JPS62212262A - Manufacture of carbon fiber reinforced carbon material - Google Patents

Manufacture of carbon fiber reinforced carbon material

Info

Publication number
JPS62212262A
JPS62212262A JP61052679A JP5267986A JPS62212262A JP S62212262 A JPS62212262 A JP S62212262A JP 61052679 A JP61052679 A JP 61052679A JP 5267986 A JP5267986 A JP 5267986A JP S62212262 A JPS62212262 A JP S62212262A
Authority
JP
Japan
Prior art keywords
composite
impregnation
carbonization
impregnated
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61052679A
Other languages
Japanese (ja)
Inventor
正昭 田所
正治 竹原
政紀 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Corp
Priority to JP61052679A priority Critical patent/JPS62212262A/en
Publication of JPS62212262A publication Critical patent/JPS62212262A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は炭素繊維強化炭素材料の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing carbon fiber-reinforced carbon materials.

従来の技術 炭素繊維強化炭素材料(以下、C/Cコンポジットとい
う)は炭素繊維を補強材とし、炭素をマトリックスとし
た複合材料である。C/Cコンポジットは炭素繊維で強
化されているために従来の炭素材料にくらべ常温、高温
での機械的特性にまさり、また庁擦特性、熱伝導性、電
気伝導性、耐蝕性などもすぐれていることから、ロケッ
トノズル、航空機のブレーキディスクなどの宇宙航空機
部材として欠かせない材料となっている。このように応
用範囲の広いC/Cコンポジットの製造法としては現在
大別して2つの系統がある。
BACKGROUND ART A carbon fiber reinforced carbon material (hereinafter referred to as a C/C composite) is a composite material that uses carbon fiber as a reinforcing material and carbon as a matrix. Because C/C composites are reinforced with carbon fiber, they have superior mechanical properties at room and high temperatures compared to conventional carbon materials, and also have superior mechanical properties, thermal conductivity, electrical conductivity, and corrosion resistance. This makes it an essential material for spacecraft components such as rocket nozzles and aircraft brake discs. Currently, there are two main systems of manufacturing methods for C/C composites, which have a wide range of applications.

その1つはポリアクリロニトリルやレーヨンやピッチ系
繊維を炭化して得られる炭素繊維のトウ、クロス、フェ
ルトなどを簡単に成形した後、炉に入れて1000〜1
500℃に加熱し、そこへ炭化水素ガスを導入して分解
炭化させ、炭素を炭素繊維表面に沈着せしめてC/Cコ
ンポジットとする方法である(以下この方法をCVD法
と称する)。
One is to simply mold carbon fiber tow, cloth, felt, etc. obtained by carbonizing polyacrylonitrile, rayon, or pitch-based fibers, and then put it in a furnace to create a
This is a method of heating to 500° C., introducing hydrocarbon gas thereto, causing decomposition and carbonization, and depositing carbon on the surface of the carbon fibers to form a C/C composite (hereinafter, this method will be referred to as the CVD method).

CVD法は生産性が低く所定の密度を得るには多大な時
間を要し、また均一な、気孔の少ない炭素材料を得るに
はかなり高度な技術を要する(例えば、Carbon 
vol、B  P、 397〜403 、1988) 
The CVD method has low productivity and takes a long time to obtain a predetermined density, and requires quite advanced technology to obtain a uniform carbon material with few pores (for example, carbon
vol, BP, 397-403, 1988)
.

他の1つはポリアクリロニトリルやレーヨンやピッチ系
繊維を炭化して得られる)5素繊維のトウ、クロス、フ
ェルトなどに、フェノール樹脂等の炭素材原料の熱硬化
性樹脂を含浸させたプリプレグを積層し、加圧加熱し硬
化成形体とした後、非酸化性雰囲気で炭化処理をし、必
要ならば含浸処理、炭化処理を繰り返しC/Cコンポジ
ットとする方法である(以下この方法をレジン・チャー
法と称する)。
The other type is prepreg, which is made by impregnating five-component fiber tow, cloth, felt, etc. (obtained by carbonizing polyacrylonitrile, rayon, or pitch-based fibers) with a thermosetting resin made of carbon material such as phenol resin. After laminating and heating under pressure to form a hardened molded body, carbonization treatment is performed in a non-oxidizing atmosphere, and if necessary, impregnation treatment and carbonization treatment are repeated to form a C/C composite. (referred to as the Char method).

レジン・チャー法は、CVD法に比べ制約も少なく工業
的には有利であるが、所定の密度を得る為には含浸、炭
化を数回繰り返す必要がある。また含浸に用いる炭化可
能な樹脂は炭化収率がたかだか55%程度あり、含浸、
炭化回数を増しても、かさ密度の増加が含浸回数の展乗
則に従い、含浸効率がはなはだしく悪くなる。
The resin-char method has fewer restrictions than the CVD method and is industrially advantageous, but in order to obtain a predetermined density, it is necessary to repeat impregnation and carbonization several times. In addition, the carbonizable resin used for impregnation has a carbonization yield of about 55% at most.
Even if the number of times of carbonization is increased, the increase in bulk density follows the power law of the number of times of impregnation, and the impregnation efficiency becomes extremely poor.

発明が解決しようとする問題点 本発明の目的は、かかるレジン・チャー法において含浸
、炭化回数を削減し、効率良く緻密化を行い、C/Cコ
ンポジットを製造することにある。
Problems to be Solved by the Invention An object of the present invention is to reduce the number of times of impregnation and carbonization in the resin-char method, efficiently perform densification, and produce a C/C composite.

問題点を解決するための手段 本発明の方法は、炭素繊維で補強した炭素材原料からな
る成形体に、最初の炭化処理後、ピッチまたは熱硬化性
46111tiの含浸処理、炭化処理を1回行なった後
に、黒鉛化処理を行い、引き続いて含浸処理、炭化処理
を行なうことを特徴とするものである。
Means for Solving the Problems The method of the present invention involves impregnating pitch or thermosetting 46111ti and carbonizing a molded body made of a carbon material raw material reinforced with carbon fibers once after an initial carbonization treatment. After that, a graphitization treatment is performed, followed by an impregnation treatment and a carbonization treatment.

作用 次に本発明の内容をさらに詳細に説明する。action Next, the content of the present invention will be explained in more detail.

本発明で得られる最終製品であるC/Cコンポジットを
以下、C/Cコンポジット(製品)と称し、製造工程の
途中にある中間製品であるC/Cコンポジットを以下、
C/Cコンポジット(中間)と称する。
The C/C composite which is the final product obtained by the present invention is hereinafter referred to as C/C composite (product), and the C/C composite which is an intermediate product in the middle of the manufacturing process is hereinafter referred to as C/C composite (product).
It is called C/C composite (intermediate).

本発明に用いられる補強用の炭素繊維はポリアクリロニ
トリル系、レーヨン系、ピッチ系のいずれであってもよ
く、また炭素質、黒鉛質のいずれであってもよい、)2
素misの形態は、長さ0.05〜50腸諺程度の短繊
維であっても、連続繊維であっても使用できる。またク
ロスやフェルト、マットなどシート状の形態であっても
よい、上記炭素繊維は、マトリックス中にそのままの状
態で、または解繊された状態で全くランダムな方向を向
いてぃてもよいし、任意の特定の方向に向けて配列せし
められていてもよい。
The reinforcing carbon fiber used in the present invention may be polyacrylonitrile-based, rayon-based, or pitch-based, and may also be carbonaceous or graphite.)2
As for the form of the mis, either short fibers having a length of about 0.05 to 50 fibers or continuous fibers can be used. Further, the carbon fibers may be in the form of a sheet such as cloth, felt, or mat, and may be oriented in completely random directions in the matrix as they are or in a defibrated state. They may be arranged in any particular direction.

また、マトリックスとなる炭素材原料はフェノール樹脂
、フラン樹脂、ポリイミド樹脂等の熱硬化性樹脂や、塩
化ビニル樹脂等の熱可塑性樹脂や、含浸ピッチ、バイン
ダーピッチ等のピッチ類のいずれであってもよい。
In addition, the carbon material raw material that becomes the matrix may be any of thermosetting resins such as phenol resin, furan resin, and polyimide resin, thermoplastic resins such as vinyl chloride resin, and pitches such as impregnated pitch and binder pitch. good.

かかる炭素繊維または炭素繊維の構造物と、炭素材原料
とを組合せて成形材料とした後、プレス成形等を行い成
形体となし、さらにこれを非酸化性雰囲気中で炭化焼成
してC/Cコンポジット(中間)を得る。
After combining such carbon fibers or carbon fiber structures and a carbon material raw material to form a molding material, press molding or the like is performed to obtain a molded body, which is then carbonized and fired in a non-oxidizing atmosphere to form a C/C. Obtain composite (intermediate).

前記成形材料において、炭素繊維または炭素繊維構造物
は20〜80重量%、好ましくは40〜80重量%含有
されていることが望ましい。
In the molding material, it is desirable that the carbon fiber or carbon fiber structure is contained in an amount of 20 to 80% by weight, preferably 40 to 80% by weight.

炭素繊維が20重量%未満では、得られるC/Cコンポ
ジット(製品)の補強繊維が少なすぎる為、強度が低く
なる。一方90重量%を越えた場合にはマトリックスの
含有量が少なすぎる為、層間における剪断強度が低下し
、炭素繊維の補強効果が充分に発揮されない。
If the carbon fiber content is less than 20% by weight, the resulting C/C composite (product) will have too few reinforcing fibers, resulting in low strength. On the other hand, if it exceeds 90% by weight, the matrix content is too small, so the shear strength between the layers decreases, and the reinforcing effect of the carbon fibers is not fully exhibited.

本発明における成形体の成形法は公知の繊維強化プラス
チックの成形法が広く適用でき1例えばプレス成形法、
フィラメントワインディング法、ハンドレイアップ法、
真空バッグ法等がある。
As the molding method of the molded article in the present invention, known molding methods for fiber-reinforced plastics can be widely applied. For example, press molding method,
Filament winding method, hand layup method,
There are vacuum bag methods, etc.

得られた成形体は、窒素、アルゴン等の非酸化性雰囲気
中で800℃以上、好ましくは1000℃以上1500
℃以下の温度で炭化焼成してC/Cコンポジット(中間
)を得る。この場合、炭化時の昇温速度が速すぎると樹
脂の熱分解による収縮と、ガス発生が激しくなり、大き
な亀裂が発生しやすくなる。その為昇温速度は、通常1
00℃/hr以下、好ましくは20℃/hr以下が望ま
しい、所定の炭化温度に到達後、炭化のための保持時間
は通常5hrも行えば充分である。
The obtained molded body is heated at 800°C or higher, preferably at 1000°C or higher at 1500°C in a non-oxidizing atmosphere such as nitrogen or argon.
A C/C composite (intermediate) is obtained by carbonization firing at a temperature of 0.degree. C. or lower. In this case, if the temperature increase rate during carbonization is too fast, the resin will shrink due to thermal decomposition and gas generation will be intense, making it easy for large cracks to occur. Therefore, the heating rate is usually 1
After reaching a predetermined carbonization temperature, which is desirably 00° C./hr or less, preferably 20° C./hr or less, a holding time of 5 hr is usually sufficient for carbonization.

このようにして得られたC/Cコンポジット(中間)は
まだ気孔率がかなり大きく、高密度、高強度のC/Cコ
ンポジット(製品)を得る為には、さらにこのC/Cコ
ンポジット(中間)の空孔にピッチまたは炭化可能な熱
硬化性液状樹脂を含浸し、ふたたび非酸化性雰囲気で炭
化焼成し緻密化しなければならない。
The C/C composite (intermediate) obtained in this way still has a fairly large porosity, and in order to obtain a high-density, high-strength C/C composite (product), this C/C composite (intermediate) The pores must be impregnated with pitch or a carbonizable thermosetting liquid resin, and then carbonized and fired again in a non-oxidizing atmosphere to make it dense.

含浸工程では、該C/Cコンポジット(中間)を密閉容
器にいれ容器内を数十mmHg以下の減圧にして、内部
に残存している気体を追い出し、次に上記容器内にピッ
チまたは炭化可能な熱硬化性液状樹脂を流し込み、さら
に上記容器内を5〜1000kg′/crn’の圧力に
し、該C/Cm7ボジツト(中間)内に上記物質を含浸
する。
In the impregnation process, the C/C composite (intermediate) is placed in a closed container, the pressure inside the container is reduced to several tens of mmHg or less, the gas remaining inside is expelled, and then the pitch or carbonizable material is placed in the container. A thermosetting liquid resin is poured into the container, and the pressure in the container is increased to 5 to 1000 kg'/crn' to impregnate the C/Cm7 body (middle) with the substance.

含浸材料としては1通常ピッチ、またはフェノール樹脂
、フラン樹脂などの液状の熱硬化性樹脂が使用される。
As the impregnating material, pitch is usually used, or liquid thermosetting resin such as phenol resin or furan resin is used.

また、この場合粘度を調節する意味で上記物質を加熱し
ておいたり、溶媒で希釈しておいてもよい。
Further, in this case, the above substance may be heated or diluted with a solvent in order to adjust the viscosity.

しかし、この含浸工程に用いるピッチまたは樹脂は炭化
収率が55%程度であり単純に含浸、炭化を繰り返して
いては緻密化の効率は、はなはだしく悪くなる。
However, the pitch or resin used in this impregnation step has a carbonization yield of about 55%, and if impregnation and carbonization are simply repeated, the efficiency of densification will be extremely poor.

本発明では、含浸、炭化工程について検討した結果、含
浸、炭化工程に黒鉛化処理工程を組入れることにより、
含浸効率が著しく向上すること、さらに詳しくは第1回
目の含浸処理、炭化処理を行なった後に黒鉛化処理を施
すと、その後の含浸効率が最も良く向上することを見出
した。
In the present invention, as a result of studying the impregnation and carbonization processes, by incorporating a graphitization process into the impregnation and carbonization processes,
It has been found that the impregnation efficiency is significantly improved, and more specifically, the subsequent impregnation efficiency is improved best when the graphitization treatment is performed after the first impregnation treatment and carbonization treatment.

すなわち、本発明では、C/Cコンポジットの緻密化を
図る為に第1回目の含浸、炭化工程の後に、必ず黒鉛化
処理を施し、引き続き含浸処理、炭化処理を施すもので
あり、これにより効率良く緻密化を行ない、高密度、高
強度のC/Cコンポジットを得るものである。
That is, in the present invention, in order to densify the C/C composite, graphitization treatment is always performed after the first impregnation and carbonization process, and then impregnation treatment and carbonization treatment are performed, thereby improving efficiency. Good densification is achieved to obtain a high-density, high-strength C/C composite.

本発明における、黒鉛化処理は、アルゴン等の非酸化性
雰囲気中で1通常1600〜3000℃、望ましくは2
000〜3000℃で行う必要がある。所定の黒鉛化温
度に到達後の保持時間は通常1〜10hrである。
In the present invention, the graphitization treatment is carried out in a non-oxidizing atmosphere such as argon at a temperature of usually 1600 to 3000°C, preferably 2°C.
It is necessary to carry out the process at a temperature of 000 to 3000°C. The holding time after reaching a predetermined graphitization temperature is usually 1 to 10 hours.

また、該黒鉛化処理は第1回目の含浸、炭化処理を行な
った後に施すべきであり、2回以上続けて含浸、炭化処
理を行なった後に施したのでは効果が少なくなる。場合
によっては、2回以上含浸、炭化処理を行なった後に黒
鉛化すると、C/Cコンポジット(中間)に微細なりラ
ックがはいり体積膨張して、その後、含浸、炭化処理を
行っても1強度の向上が妨げられてしまうこともある。
Further, the graphitization treatment should be performed after the first impregnation and carbonization treatment, and if it is performed after two or more consecutive impregnation and carbonization treatments, the effect will be reduced. In some cases, if the C/C composite (intermediate) is graphitized after being impregnated and carbonized twice or more, the C/C composite (intermediate) will have fine racks and expand in volume, and even if it is impregnated and carbonized more than once, it will not have the same strength. Improvement may be hindered.

これはC/Cコンポジット(中間)が、炭素繊維、マト
リックス、含浸材料の3元系からなりたっており、黒鉛
化したときのそれぞれの黒鉛化性が異なることに起因す
るものと考えられる。つまり、3種類の黒鉛化性を持つ
物質を同時に黒鉛化する場合、黒鉛化時の体積収縮率の
違い等から、C/Cコンポジット(中間)に内部応力が
生じクラックが発生し体積膨張をするのであろう。
This is considered to be due to the fact that the C/C composite (intermediate) is composed of a ternary system of carbon fiber, matrix, and impregnated material, and the graphitizability of each component is different when graphitized. In other words, when three types of graphitizable substances are simultaneously graphitized, internal stress occurs in the C/C composite (intermediate) due to differences in volume shrinkage rate during graphitization, cracks occur, and volumetric expansion occurs. That's probably why.

本発明の場合、第1回目の含浸、炭化処理の後に黒鉛化
を施すものであるから、含浸材料の占める比率が低く、
この様な体積膨張も起こらない。
In the case of the present invention, since graphitization is performed after the first impregnation and carbonization treatment, the ratio of the impregnated material is low;
Such volume expansion does not occur.

黒鉛化処理を行なった後、引き続いて含浸処理、炭化処
理を行なう、この含浸処理は前述のC/Cコンボジフト
C中間)を含浸処理するのと同様に行なうことができる
。また、炭化処理は前述の成形体の炭化処理と同様に行
なうことができる。
After the graphitization treatment, impregnation treatment and carbonization treatment are subsequently performed. This impregnation treatment can be performed in the same manner as the impregnation treatment of the above-mentioned C/C combo dift C). Further, the carbonization treatment can be performed in the same manner as the carbonization treatment of the molded body described above.

また、本発明におけるC/Cコンポジットの製造工程の
最後で、必要に応じてさらに黒鉛化処理を行ってもよい
、これにより得られるC/Cコンポジット(製品)の耐
熱性、耐酸化性が向上する。
Furthermore, at the end of the manufacturing process of the C/C composite in the present invention, graphitization treatment may be further performed as necessary, thereby improving the heat resistance and oxidation resistance of the C/C composite (product) obtained. do.

以下、実施例に従って、本発明を説明する。Hereinafter, the present invention will be explained according to Examples.

実施例 実施例1 ポリアクリロニトリル系炭素繊維束(12000フイラ
メント)に、フェノール樹脂(AVライト RM−21
0)の30重量%メチルエチルケトン溶液を含浸、乾燥
し、これを301論に切断しプリプレグとした。
Examples Example 1 A polyacrylonitrile carbon fiber bundle (12000 filaments) was coated with phenol resin (AV Light RM-21
It was impregnated with a 30% by weight methyl ethyl ketone solution of 0), dried, and cut into 301 pieces to obtain a prepreg.

このプリプレグを金型にランダムに積層し、温度150
℃、圧力50kg/crn’でプレス成形し成形体を得
た。このとき得られた成形体の炭素繊維含有率は65重
量%であった。
This prepreg was laminated randomly in a mold, and the temperature was 150.
A molded body was obtained by press molding at a temperature of 50 kg/crn'. The carbon fiber content of the molded body obtained at this time was 65% by weight.

次に、この成形体を、窒素雰囲気中にて、3℃/hrの
昇温速度で1100℃まで昇温した後、育ちに徐冷して
マトリックスを炭化しC/Cコンポジット(中間)を得
た。
Next, this molded body was heated to 1100°C at a heating rate of 3°C/hr in a nitrogen atmosphere, and then gradually cooled to carbonize the matrix and obtain a C/C composite (intermediate). Ta.

さらに、このC/Cコンポジット(中間)にフラン樹1
’1l(AV;y()  RM−1000F)を減圧下
で含浸した後、 170℃で乾燥、硬化させた後、この
成形体を窒素雰囲気中、10℃/hrの昇温速度で65
0℃まで昇温した後、直ちに徐冷して、含浸したフラン
樹脂を完全に炭化させた。続いて、このC/Cコンポジ
ット(中間)をアルゴン雰囲気中にて、2000℃まで
昇温し、lhr保持して黒鉛化した。この黒鉛化したC
/Cコンポジット(中間)に前記と同様にフラン樹脂を
用いて、含浸、炭化工程をさらに1回繰り返しC/Cコ
ンポジット(製品)を得た。
Furthermore, Furan tree 1 is added to this C/C composite (middle).
'1l (AV;
After the temperature was raised to 0° C., it was immediately cooled slowly to completely carbonize the impregnated furan resin. Subsequently, this C/C composite (intermediate) was heated to 2000° C. in an argon atmosphere and maintained at 1 hr to graphitize it. This graphitized C
A furan resin was used for the C/C composite (intermediate) in the same manner as described above, and the impregnation and carbonization steps were repeated one more time to obtain a C/C composite (product).

比較例1 実施例1と同一条件で成形体を製造し、これを炭化して
C/Cコンポジット(中間)を得た0次にこのC/Cコ
ンポジット(中間)に実施例1と同一条件でフラン樹脂
を含浸し、硬化、炭化させた。このC/Cコンポジット
(中間)に上記含浸、炭化工程をさらに1回繰り返し、
緻密化した後、アルゴン雰囲気中、2000℃まで昇温
し、lhr保持して黒鉛化を行いC/Cコンポジット(
製品)を得た。
Comparative Example 1 A molded body was produced under the same conditions as in Example 1, and this was carbonized to obtain a C/C composite (intermediate). Next, this C/C composite (intermediate) was produced under the same conditions as in Example 1. Impregnated with furan resin, hardened and carbonized. The above impregnation and carbonization steps are repeated one more time on this C/C composite (intermediate),
After densification, the temperature was raised to 2000°C in an argon atmosphere and maintained for 1 hour to graphitize the C/C composite (
product) was obtained.

比較例2 実施例1と同一条件で成形体を製造し、これを炭化して
C/Cコンポジット(中間)を得た0次にこのC/Cコ
ンポジット(中間)に実施例1と同一条件でフラン樹脂
を含浸し、硬化、炭化させた。このC/Cコンポジット
(中間)に上記含浸、炭化工程をさらに2回繰り返し、
緻密化した後、アルゴン雰囲気中、2000℃まで昇温
し、1hr保持して黒鉛化を行いC/Cコンポジット(
製品)を得た。
Comparative Example 2 A molded body was produced under the same conditions as in Example 1, and this was carbonized to obtain a C/C composite (intermediate). Next, this C/C composite (intermediate) was produced under the same conditions as in Example 1. Impregnated with furan resin, hardened and carbonized. The above impregnation and carbonization steps were repeated two more times on this C/C composite (intermediate),
After densification, the temperature was raised to 2000°C in an argon atmosphere and maintained for 1 hour to graphitize the C/C composite (
product) was obtained.

得られたC/Cコンポジット(製品)の寸法、重量を測
定し、かさ密度を求めた。各々の結果を以下に示す。
The dimensions and weight of the obtained C/C composite (product) were measured, and the bulk density was determined. Each result is shown below.

実施例11.38   2     1    1.4
7比較例11.38   2     1    1.
41比較例21.38   3     1    1
.43実施例2 ポリアクリロニトリル系炭素繊維束(12000フイラ
メント)に、フェノール樹脂(AVライト RM−21
0)の30重量%メチルエチルケトン溶液を含浸、乾燥
し、これを5軸層に切断しプリプレグとした。
Example 11.38 2 1 1.4
7 Comparative Example 11.38 2 1 1.
41 Comparative Example 21.38 3 1 1
.. 43 Example 2 Phenol resin (AV Light RM-21
It was impregnated with a 30% by weight methyl ethyl ketone solution of 0), dried, and cut into 5-axis layers to obtain a prepreg.

このプリプレグを金型にランダムに積層し、温度150
℃、圧力50kg/cm″でプレス成形し成形体を得た
。このとき得られた成形体の炭素繊維含有率は88重量
%であった。
This prepreg was laminated randomly in a mold, and the temperature was 150.
℃ and a pressure of 50 kg/cm'' to obtain a molded body.The carbon fiber content of the molded body obtained at this time was 88% by weight.

次に、この成形体を、窒素雰囲気中にて、3℃/hrの
昇温速度でttoo℃まで昇温した後、直ちに徐冷して
マトリックスを炭化しC/Cコンポジット(中間)を得
た。
Next, this molded body was heated to ttoo°C at a heating rate of 3°C/hr in a nitrogen atmosphere, and then immediately slowly cooled to carbonize the matrix and obtain a C/C composite (intermediate). .

さらに、このC/Cコンポジット(中間)を含浸ピッチ
に浸漬し、減圧下で脱泡した後、圧カフkg/am″、
 200℃で含浸を行った。この成形体を窒素雰囲気中
、lθ℃/hrの昇温速度で850℃まで昇温した後、
直ちに徐冷して、含浸した含浸ピッチに完全に炭化させ
た。続いて、このC/Cコンポジット(中間)をアルゴ
ン雰囲気中にて、 2000℃まで昇温し、lhr保持
して黒鉛化した。この黒鉛化したC/Cコンポジット(
中間)に前記と同様に含浸ピッチを用いて、含浸、炭化
工程をさらに1回繰り返しC/Cコンポジット(製品)
を得た。
Furthermore, after immersing this C/C composite (intermediate) in impregnated pitch and defoaming under reduced pressure, the pressure cuff kg/am'',
Impregnation was carried out at 200°C. After heating this compact to 850°C at a temperature increase rate of lθ°C/hr in a nitrogen atmosphere,
Immediately, it was slowly cooled to completely carbonize the impregnated pitch. Subsequently, this C/C composite (intermediate) was heated to 2000° C. in an argon atmosphere and maintained for 1 hour to graphitize it. This graphitized C/C composite (
Using impregnated pitch in the same manner as above, the impregnation and carbonization steps are repeated one more time to form a C/C composite (product).
I got it.

比較例3 実施例2と同一条件で成形体を製造し、これを炭化して
C/Cコンポジット(中間)を得た0次にこのC/Cコ
ンポジット(中間)に実施例2と同一条件で含浸ピッチ
を含浸し、炭化させた。このC/Cコンポジット(中間
)に上記含浸、炭化工程をさらに1回繰り返し、緻密化
した後、アルゴン雰囲気中、 2000℃まで昇温し、
lhr保持して黒鉛化を行いC/Cコンポジット(製品
)を得た。
Comparative Example 3 A molded body was produced under the same conditions as Example 2, and this was carbonized to obtain a C/C composite (intermediate). Next, this C/C composite (intermediate) was produced under the same conditions as Example 2. Impregnated pitch was impregnated and carbonized. The above impregnation and carbonization steps were repeated one more time on this C/C composite (intermediate) to densify it, and then the temperature was raised to 2000°C in an argon atmosphere.
Graphitization was performed while maintaining lhr to obtain a C/C composite (product).

比較例4 実施例2と同一条件で成形体を製造し、これを炭化して
C/Cコンポジット(中間)を得た0次にこのC/Cコ
ンポジット(中間)に実施例2と同一条件で含浸ピッチ
を含浸し、炭化させた。このC/Cコンポジット(中間
)に上記含浸、炭化工程をさらに2回繰り返し、緻密化
した後、アルゴン雰囲気中、2000℃まで昇温し、l
hr保持して黒鉛化を行いC/Cコンポジット(製品)
を得た。
Comparative Example 4 A molded body was produced under the same conditions as in Example 2, and this was carbonized to obtain a C/C composite (intermediate). Next, this C/C composite (intermediate) was produced under the same conditions as in Example 2. Impregnated pitch was impregnated and carbonized. This C/C composite (intermediate) was subjected to the above impregnation and carbonization steps two more times to make it densified, and then heated to 2000°C in an argon atmosphere.
C/C composite (product) after graphitization with hr retention
I got it.

得られたC/Cコンポジット(製品)の寸法、重量を測
定し、かさ密度を求めた。各々の結果を以下に示す。
The dimensions and weight of the obtained C/C composite (product) were measured, and the bulk density was determined. Each result is shown below.

実施例21.39   2     1    1.5
8比較例31.39   2     1    1.
52比較例41.39   3     1    1
.5111実施例3 ポリアクリロニトリ)し系炭素繊維束(12000フイ
ラメント)に、フェノール樹脂(AVライト RM−2
10)の30重量%メチルエチルケトン溶液を含浸、乾
燥し、これを20m脂に切断しプリプレグとした。
Example 21.39 2 1 1.5
8 Comparative Example 31.39 2 1 1.
52 Comparative Example 41.39 3 1 1
.. 5111 Example 3 Phenol resin (AV Light RM-2
It was impregnated with 30% by weight methyl ethyl ketone solution of 10), dried, and cut into 20 m thick pieces to obtain prepregs.

このプリプレグを金型にランダムに積層し、温度150
℃、圧力50kg/ctn’でプレス成形し成形体を得
た。このとき得られた成形体の炭素繊維含有率は68重
量%であった。
This prepreg was laminated randomly in a mold, and the temperature was 150.
A molded body was obtained by press molding at a temperature of 50 kg/ctn'. The carbon fiber content of the molded article obtained at this time was 68% by weight.

次に、この成形体を、窒素雰囲気中にて、10°C/h
rの昇温速度で850℃まで昇温した後、直ちに徐冷し
てマトリックスを炭化しC/Cコンポジット (中間)
を得た。
Next, this molded body was heated at 10°C/h in a nitrogen atmosphere.
After raising the temperature to 850°C at a heating rate of r, immediately cool slowly to carbonize the matrix and create a C/C composite (intermediate)
I got it.

さらに、このC/Cコンポジット(中間)にフラン樹脂
(AVライト RM−1000F)を減圧下で含浸した
後、 170℃で乾爆、硬化させた後、この成形体を窒
素雰囲気中、 10℃/hrの昇温速度で850℃まで
昇温した後、直ちに徐冷して、含浸したフラン樹脂を完
全に炭化させた。続いて、このC/Cコンポジット(中
間)をアルゴン雰囲気中にて、 2000℃まで昇温し
、1hr保持して黒鉛化した。この黒鉛化したC/Cコ
ンポジット(中間)に前記と同様にフラン樹脂を用いて
、含浸、炭化工程をさらに2回繰り返した後、前記と同
様に2000℃で黒鉛化を行いC/Cコンポジット(製
品)を得た。
Furthermore, this C/C composite (intermediate) was impregnated with furan resin (AV Light RM-1000F) under reduced pressure, and after dry explosion and curing at 170°C, this molded body was heated at 10°C/10°C in a nitrogen atmosphere. After the temperature was raised to 850° C. at a temperature increase rate of hr, it was immediately slowly cooled to completely carbonize the impregnated furan resin. Subsequently, this C/C composite (intermediate) was heated to 2000° C. in an argon atmosphere and maintained for 1 hr to graphitize it. This graphitized C/C composite (intermediate) was subjected to the impregnation and carbonization steps two more times using furan resin in the same manner as described above, and then graphitized at 2000°C in the same manner as described above to form a C/C composite ( product) was obtained.

比較例5 実施例3と同一条件で成形体を製造し、これを炭化して
C/Cコンポジット(中間)を得た0次にこのC/Cコ
ンポジット(中間)に実施例3と同一条件でフラン樹脂
を含浸し、硬化、炭化させた。このC/Cコンポジット
(中間)に上記含浸、炭化工程をさらに1回繰り返し、
緻密化した後、アルゴン雰囲気中、2000℃まで昇温
し、1hr保持して黒鉛化を行いC/Cコンポジット(
中間)を得た。この黒鉛化したC/Cコンポジット(中
間)に前記と同様にフラン樹脂を用いて、含浸、炭化工
程をさらに2回繰り返した後、前記と同様に2000℃
で黒鉛化を行いC/Cコンポジット(製品)を得た。
Comparative Example 5 A molded body was produced under the same conditions as in Example 3, and this was carbonized to obtain a C/C composite (intermediate). Next, this C/C composite (intermediate) was produced under the same conditions as in Example 3. Impregnated with furan resin, hardened and carbonized. The above impregnation and carbonization steps are repeated one more time on this C/C composite (intermediate),
After densification, the temperature was raised to 2000°C in an argon atmosphere and maintained for 1 hour to graphitize the C/C composite (
intermediate) was obtained. This graphitized C/C composite (intermediate) was subjected to the impregnation and carbonization steps two more times using furan resin in the same manner as above, and then heated to 2000°C in the same manner as above.
Graphitization was performed to obtain a C/C composite (product).

得られたC/Cコンポジット(製品)ニついて、かさ密
度をδ11定するとともに、常温にて3点曲げ試験を行
った。各々の測定結果を以下に示す。
The bulk density of the obtained C/C composite (product) was determined by δ11, and a three-point bending test was conducted at room temperature. The results of each measurement are shown below.

(以下余白) 初期 合剤 黒鉛化 かさ密度 曲げ強資密度 回  
回数  (g/cc)  (kg/mm’実施例3 1
.32 3   2   1.48   7.72比較
例5 1.32 4   2   1.48   5.
15発明の効果 以上のように、本発明の方法によると、C/Cコンポジ
ットの製造法において、従来の技術に比べて、含浸処理
、炭化処理の効率が著しく向上する。そのため少ない、
含浸、炭化回数で高密度で、かつ高強度のC/Cコンポ
ジットを製造することができる。
(Left below) Initial mixture Graphitization Bulk density Bending reinforcement density Times
Number of times (g/cc) (kg/mm'Example 3 1
.. 32 3 2 1.48 7.72 Comparative Example 5 1.32 4 2 1.48 5.
15 Effects of the Invention As described above, according to the method of the present invention, the efficiency of impregnation treatment and carbonization treatment is significantly improved in the manufacturing method of C/C composite compared to the conventional technology. Therefore, there are few
A C/C composite with high density and high strength can be manufactured by repeating impregnation and carbonization.

さらに本発明の方法では、製造工程の短縮化をはかるこ
とができ、省エネルギーの点で有利であるとともに、安
価にC/Cコンポジットを製造することができる。
Furthermore, the method of the present invention can shorten the manufacturing process, is advantageous in terms of energy saving, and can manufacture C/C composites at low cost.

代理人弁理士  井 上 雅 生 手続補正書 昭和61年 4月 7日Representative Patent Attorney Masao Inoue Procedural amendment April 7, 1986

Claims (1)

【特許請求の範囲】[Claims]  炭素繊維で補強した炭素材原料からなる成形体に、最
初の炭化処理後、ピッチまたは熱硬化性液状樹脂の含浸
処理、炭化処理を1回施した後、黒鉛化処理を行い、さ
らに引き続いて含浸処理、炭化処理をすることを特徴と
する炭素繊維強化炭素材料の製造方法。
A molded body made of carbon material reinforced with carbon fibers is first carbonized, then impregnated with pitch or thermosetting liquid resin, carbonized once, graphitized, and then impregnated. A method for producing a carbon fiber-reinforced carbon material, the method comprising carbonization treatment.
JP61052679A 1986-03-12 1986-03-12 Manufacture of carbon fiber reinforced carbon material Pending JPS62212262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61052679A JPS62212262A (en) 1986-03-12 1986-03-12 Manufacture of carbon fiber reinforced carbon material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61052679A JPS62212262A (en) 1986-03-12 1986-03-12 Manufacture of carbon fiber reinforced carbon material

Publications (1)

Publication Number Publication Date
JPS62212262A true JPS62212262A (en) 1987-09-18

Family

ID=12921567

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61052679A Pending JPS62212262A (en) 1986-03-12 1986-03-12 Manufacture of carbon fiber reinforced carbon material

Country Status (1)

Country Link
JP (1) JPS62212262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047133A (en) * 2012-09-03 2014-03-17 Agency For Defence Development Carbon composite material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969410A (en) * 1982-10-13 1984-04-19 Nissan Motor Co Ltd Manufacture of composite carbon-carbon material
JPS6054270A (en) * 1983-08-31 1985-03-28 Sanyo Electric Co Ltd Soldering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5969410A (en) * 1982-10-13 1984-04-19 Nissan Motor Co Ltd Manufacture of composite carbon-carbon material
JPS6054270A (en) * 1983-08-31 1985-03-28 Sanyo Electric Co Ltd Soldering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014047133A (en) * 2012-09-03 2014-03-17 Agency For Defence Development Carbon composite material

Similar Documents

Publication Publication Date Title
US5071700A (en) Carbon fiber-reinforced carbon composite material
US3462289A (en) Process for producing reinforced carbon and graphite bodies
EP0335736B1 (en) Process for producing carbon/carbon composites
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JPH069270A (en) Preparation of carbon/carbon composite material part using mesophase powder
US5554354A (en) Carbon fiber-reinforced carbon composite material and process for producing the same
GB2112827A (en) Carbon fiber materials
JPS62212262A (en) Manufacture of carbon fiber reinforced carbon material
USH420H (en) Co-pyrolysis process for forming carbonized composite bodies
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JP2002255664A (en) C/c composite material and production method therefor
KR940010099B1 (en) Process for producing carbon/carbon composite using coaltar-phenol resin
JP3288433B2 (en) Carbon fiber reinforced carbon composite precursor
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3058180B2 (en) Boron carbide-containing carbon fiber reinforced carbon composite material, method for producing the same, and hot press material using the same
JPH04160059A (en) Production of carbon fiber reinforcing carbon composite material
JPH0255393B2 (en)
JP2594952B2 (en) Molded heat insulating material and its manufacturing method
JPH03261661A (en) Production of carbon fiber-reinforced carbon composite material
JPH04284363A (en) Manufacture of carbon plate
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JP2676211B2 (en) Method for manufacturing carbon / carbon composite material
JPH03109266A (en) Carbon fiber reinforced carbon composite material
JPH0352426B2 (en)
JP2762461B2 (en) Method for producing carbon fiber reinforced carbon composite