産性が低下すると共に、複合材がコスト高となり、製造
に長期間を要する。[Prior Art and Problems to be Solved by the Invention] Carbon-carbon composite materials are usually made by adding a liquid substance that can be carbonized or graphitized to carbon fiber woven fabric, felt, nonwoven fabric, unidirectional sheet, short fiber, etc. It is manufactured by impregnating it, firing it, and carbonizing or graphitizing it. In this method, the density decreases due to the decomposition of volatile components during firing. Moreover,
It is difficult to increase the strength of the carbon-charcoal 1i:Fi composite material because the interfacial adhesion between the carbon fibers and the matrix is low, and the carbon fibers and the matrix tend to peel off and cracks occur in the composite material. Therefore, the composite material is usually densified by repeatedly performing the impregnation process with a liquid substance and the firing process. However, since the impregnation and carbonization steps are repeated, productivity decreases, the cost of the composite material increases, and manufacturing takes a long time.
特開昭62−273231号公報には、炭l/:繊維と
マトリックスとの界面接着強度を高めるため、完全に炭
化されていない原料繊維と、マトリックスを形成するメ
ソフェーズピッチとを混合し、混合物を圧縮成形した後
、成形物を焼成する炭素繊維強化複合材料の製造方法が
開示されている。JP-A-62-273231 discloses that in order to increase the interfacial adhesion strength between the fibers and the matrix, raw fibers that have not been completely carbonized are mixed with mesophase pitch that forms the matrix, and the mixture is A method for manufacturing a carbon fiber reinforced composite material is disclosed in which the molded product is fired after compression molding.
しかしながら、この方法では、メソフエーズピッチの炭
化率が50%程度であり、しがも強化材原料が未炭化の
繊維であるため、焼成により得られた複合材には、ガス
の抜けに伴ない多数の気孔やクラックが生成し、複合材
の機械的強度が低下する。従って、機械的強度を高める
には、含浸工程、焼成工程を複数回行なう必要がある。However, in this method, the carbonization rate of mesophase pitch is about 50%, and since the reinforcing material raw material is uncarbonized fiber, the composite material obtained by firing has a However, a large number of pores and cracks are generated, which reduces the mechanical strength of the composite material. Therefore, in order to increase the mechanical strength, it is necessary to perform the impregnation step and the firing step multiple times.
さらに異なる種類の原料繊維とマトリックス原料、例え
ばポリアクリロニトリル系の未炭化原料繊維とメソフェ
ーズピッチとを組合せて使用する場合には界面接着強度
が著しく低下するので、使用可能な原料繊維が制約され
る。Furthermore, when different types of raw material fibers and matrix raw materials are used in combination, for example, polyacrylonitrile-based uncarbonized raw material fibers and mesophase pitch, the interfacial adhesive strength is significantly reduced, which limits the raw material fibers that can be used.
従って、本発明の目的は、広い範囲の原料繊維およびマ
トリックス原料が使用できると共に、気孔の生成量が著
しく少なく、機械的強度の大きな複合材を得ることがで
きる炭素−炭素複合材の製造方法を提供することにある
。Therefore, an object of the present invention is to provide a method for producing a carbon-carbon composite material that can use a wide range of raw material fibers and matrix raw materials, produce a significantly small amount of pores, and obtain a composite material with high mechanical strength. It is about providing.
また、本発明の他の目的は、1回の含浸工程および焼成
工程で、上記の如き複合材を効率よく得ることができる
炭素−炭素複合材の製造方法を提供することにある。Another object of the present invention is to provide a method for producing a carbon-carbon composite material that can efficiently produce the above-mentioned composite material through one impregnation step and one firing step.
[発明の構成〕
前記目的を達成するため、本発明は、少なくとも、炭化
により長さ方向に空洞又はクラックが形成される炭素繊
維化可能な繊維に、炭化又は黒鉛化可能なマトリックス
原料を含浸し、炭化又は黒鉛化する炭素−炭素複合材の
製造方法を提供する。[Structure of the Invention] In order to achieve the above object, the present invention impregnates at least a fiber that can be made into carbon fiber, in which cavities or cracks are formed in the length direction by carbonization, with a matrix raw material that can be carbonized or graphitized. , provides a method for producing a carbon-carbon composite material that is carbonized or graphitized.
なお、本明細書における用語の定義は次の通りである。The definitions of terms used in this specification are as follows.
「炭化」とは、炭素含有物質を、不活性雰囲気又は真空
中で、例えば900〜1500℃程度の温度で焼成処理
することを言う。「黒鉛化」とは、炭素含有物質を、不
活性雰囲気又は真空中で、例えば1500〜3000℃
程度の温度で焼成処理することを言い、結晶構造が黒鉛
構造でないときでも黒鉛化の概念に含める。"Carbonization" refers to firing a carbon-containing material in an inert atmosphere or vacuum at a temperature of, for example, about 900 to 1500°C. "Graphitization" refers to converting a carbon-containing material into a carbon-containing substance at a temperature of, for example, 1500 to 3000°C in an inert atmosphere or vacuum.
It refers to firing treatment at a certain temperature, and is included in the concept of graphitization even when the crystal structure is not a graphite structure.
「炭素繊維」とは、炭化又は黒鉛化した繊維を言う。"Carbon fiber" refers to carbonized or graphitized fiber.
「不融化」とは、ピッチ系繊維を、酸素存在下、例えば
200〜450℃程度の温度で加熱して表面に耐熱層を
形成し、焼成時の溶融を防止する処理を言う6 「耐炎
化処理」とは、ピッチ系繊維以外の炭素繊維化可能な繊
維を、酸素存在下、例えば200〜450℃程度の温度
で加熱して表面に耐熱層を形成し、焼成時の溶融を防止
する処理を言う。"Infusible" refers to a process in which pitch-based fibers are heated in the presence of oxygen at a temperature of, for example, 200 to 450°C to form a heat-resistant layer on the surface and prevent melting during firing6. "Processing" refers to a process in which fibers other than pitch-based fibers that can be made into carbon fibers are heated in the presence of oxygen at a temperature of, for example, 200 to 450°C to form a heat-resistant layer on the surface and prevent melting during firing. say.
「含浸」とは、液状のマトリックス原料に限らず、粉粒
状のマトリックス原料を繊維間に存在させることをも含
む意味に用いる。The term "impregnation" is used to include not only liquid matrix raw materials but also the presence of powdery matrix raw materials between fibers.
本発明の方法は、少なくとも、特定の炭素繊維化可能な
繊維に、炭化又は黒鉛化可能なマトリックス原料を含浸
する含浸工程と、炭化又は黒鉛化する焼成工程とを含ん
でいる。また、通常、含浸工程の後、含浸物を成形する
成形工程を含んでいる。The method of the present invention includes at least an impregnation step of impregnating a specific carbon fiber-formable fiber with a carbonizable or graphitizable matrix raw material, and a firing step of carbonizing or graphitizing the fiber. Further, after the impregnation step, a molding step of molding the impregnated product is usually included.
本発明の特徴は、前記炭素繊維化可能な繊維として、炭
化により繊維の長さ方向に空洞やクラックが形成される
繊維を用いる点にある。このような繊維を原料繊維とし
て使用することにより、焼成工程で発生するガスを、繊
維に形成された空洞又はクラックを通じて外部に排出で
きるので、マトリックス中のクラックや気孔が著しく少
ない複合材を得ることができる。A feature of the present invention is that the fiber that can be made into carbon fiber is a fiber in which cavities or cracks are formed in the length direction of the fiber by carbonization. By using such fibers as raw material fibers, gas generated during the firing process can be discharged to the outside through cavities or cracks formed in the fibers, making it possible to obtain composite materials with significantly fewer cracks and pores in the matrix. I can do it.
前記炭素繊維化可能な繊維としては、炭化により長さ方
向に空洞又はクラックが形成される繊維であれば、特に
制限されないが、例えば、断面ラジアル構造を有する不
融化処理したピッチ系繊維または低温炭化したピッチ系
繊維が例示される。The fibers that can be made into carbon fibers are not particularly limited as long as they have cavities or cracks formed in the length direction by carbonization, but examples include pitch-based fibers that have been made infusible and have a radial cross-sectional structure, or low-temperature carbonized fibers. Examples include pitch-based fibers.
低温炭化したピッチ系繊維としては、例えば、900℃
未満の温度で炭化したピッチ系繊維が含まれる。なお、
断面ラジアル構造の繊維は、紡糸条件を調整することに
より、慣用の方法で作製できる。For example, the pitch fiber carbonized at low temperature is 900°C.
Contains pitch-based fibers that are carbonized at temperatures below. In addition,
A fiber with a radial cross-sectional structure can be produced by a conventional method by adjusting spinning conditions.
炭化により長さ方向に空洞又はクラックが形成される炭
素繊維化可能な繊維は単独で使用してもよく、他の炭素
繊維化可能な繊維及び/又は炭素繊維と併用してもよい
。他の炭素繊維化可能な繊維および炭素繊維としては、
例えば、フェノール系樹脂、レーヨン、ポリアクリロニ
トリルなどの耐炎化処理繊維、低温炭化繊維やこれらの
炭素繊維:石油又は石炭ピッチを出発原料とする炭素繊
維が挙げられる。空洞又はクラックが形成される炭素繊
維化可能な繊維と併用する他の繊維は、マトリックスと
の界面接着強度を高めるため、熱膨脹・収縮率がマトリ
ックスと同程度の繊維、例えば、耐炎化処理繊維、低温
炭化繊維であるのが好ましい。A fiber that can be made into carbon fibers, in which cavities or cracks are formed in the length direction by carbonization, may be used alone or in combination with other fibers that can be made into carbon fibers and/or carbon fibers. Other fibers and carbon fibers that can be made into carbon fibers include:
Examples include flame-retardant treated fibers such as phenolic resins, rayon, and polyacrylonitrile, low-temperature carbonized fibers, and carbon fibers made from petroleum or coal pitch as a starting material. Other fibers to be used in combination with fibers that can be made into carbon fibers in which cavities or cracks are formed are fibers with thermal expansion and contraction rates similar to those of the matrix, such as flame-retardant treated fibers, in order to increase the interfacial adhesive strength with the matrix. Preferably, it is a low temperature carbonized fiber.
前記空洞又はクラックが形成される炭素繊維化可能な繊
維、および他の繊維の径は、例えば5〜30声程度であ
る。The diameters of the carbon fiber-formable fibers and other fibers in which the cavities or cracks are formed are, for example, about 5 to 30 tones.
炭化により長さ方向に空洞又はクラックが形成される炭
素繊維化可能な繊維と、他の炭素繊維化繊維及び炭素繊
維との割合は、機械的強度を損わない範囲であればよく
、例えば20 : 80〜100:0(重量比)程度で
ある。The ratio of fibers that can be made into carbon fibers, in which cavities or cracks are formed in the length direction due to carbonization, to other carbon fibers and carbon fibers may be within a range that does not impair mechanical strength, for example, 20 : Approximately 80 to 100:0 (weight ratio).
前記繊維は、複合材の用途に応じて、ミルドファイバー
、長繊維として使用してもよく、織布、不織布、クロス
、一方向シート、3次元的な立体編物などとして使用し
てもよい。The fibers may be used as milled fibers or long fibers, or may be used as woven fabrics, nonwoven fabrics, cloths, unidirectional sheets, three-dimensional knitted fabrics, etc., depending on the use of the composite material.
含浸工程では、少なくとも、炭化により長さ方向に空洞
又はクラックが形成される炭素繊維化可能な繊維に、炭
化又は黒鉛化可能なマトリックス原料を含浸する。マト
リックス原料としては、例えば、フェノール樹脂、フラ
ン樹脂などの熱硬化性樹脂;石油または石炭ピッチなど
が例示される。In the impregnation step, at least fibers that can be made into carbon fibers in which cavities or cracks are formed in the length direction due to carbonization are impregnated with a matrix raw material that can be carbonized or graphitized. Examples of the matrix raw material include thermosetting resins such as phenol resins and furan resins; petroleum or coal pitch, and the like.
ピッチとしては、光学的異方性のメソ相を50〜100
%含むメソフェーズピッチが好ましい。これらのマトリ
ックス原料は一種又は二種以上使用できる。The pitch is 50 to 100 of the optically anisotropic mesophase.
% mesophase pitch is preferred. One or more types of these matrix raw materials can be used.
マトリックス原料は、必要に応じて、有機溶剤を用いた
液状、または粉粒状として使用できる。The matrix raw material can be used in a liquid form using an organic solvent or in a powder form, if necessary.
前記繊維に対するマトリックス原料の含浸量は、炭素−
炭素複合材の機械的強度が損われない範囲、例えば、繊
維100重量部に対して、マトリックス原料30〜20
0重量部程度である。The amount of matrix raw material impregnated into the fiber is carbon-
A range that does not impair the mechanical strength of the carbon composite material, for example, 30 to 20 parts by weight of matrix raw material per 100 parts by weight of fibers.
It is about 0 parts by weight.
成形工程では、所望する炭素−炭素複合材の形状及び大
きさに応じて、慣用の成形法、例えば、圧縮成形法、ホ
ットプレス法、オートクレーブ法、フィラメントワイン
ディング法、プルトルージョン法などが採用できる。In the molding step, a conventional molding method such as a compression molding method, a hot press method, an autoclave method, a filament winding method, a pultrusion method, etc. can be employed depending on the desired shape and size of the carbon-carbon composite material.
前記成形工程で得られた成形品を、焼成工程で炭化又は
黒鉛化することにより、炭素−炭素複合材が得られる。A carbon-carbon composite material is obtained by carbonizing or graphitizing the molded product obtained in the molding step in a firing step.
炭化処理および黒鉛化処理は、窒素、ヘリウム、アルゴ
ンなどの不活性雰囲気、または真空下で行なうことがで
きる。Carbonization and graphitization can be carried out in an inert atmosphere such as nitrogen, helium, argon, etc., or under vacuum.
なお、炭化により長さ方向に空洞が形成される炭素繊維
化可能な繊維は、焼成により、1〜数個の空洞が生じ、
炭化により長さ方向にクラックが形成される炭素繊維化
可能な繊維は、焼成により、繊維の表面に、直線状又は
蛇行したU溝又はV溝状のクラックが形成された炭素繊
維となる。焼成に伴なって発生するガスは、繊維の空洞
またはクラックを通じて外部に排出されるので、クラッ
クや気孔が著しく少なく、機械的強度に優れた複合材が
得られる。従って、本発明では、少なくとも一回の含浸
工程及び焼成工程を経ることにより炭素−炭素複合材を
製造できる。Note that fibers that can be made into carbon fibers, in which cavities are formed in the length direction by carbonization, have one to several cavities formed by firing.
Fibers that can be made into carbon fibers with cracks formed in the longitudinal direction by carbonization become carbon fibers with linear or meandering U-groove or V-groove cracks formed on the surface of the fibers by firing. Gases generated during firing are exhausted to the outside through cavities or cracks in the fibers, resulting in a composite material with significantly fewer cracks and pores and excellent mechanical strength. Therefore, in the present invention, a carbon-carbon composite material can be manufactured through at least one impregnation process and one firing process.
また、得られた炭素−炭素複合材には、炭素繊維の長手
方向に中空部やクラックが形成されているので、再含浸
も容易である。従って、炭素−炭素複合材を、再度、含
浸工程及び焼成工程に供してもよい。In addition, since hollow parts and cracks are formed in the longitudinal direction of the carbon fibers in the obtained carbon-carbon composite material, re-impregnation is also easy. Therefore, the carbon-carbon composite material may be subjected to the impregnation step and the firing step again.
本発明の方法により得られた炭素−炭素複合材は、慣用
の用途、例えば、高い耐熱性、耐摩耗性及び機械的強度
が要求されるロケットノズル、ノズルコーン、航空機の
ブレーキ材など種々の用途に使用できる。The carbon-carbon composite material obtained by the method of the present invention can be used in various conventional applications, such as rocket nozzles, nozzle cones, and aircraft brake materials that require high heat resistance, abrasion resistance, and mechanical strength. Can be used for
[発明の効果]
本発明の炭素−炭素複合材の製造方法によれば、広い範
囲の原料繊維およびマトリックス原料が使用できると共
に、気孔の生成量が著しく少なく、機械的強度の大きな
複合材を得ることができる。[Effects of the Invention] According to the method for producing a carbon-carbon composite material of the present invention, a wide range of raw material fibers and matrix raw materials can be used, and a composite material with a significantly small amount of pores and high mechanical strength can be obtained. be able to.
また、1回の含浸工程および焼成工程で、上記の如き複
合材を生産性よく得ることができる。Further, the above composite material can be obtained with high productivity through a single impregnation step and a single firing step.
[実施例]
以下に、実施例に基づいて本発明をより詳細に説明する
。[Examples] The present invention will be described in more detail below based on Examples.
実施例1
メソ相100%の石炭系メソフェースピッチを、孔径0
.2鴫、長さ0.8間のノズルを用いて熔融紡糸し、空
気中で不融化し、600℃で炭化することにより、断面
ラジアル構造の石炭系ピッチ繊維を作製した。この石炭
系ピッチ繊維は、炭化により繊維の長平方向に連続した
空洞が形成される繊維である。石炭系ピッチ繊維を一方
向に引揃えて、フェノール樹脂を含浸し、大きさ10
wm x10璽−×2501嘗の棒状の成形体を作製し
た。なお、フェノール樹脂の含浸量は、繊維100重量
部に対してフェノール樹脂100重量部であった。Example 1 Coal-based mesoface pitch with 100% mesophase was prepared with a pore size of 0.
.. Coal-based pitch fibers with a radial cross-sectional structure were prepared by melt spinning using a nozzle with a diameter of 2 mm and a length of 0.8 mm, infusible in air, and carbonized at 600°C. This coal-based pitch fiber is a fiber in which continuous cavities are formed in the longitudinal direction of the fiber by carbonization. Coal-based pitch fibers are aligned in one direction, impregnated with phenolic resin, and made into a size 10
A rod-shaped molded body measuring 10cm x 2501cm was produced. The amount of phenol resin impregnated was 100 parts by weight of phenol resin per 100 parts by weight of fiber.
成形体を、窒素雰囲気中、無加圧条件下で、2℃/分の
昇温速度で900℃まで昇温し、900℃で1時間保ち
炭化処理した。次いで、10℃/分の昇温速度で200
0℃まで昇温し、同温度に1時間保持して黒鉛化処理し
た。The molded body was heated to 900° C. at a temperature increase rate of 2° C./min in a nitrogen atmosphere under non-pressurized conditions, and maintained at 900° C. for 1 hour for carbonization treatment. Then, at a heating rate of 10°C/min,
The temperature was raised to 0° C. and maintained at the same temperature for 1 hour for graphitization treatment.
得られた複合材の密度は1.87g/cj、曲げ強度は
25 k’l / mtdであった。The density of the obtained composite material was 1.87 g/cj, and the bending strength was 25 k'l/mtd.
比較例
実施例1の繊維に代えて、600℃で炭化し、かつ断面
構造がラジアル構造でない石炭系ピッチ繊維を用いる以
外、実施例1と同様にして複合材を作製したところ、複
合材の密度は1.80g/−1曲げ強度は13に9/−
であった。Comparative Example A composite material was produced in the same manner as in Example 1, except that coal-based pitch fibers that were carbonized at 600°C and did not have a radial cross-sectional structure were used in place of the fibers in Example 1. is 1.80g/-1 bending strength is 13 to 9/-
Met.
実施例2
実施例1で用いた繊維と、比較例1で用いた繊維とを1
:4(重量比)の割合で混合して用いる以外、実施例1
と同様にして複合材を作製したところ、複合材の密度は
1.84 g / aj、曲げ強度は18.4に+i/
−であった。Example 2 The fiber used in Example 1 and the fiber used in Comparative Example 1 were
: Example 1 except for using the mixture at a ratio of 4 (weight ratio)
When a composite material was prepared in the same manner as above, the density of the composite material was 1.84 g/aj, and the bending strength was 18.4+i/
-It was.
実施例3
実施例1で用いた繊維と、比較例1で用いた繊維とを1
:1(重量比)の割合で混合して用いる以外、実施例1
と同様にして複合材を作製したところ、複合材の密度は
1.85g/cj、曲げ強度は18.1に9/−であっ
た。Example 3 The fiber used in Example 1 and the fiber used in Comparative Example 1 were
Example 1 except for mixing at a ratio of :1 (weight ratio)
When a composite material was produced in the same manner as above, the density of the composite material was 1.85 g/cj, and the bending strength was 18.1 to 9/-.
Claims (2)
クが形成される炭素繊維化可能な繊維に、炭化又は黒鉛
化可能なマトリックス原料を含浸し、炭化又は黒鉛化す
ることを特徴とする炭素−炭素複合材の製造方法。1. A carbon-carbon composite material, characterized in that at least fibers that can be made into carbon fibers, in which cavities or cracks are formed in the length direction by carbonization, are impregnated with a matrix material that can be carbonized or graphitized, and then carbonized or graphitized. manufacturing method.
る炭素繊維化可能な繊維が、断面ラジアル構造を有する
不融化処理したピッチ系繊維または低温炭化したピッチ
系繊維である請求項1記載の炭素−炭素複合材の製造方
法。2. The carbon-carbon according to claim 1, wherein the fibers capable of being made into carbon fibers in which cavities or cracks are formed in the length direction by carbonization are infusible pitch-based fibers having a cross-sectional radial structure or low-temperature carbonized pitch-based fibers. Method of manufacturing composite materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2132237A JPH0426547A (en) | 1990-05-22 | 1990-05-22 | Production of carbon reinforced carbon composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2132237A JPH0426547A (en) | 1990-05-22 | 1990-05-22 | Production of carbon reinforced carbon composite material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0426547A true JPH0426547A (en) | 1992-01-29 |
Family
ID=15076576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2132237A Pending JPH0426547A (en) | 1990-05-22 | 1990-05-22 | Production of carbon reinforced carbon composite material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0426547A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180031529A (en) * | 2016-09-20 | 2018-03-28 | 재단법인 한국탄소융합기술원 | Method of Pitch-based Carbon Paper for Fuel Cell Gas Diffusion Layer Using Re-impregnation of Binder Pitch at Low Temperature Carbonization Process and Carbon Paper by the Method |
CN108129158A (en) * | 2017-12-28 | 2018-06-08 | 湖南省鑫源新材料股份有限公司 | A kind of charcoal-charcoal thin-walled porous member and preparation method thereof |
-
1990
- 1990-05-22 JP JP2132237A patent/JPH0426547A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180031529A (en) * | 2016-09-20 | 2018-03-28 | 재단법인 한국탄소융합기술원 | Method of Pitch-based Carbon Paper for Fuel Cell Gas Diffusion Layer Using Re-impregnation of Binder Pitch at Low Temperature Carbonization Process and Carbon Paper by the Method |
KR101870523B1 (en) * | 2016-09-20 | 2018-07-20 | 재단법인 한국탄소융합기술원 | Method of Pitch-based Carbon Paper for Fuel Cell Gas Diffusion Layer Using Re-impregnation of Binder Pitch at Low Temperature Carbonization Process and Carbon Paper by the Method |
CN108129158A (en) * | 2017-12-28 | 2018-06-08 | 湖南省鑫源新材料股份有限公司 | A kind of charcoal-charcoal thin-walled porous member and preparation method thereof |
CN108129158B (en) * | 2017-12-28 | 2020-07-07 | 湖南省鑫源新材料股份有限公司 | Carbon-carbon thin-wall porous piece and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0335736B1 (en) | Process for producing carbon/carbon composites | |
JPS6118951B2 (en) | ||
USRE42775E1 (en) | Isotropic pitch-based materials for thermal insulation | |
JP2519042B2 (en) | Carbon-carbon composite material manufacturing method | |
JPH069270A (en) | Preparation of carbon/carbon composite material part using mesophase powder | |
JPH0426547A (en) | Production of carbon reinforced carbon composite material | |
RU2170220C1 (en) | Method of preparing carbon-carbon composite material | |
EP0656331B1 (en) | A method for preparing a carbon/carbon composite material | |
JP3058180B2 (en) | Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same | |
KR940010099B1 (en) | Process for producing carbon/carbon composite using coaltar-phenol resin | |
JP2001181062A (en) | Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same | |
JPH07100629B2 (en) | Method for manufacturing carbon / carbon composite material | |
JPH0822783B2 (en) | Method for manufacturing carbon / carbon composite material | |
JP2676211B2 (en) | Method for manufacturing carbon / carbon composite material | |
KR940006433B1 (en) | Process for the preparation of carbon/carbon composite | |
KR970007019B1 (en) | Process for the preparation of carbon fiber reinforced carbon composite using pitch | |
KR960004374B1 (en) | Process for the preparation of composite materials of carbon/carbon | |
JP2529148B2 (en) | Method for manufacturing carbon / carbon composite material | |
JPH03261661A (en) | Production of carbon fiber-reinforced carbon composite material | |
JPH03197360A (en) | Production of carbon fiber-reinforced carbon material | |
JP2003012374A (en) | Method of manufacturing carbon fiber reinforcing carbon material | |
JP2000169250A (en) | Production of carbon fiber reinforced carbon composite material | |
JP3220983B2 (en) | Method for producing carbon fiber reinforced carbon material | |
JPS62212262A (en) | Manufacture of carbon fiber reinforced carbon material | |
JPH0569061B2 (en) |