JPH03150266A - Production of carbon/carbon composite material - Google Patents

Production of carbon/carbon composite material

Info

Publication number
JPH03150266A
JPH03150266A JP1289723A JP28972389A JPH03150266A JP H03150266 A JPH03150266 A JP H03150266A JP 1289723 A JP1289723 A JP 1289723A JP 28972389 A JP28972389 A JP 28972389A JP H03150266 A JPH03150266 A JP H03150266A
Authority
JP
Japan
Prior art keywords
carbon
powder
composite material
paper
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1289723A
Other languages
Japanese (ja)
Inventor
Hideo Ono
英雄 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akechi Ceramics Co Ltd
Original Assignee
Akechi Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akechi Ceramics Co Ltd filed Critical Akechi Ceramics Co Ltd
Priority to JP1289723A priority Critical patent/JPH03150266A/en
Publication of JPH03150266A publication Critical patent/JPH03150266A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain carbon/carbon composite material having high density and strength in reduced porosity in carbonization by subjecting finely cut carbon fiber, carbonaceous powder and matrix precursor powder to humid paper making, laminating the these ingredient-mixed paper and heating and forming the laminate under pressure and then subjecting the formed article to carbonization burning. CONSTITUTION:A mixture consisting of (A) 20-80wt.%, preferably 30-60wt.% carbon based fiber (having 5-20mum, preferably 7-13mum diameter and 0.3-20mm, preferably 3-10mm fiber length) such as shortly cut PAN based, pitch based or rayon based carbon fiber, (B) 5-40wt.%, preferably 15-30wt.% carbonaceous powder (having >=90wt.% residual carbon content and 0.1-50mum grain size) and (C) 20-50wt.%, preferably 30-40wt.% matrix precursor powder (e.g. powdery phenol resin or powdery pitch which has 0.1-50mum grain size) is subjected to wet type paper making (paper thickness: 0.2-0.5mm). Then plurality of the mixed papers are laminated, heated, formed and then carbonized and burned in non- oxidizing atmosphere at 800-1000 deg.C to provide the carbon/carbon composite material useful as a rocket nozzle, brake, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高密度・高強度を有する炭素/炭素複合材料
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a carbon/carbon composite material having high density and high strength.

(従来の技術) 炭S/炭素複合材料(以下%コンポジットと称す)は、
高い機械強度、耐熱性、耐衝撃性、化学安定性などの優
れた特性を有する炭素繊維で強化された炭素材料であり
、近年ではロケットノズルブレーキ材、熱間構造材料な
どとして利用されてきている。
(Prior art) Charcoal S/carbon composite material (hereinafter referred to as % composite) is
A carbon material reinforced with carbon fiber that has excellent properties such as high mechanical strength, heat resistance, impact resistance, and chemical stability.In recent years, it has been used as rocket nozzle brake material, hot structural material, etc. .

従来%コンポジットの製造方法としては、先ず炭素繊維
を布、フェルト、紙状に加工した基材にフェノール樹脂
やフラン樹脂といった熱硬化性樹層液を含浸するか、ピ
ッチなどの熱可塑性樹脂を含浸してプリブレーグを得、
このプリブレーグを必要厚さになるよう積層し、加熱・
加圧成形することで成形体を得る。そして後に該成形体
を非酸化性雰囲気中aoo −iooo℃で焼成して該
成形体のマトリックス部を炭素化するものである。しか
しこの時点での焼成体は空隙を多く含み、強度が低いた
め実用的な¥コンポジットではない、そのため該焼成体
にマトリックス前駆体樹脂の再含浸炭素化を数度繰り返
し、高密度化、高強度化するか。
Conventional methods for manufacturing composites include first impregnating a base material made of carbon fiber into cloth, felt, or paper with thermosetting resin such as phenol resin or furan resin, or impregnating it with thermoplastic resin such as pitch. and get prebrag,
This prebrag is laminated to the required thickness, heated and
A molded body is obtained by pressure molding. Afterwards, the molded body is fired at aoo-iooo°C in a non-oxidizing atmosphere to carbonize the matrix portion of the molded body. However, the fired body at this point contains many voids and has low strength, so it is not a practical composite. Therefore, the fired body is re-impregnated with matrix precursor resin and carbonized several times to increase density and strength. Will it become?

あるいはメタン、ベンゼンなどの炭化水素ガスを熱分解
した炭素を該焼成体空隙に沈着させ高密度。
Alternatively, carbon obtained by thermally decomposing hydrocarbon gas such as methane or benzene is deposited in the voids of the fired body to achieve high density.

高強度化を行っている。We are increasing the strength.

(発明が解決しようとする問題点》 しかしこのような¥コンポジットの緻密化処理には長時
間を要し、高度の技術や設備を必要とするため、得られ
る¥コンポジットは非常に高価なものになる欠点があっ
た。ところでこのような緻密化処理を少しでも短縮、省
略する試みとしてマトリックス前駆体樹脂にあらかじめ
、固形炭素粉末を添加する方法が検討されている。
(Problem to be solved by the invention) However, the densification process of such composites takes a long time and requires advanced technology and equipment, making the resulting composites very expensive. By the way, as an attempt to shorten or omit such densification processing even a little, a method of adding solid carbon powder to the matrix precursor resin in advance is being considered.

この試みの目的とするところは、マトリックス前駆体樹
脂の炭素化収率が50〜60%であり。
The aim of this trial is to achieve a carbonization yield of 50-60% for the matrix precursor resin.

炭素化時には樹脂部の約半分の体積が空隙になってしま
うため、マトリックス前駆体の炭素化収率を炭素を添加
することで上げ、それによって炭素化時の空隙量を減じ
、高密度・高強度の¥コンポジットを得ようとする点に
ある。
During carbonization, about half of the volume of the resin part becomes voids, so adding carbon increases the carbonization yield of the matrix precursor, thereby reducing the amount of voids during carbonization, resulting in high density and high The point is to try to obtain a composite of strength.

この方法によれば、炭素粉末をマトリックス前駆体樹脂
液中に分散させ、その混合液中に炭素繊維基材を浸漬、
含没するか、炭素繊維基材にこの混合液をコーティング
してプリプレーグを作製し常法に従い成形焼成して¥コ
ンポジットを得るものであるか、あるいは粉末状のマト
リックス前駆体樹脂を用いる場合は、炭素粉末と機械混
合し、炭素繊維基材の積層間にこの混合粉をサンドイン
チ状に挿入し、加熱・加圧によって樹脂部を軟化させ成
形体を得て後に焼成して¥コンポジットを得るものであ
る。
According to this method, carbon powder is dispersed in a matrix precursor resin liquid, and a carbon fiber base material is immersed in the mixed liquid.
If a composite is obtained by impregnating or coating a carbon fiber base material with this mixture to prepare a prepreg and then molding and firing it according to a conventional method, or if a powdered matrix precursor resin is used, Mechanically mixed with carbon powder, inserting this mixed powder between the laminated layers of carbon fiber base material in the form of a sandwich, softening the resin part by heating and pressurizing to obtain a molded body, and then firing it to obtain a composite. It is.

しかしながらこの方法では炭素繊維の単繊維間にまで充
てん材である炭素粉末を浸透させることがむつかしく、
炭素繊維基材表面部に過剰の戻素粉が付着してしまうも
のである。つまりこれは戻素繊維基材がちょうどフィル
ターの役目を成し。
However, with this method, it is difficult to penetrate the carbon powder, which is a filler, between the single fibers of carbon fiber.
Excessive return powder adheres to the surface of the carbon fiber base material. In other words, the returned fiber base material plays the role of a filter.

!2素繊維基材表面部には多量の炭素粉末が埋積するが
、基材の中心部はど炭素粉末の浸透が悪くなるためであ
る。
! This is because a large amount of carbon powder is buried on the surface of the bicomponent fiber base material, but penetration of the carbon powder becomes poor in the center of the base material.

この傾向は樹脂粉末と炭素粉末を炭素繊維基材層間に挿
入した場合に強く生じている。
This tendency occurs strongly when resin powder and carbon powder are inserted between carbon fiber base material layers.

このようにして得られる成形体の断面を観察すると、炭
素繊維リッチな層とマトリックス前駆体リッチな層が交
互に積層されているのがわかる。
When observing the cross section of the molded article thus obtained, it can be seen that carbon fiber-rich layers and matrix precursor-rich layers are alternately laminated.

またこの成形体を炭素化処理を行う際には、炭素繊維リ
ッチな部位とマトリックス前駆体リッチな部位での収縮
率が異なるため、戻素繊維基材間での収縮差に起因する
応力によって歪が生じ、このため炭素繊維基材同士の接
合力が低下してしまう。
In addition, when carbonizing this molded body, since the shrinkage rate is different between the carbon fiber-rich area and the matrix precursor-rich area, it becomes strained due to stress caused by the difference in shrinkage between the returned fiber base materials. occurs, and therefore the bonding force between the carbon fiber base materials decreases.

その結果として得られる¥コンポジットは層間剪断応力
が低く、実用に適さないものになってしまう。
The resulting composite has low interlaminar shear stress, making it unsuitable for practical use.

(問題点を解決するための手段と作用)このような従来
の製造方法の状況に鑑み−本願発明者らは炭素系繊維単
繊維間へも充分に充てん材である炭素質粉末を浸透させ
、炭素系a!II基材の表面部位でも中心部位でも均一
に炭素質粉末が配置されたプリプレーグを用いることで
、高密度・高強度の¥コンポジットを得る方法について
研究検討を重ね、この発明の成功に至った。
(Means and effects for solving the problem) In view of the situation of the conventional manufacturing method, the inventors of the present application have infiltrated carbonaceous powder, which is a filler, into the spaces between carbon fiber single fibers, Carbon-based a! By using a prepreg in which carbonaceous powder is uniformly arranged both on the surface and in the center of the II base material, we conducted repeated research and study on a method of obtaining a high-density, high-strength composite, which led to the success of this invention.

この発明によれば、湿式抄紙法の技術を応用して短く切
断した炭素繊維または/及び炭素化することで強靭な炭
素繊維に変換する有機繊維と炭素分90重量%以上の炭
素質粉末及びマトリックス前駆体樹脂粉末を任意の割合
で大量の水中で混合撹拌し抄紙することで得られる混抄
紙を積層し加熱・加圧成形した後、非酸化性雰囲気中に
て炭素化焼成して高密度・高強度の¥コンポジットを得
ることが可能になったのである。
According to this invention, carbon fibers cut into short lengths by applying wet papermaking technology and/or organic fibers that are converted into strong carbon fibers by carbonization, carbonaceous powder with a carbon content of 90% by weight or more, and a matrix. Mixed paper obtained by mixing and stirring precursor resin powder in a large amount of water in arbitrary proportions and making paper is laminated, heated and pressure molded, and then carbonized and fired in a non-oxidizing atmosphere to form a high-density paper. This made it possible to obtain a high-strength composite.

改にこの発明をさらに詳しく説明する。This invention will now be explained in more detail.

この発明に用いることができる戻素系繊維とはPAN系
、ピッチ系、レーヨン系などあらゆる炭素繊雄であって
もよく、また800〜1000℃の非酸化性雰囲気中で
熱処理することで強靭な炭素繊維に変換可能な有機繊維
であってもよい、さらにこれら炭all誰、有機繊維を
任意の割合で混合して用いてもよい、またこれら炭素系
繊維は直径が5〜20μ■、さらに好ましくは7〜13
μ■であり、繊維長がOJ〜20■である。なお繊維長
が20−以上では抄紙時の作業性が悪く、繊維同士がか
らみ合い均質の抄紙を得難く、また0、3■以下では繊
維同士のからみはなく、均質な抄紙を得ることが可能で
あるが、繊維の強化効果が少なく、従って得られる¥コ
ンポジットの強度が低くなってしまう、さらに好ましく
は3〜10mの範囲の繊維を用いた時に得られる¥コン
ポジットの強度が最大値をとることが確認された。
The reconstituted fibers that can be used in this invention may be any carbon fibers such as PAN, pitch, and rayon fibers, and can be made tough by heat treatment in a non-oxidizing atmosphere at 800 to 1000°C. Organic fibers that can be converted into carbon fibers may be used.Furthermore, these carbon fibers and organic fibers may be mixed in any proportion, and these carbon fibers preferably have a diameter of 5 to 20μ. is 7-13
μ■, and the fiber length is OJ~20μ. If the fiber length is 20 mm or more, the workability during paper making is poor, and the fibers become entangled with each other, making it difficult to make a homogeneous paper.If the fiber length is less than 0.3 mm, there is no entanglement between the fibers, making it possible to make a homogeneous paper. However, the reinforcing effect of the fibers is small, and therefore the strength of the composite obtained is low.More preferably, the strength of the composite obtained is maximum when fibers in the range of 3 to 10 m are used. was confirmed.

次にMls質粉末は炭素残分9G重量%以上の粉体が好
ましい。
Next, it is preferable that the Mls powder has a carbon residue of 9G% by weight or more.

揮発成分が多量に含まれる粉体では、戻素化焼成時の粉
体粒子の変形や収縮が大きく、マトリックス中に残留応
力として欠陥を生じさせる可能性がある。また不純元素
、例えばAj、、Si、Feなどを多量に含む粉体では
¥コンポジットの特徴である耐熱性に悪影響を及ぼすも
のである。従ってより好適な炭素質粉末とは、揮発成分
が少なく戻素純度が高い程よく、たとえばカーボンブラ
ック。
If the powder contains a large amount of volatile components, the powder particles will be significantly deformed or shrunk during firing for back-elementation, which may cause defects as residual stress in the matrix. Further, powder containing a large amount of impurity elements such as Aj, Si, Fe, etc. has a negative effect on the heat resistance, which is a characteristic of the composite. Therefore, a more suitable carbonaceous powder is carbon black, which has less volatile components and higher purity.

コークス、人造黒鉛などが好適である。また炭素質粉末
の粒子径は細かい程%コンポジット組織中に均一分散さ
れるが、実用上0.1〜50μ■が好ましい。
Coke, artificial graphite, etc. are suitable. Furthermore, the finer the particle size of the carbonaceous powder, the more uniformly it will be dispersed in the composite structure, but in practice it is preferably 0.1 to 50 μm.

一方マトリックス前駆体樹脂粉末は、炭素繊維基材に分
散後、成形時には加熱することで軟化し。
On the other hand, the matrix precursor resin powder is softened by heating during molding after being dispersed in the carbon fiber base material.

加圧して炭素繊維基材を強固な成形体にすることが可能
な樹脂粉末である。またこの粉末は抄紙処理時には固相
状態をとっているものでなくてはならず、分散溶媒であ
る水に対し溶解しないことが望ましい、もし抄紙時にこ
の樹脂分が水に溶解してしまうと、抄紙後、液化してい
る樹脂分が炭素繊維基材中に不均一に配置される可能性
があるためである。
It is a resin powder that can be pressurized to make a carbon fiber base material into a strong molded body. In addition, this powder must be in a solid state during papermaking, and it is desirable that it does not dissolve in water, which is a dispersion solvent.If this resin dissolves in water during papermaking, This is because, after papermaking, the liquefied resin may be unevenly arranged in the carbon fiber base material.

要するに該基材中でマトリックス前駆体*a濃度が異な
っている場合、炭素化焼成時において収縮による内部歪
が生じ、得られる¥コンポジットの強度を低下させてし
まう原因になるためである。
In short, if the matrix precursor*a concentration is different in the base material, internal strain will occur due to shrinkage during carbonization firing, which will cause a decrease in the strength of the resulting composite.

これら条件に適合したマトリックス前駆体樹脂は粉末フ
ェノール樹脂あるいは粉末ピッチが好適であり−その敦
度は0.1〜50ミ腫が好ましい。
The matrix precursor resin that meets these conditions is preferably a powdered phenolic resin or powdered pitch, and its hardness is preferably from 0.1 to 50 mm.

さらにこれら炭素系繊維、炭素質粉末、マトリクスfa
W体樹脂粉末の混合比は高密度−高強度の¥コンポジッ
トを得るため表−lに示す範囲の配合が好ましい。
Furthermore, these carbon fibers, carbonaceous powder, matrix fa
The mixing ratio of the W-body resin powder is preferably within the range shown in Table 1 in order to obtain a high-density-high-strength composite.

表−l      (重量%》 1           l 一般の範囲 1好ましい
範囲 11x秦系繊維 120〜80130〜6011
IR素質粉末 15〜40115〜3011マトリック
ス前駆体樹脂1 20〜50130〜401これら原料
は大量の水中に分散混合し均一な混合液を得るため界面
活性剤と抄紙の形状保持性と添加物の定着力を付加する
ためポリビニルアルコール(PVA)などの有機バイン
ダーを若干量添加することができる。
Table-l (Weight %) 1 l General range 1 Preferred range 11x Qin fiber 120-80130-6011
IR elemental powder 15-40115-3011 Matrix precursor resin 1 20-50130-401 These raw materials are dispersed and mixed in a large amount of water to obtain a uniform mixed solution. Some amount of an organic binder such as polyvinyl alcohol (PVA) can be added to add .

抄紙方法は従来法と同様でよいが、作製する混抄紙の紙
厚は、作業性、能率面からO,l閣以上が好ましく、混
抄紙内の均一性の面からl■以下が好ましい、紙厚をl
−以上とした場合、分散水の乾燥が困難になったり、混
抄紙内に不均一なボイドを生ずる危険性がある。なお好
適な紙厚の範囲としては0.2〜0.5−である。
The paper making method may be the same as the conventional method, but the paper thickness of the mixed paper to be produced is preferably 0.1 or more from the viewpoint of workability and efficiency, and preferably 1 or less from the viewpoint of uniformity within the mixed paper. Thickness l
- In the case of above, there is a risk that drying of the dispersion water becomes difficult and non-uniform voids are generated in the mixed paper. Note that a suitable paper thickness range is 0.2 to 0.5-.

混抄紙は充分に水切りを行ってからドライヤーなどでゆ
っくりと加熱乾燥させ完全に脱水してプリプレーグとし
て扱うことができる。そして得られたプリプレーグの断
面は炭素系繊維間に均一に炭素質粉末とマトリックス前
駆体樹脂粉末が定着しておりブリプレーグ表面部位、中
心部位での組成は同等となっている。
The mixed paper can be treated as prepreg by thoroughly draining the water and then slowly heating and drying it with a dryer etc. to completely dehydrate it. In the cross section of the obtained prepreg, the carbonaceous powder and matrix precursor resin powder are uniformly fixed between the carbon fibers, and the compositions at the surface and center of the prepreg are the same.

次いでプリプレーグを切断・積層し、従来法と同様にし
て加熱、加圧成形し、成形体を得る。フェノール樹脂粉
末をマトリックス前駆体に選んだ場合は、 150〜1
80℃の金型中に150〜250kg/aJで加圧して
成形物を得、さらに200℃程度で後硬化すればよい。
Next, the prepreg is cut and laminated, and heated and pressure molded in the same manner as conventional methods to obtain a molded body. If phenolic resin powder is selected as the matrix precursor, 150-1
A molded product may be obtained by pressurizing the molded product at 150 to 250 kg/aJ in a mold at 80°C, and then post-curing at about 200°C.

またピッチを選ぶ場合は、ピッチ軟化点近辺の温度で加
圧して成形体を得、必要に応じて不融化処理を行えばよ
い。
In addition, when selecting the pitch, it is sufficient to pressurize at a temperature near the pitch softening point to obtain a molded body, and perform an infusibility treatment as necessary.

こうして得られた成形体は非酸化性雰囲気中。The molded body thus obtained is placed in a non-oxidizing atmosphere.

800〜1000℃で炭素化焼成することで¥コンポジ
ット化することができる。
It can be made into a composite by carbonizing and firing at 800 to 1000°C.

またさらに物性値の向上のため、従来法と同様の緻密化
処理を行うことができる。
Further, in order to further improve physical property values, densification treatment similar to the conventional method can be performed.

この発明で製造される¥コンポジットの組織は、従来法
で炭素粉末をマトリックス前駆体樹脂に添加して製造さ
れる¥コンポジットに比較して均一であり、かつ高密度
・高強度を発揮させることができる。
The structure of the composite produced by this invention is more uniform than that of the composite produced by adding carbon powder to the matrix precursor resin by the conventional method, and it can exhibit high density and high strength. can.

〔実施例〕〔Example〕

この発明を以下実施例について具体的に説明する。 This invention will be specifically described below with reference to Examples.

実施例1゜ PAN系炭素繊維(東邦ベスロンlIIl製高強度グレ
ード)直径アミ箇、繊維長6■を40重量%。
Example 1 40% by weight of PAN-based carbon fiber (high strength grade manufactured by Toho Veslon II) with a diameter of 6 mm and a fiber length of 6 cm.

人造黒鉛粉末、平均粒径12μ園を20重量%、及びフ
ェノール樹脂粉末(カネボウm製、ベルバールS890
)を40重量%を湿式抄紙法にて混抄紙とし、100℃
のドライヤー中で30分乾燥してブリブレーグとした。
Artificial graphite powder, 20% by weight of average particle size 12μ, and phenolic resin powder (manufactured by Kanebo M, Bellbar S890)
) was mixed into paper using a wet paper-making method and heated at 100°C.
It was dried in a dryer for 30 minutes to form a bribregu.

このプリプレーグの厚さは0.445m、秤量140 
g / rtlであった。
The thickness of this prepreg is 0.445m, and the weight is 140
g/rtl.

このプリプレーグを120X120■に切断し、30枚
積層して160℃に加熱した金型中に250kg/dの
圧力で成形し、成形体を得、さらに200℃のオーブン
中に24時間放置し後硬化した。次にこの成形体をN2
雰囲気中、20℃/hrで1000℃まで昇温し、その
温度で2時間キープして炭素化焼成し¥コンポジットを
得た。こうして得られた¥コンポジットの物性を表−2
にした。
This prepreg was cut into 120 x 120 square pieces, 30 sheets were laminated and molded at a pressure of 250 kg/d in a mold heated to 160°C to obtain a molded product, which was then left in an oven at 200°C for 24 hours to post-cure. did. Next, this molded body was
The temperature was raised to 1000° C. at a rate of 20° C./hr in an atmosphere, and the temperature was kept at that temperature for 2 hours for carbonization and firing to obtain a composite. Table 2 shows the physical properties of the composite thus obtained.
I made it.

比較例1 実施例1と同様のPAN系炭素繊維のみで湿式抄紙し、
厚さ0.42膿、秤量60 g / mの抄紙を得た。
Comparative Example 1 Wet paper was made using only the same PAN-based carbon fiber as in Example 1,
A paper sheet with a thickness of 0.42 mm and a basis weight of 60 g/m was obtained.

この抄紙に実施例1と同様の人造黒鉛粉末とフェノール
樹脂粉末を重量比l:2で混合し。
The same artificial graphite powder and phenol resin powder as in Example 1 were mixed into this paper at a weight ratio of 1:2.

さらにN−メチル・2・ピロリドンを溶剤としてマトリ
ックス前駆体樹脂混合液とし塗布した後。
Further, a matrix precursor resin mixture solution was coated using N-methyl-2-pyrrolidone as a solvent.

実施例1と同様の配合比となるよう過剰マトリックス前
駆体樹脂混合液をローラーを通し除去した。
Excess matrix precursor resin mixture was removed by passing through a roller so as to obtain the same blending ratio as in Example 1.

そしてマトリックス前駆体が含浸された炭素繊維抄紙を
100℃のドライヤー中、30分放置し。
Then, the carbon fiber paper impregnated with the matrix precursor was left in a dryer at 100° C. for 30 minutes.

ブリプレーグとし、後に実施例1と同様の行程を経て¥
コンポジットを得た。
It was made into Buri Plague, and then subjected to the same process as in Example 1.
I got a composite.

こうして得られた¥コンポジットの物性を表−2に併せ
示した。
The physical properties of the composite thus obtained are also shown in Table 2.

実施例2 ピッチ系炭素繊維(大日本インキ化学■製汎用グレード
)直径13ミ腫、繊維長6臆を30重量%、ノボロイド
繊維(日本カイノール■製)直径14μ園、繊維長3膳
を10重量%、カーボンブラック平均粒径15ミmを2
5重量%、及びバルクメソフェーズピッチ・軟化点18
5℃、平均粒径44ミーを35重量%を湿式抄紙法にて
混抄紙とし、lOO℃のドライヤー中に30分間放置し
Example 2 Pitch-based carbon fiber (manufactured by Dainippon Ink Chemical ■, general-purpose grade) with a diameter of 13 mm and fiber length of 6 mm, 30% by weight, novoloid fiber (manufactured by Nippon Kynor ■) with a diameter of 14 μm, and 3 fiber lengths of 30% by weight %, carbon black average particle size 15 mm 2
5% by weight, and bulk mesophase pitch/softening point 18
At 5°C, 35% by weight of the average particle size of 44 mm was mixed into a paper using a wet paper making method, and the paper was left in a dryer at 100°C for 30 minutes.

ブリプレーグを得た。このブリブレーグの厚さは0.4
8−.秤量165g/耐であった。このブリブレーグを
120X120■に切断し30枚積層し、180℃に加
熱した金型中に40kg/cdの圧力で成形して成形体
を得た。この成形体をブリーズコークス中に埋め込み1
5℃/hrで1000℃まで昇温し、その温度で2時間
キープして炭素化焼成し¥コンポジットを得た。こうし
て得られた¥コンポジットの物性を表−3に示した。
Obtained Bryplague. The thickness of this bribrae leg is 0.4
8-. The weight was 165 g/durability. This Bribrag was cut into 120×120 square pieces, 30 pieces were laminated, and molded at a pressure of 40 kg/cd in a mold heated to 180° C. to obtain a molded body. Embed this molded body in breeze coke 1
The temperature was raised to 1000°C at a rate of 5°C/hr, and the temperature was maintained for 2 hours for carbonization and firing to obtain a composite. The physical properties of the composite thus obtained are shown in Table 3.

比較例2 実施例2と同様のピッチ系炭素繊維とノボロイド繊維を
湿式抄紙し、厚さ0.43閣、秤fi65g / nf
の混抄紙を得た。この混抄紙を120X12G論に切断
した。一方実施例2と同様のカーボンブラックとバルク
メソフェーズピッチを重量比5ニアとなるようボールミ
ルにて混合し、この混合粉末を実施例2と同様の配合比
となるよう混抄紙の層間へサンドイッチ状に充てんし、
後に実施例2と同様の行程を得て¥コンポジットを得た
。こうして得られた¥コンポジットは一部剥離が生じて
いた。この¥コンポジットの物性を表−3に併せ示した
Comparative Example 2 Wet paper was made from the same pitch-based carbon fiber and novoloid fiber as in Example 2, with a thickness of 0.43 mm and a scale fi of 65 g/nf.
A mixed paper was obtained. This mixed paper was cut into 120×12G pieces. On the other hand, the same carbon black and bulk mesophase pitch as in Example 2 were mixed in a ball mill so that the weight ratio was 5 nia, and this mixed powder was sandwiched between the layers of mixed paper so that the mixture ratio was the same as in Example 2. Fill it up,
Thereafter, the same process as in Example 2 was carried out to obtain a composite. The composite thus obtained had some peeling. The physical properties of this composite are shown in Table 3.

表         2 実施例 l  比較例 I 嵩 比 重 1.45 i 1.28 1気孔率 (%) +  14.0 1 22.6 1
1曲げ強度(kg/aJ)l  1450 1 820
  1表         a 1       1実施例 21比較例 211嵩 比
 重 1.3211.18 J1気孔率 (%)1 1
6.8 1 28.0 11曲げ強度(kg/cd月 
780  1420  1(発明の効果) 表−2及び表−3の結果から明らかなように、この発明
の製造方法で得られる¥コンポジットは。
Table 2 Example l Comparative example I Bulk Specific gravity 1.45 i 1.28 1 Porosity (%) + 14.0 1 22.6 1
1 Bending strength (kg/aJ) l 1450 1 820
1 Table a 1 1 Example 21 Comparative example 211 Bulk Specific gravity 1.3211.18 J1 Porosity (%) 1 1
6.8 1 28.0 11 Bending strength (kg/cd month)
780 1420 1 (Effects of the Invention) As is clear from the results in Tables 2 and 3, the ¥ composite obtained by the manufacturing method of this invention is.

従来法に比較して高密度・高強度の¥コンポジットとな
り、後の緻密化工程を短縮し、安価に短期間に高品位の
¥コンポジットを製造することが可能になった。
Compared to the conventional method, the resulting composite has higher density and strength, and the subsequent densification process is shortened, making it possible to produce high-quality composites at low cost and in a short period of time.

Claims (1)

【特許請求の範囲】 1 短く切断された炭素系繊維と炭素質粉末及びマトリ
ックス前駆体粉末とを用い湿式抄紙法にて混抄紙を得、
次いで該混抄紙を積層し、加熱・加圧成形の後、炭素化
焼成することで得られる炭素/炭素複合材料の製造方法
。 2 炭素系繊維がPAN系、ピッチ系、レーヨン系など
いずれの炭素系繊維であってもよくまたは/及び炭素化
することで強靭な炭素繊維になりうる有機繊維であるこ
とを特徴とする請求項1記載の炭素/炭素複合材料の製
造方法。 3 炭素系繊維の直径が5〜20μm、繊維長が0.3
〜20mmであることを特徴とする請求項2記載の炭素
/炭素複合材料の製造方法。 4 炭素質粉末が炭素残分90%以上であり、かつその
粒径が0.1−50μmであることを特徴とする請求項
1記載の炭素/炭素複合材料の製造方法。 5 マトリックス前駆体粉末が粉末フェノール樹脂また
は粉末ピッチであることを特徴とする請求項1記載の炭
素/炭素複合材料の製造方法。
[Claims] 1. A mixed paper is obtained by a wet papermaking method using carbon fibers cut into short lengths, carbonaceous powder, and matrix precursor powder,
A method for producing a carbon/carbon composite material obtained by laminating the mixed paper, heating and press forming, and then carbonizing and firing. 2. A claim characterized in that the carbon-based fibers may be any carbon-based fibers such as PAN-based, pitch-based, rayon-based, etc., and/or are organic fibers that can be made into strong carbon fibers by carbonization. 1. The method for producing a carbon/carbon composite material according to 1. 3 The diameter of the carbon fiber is 5 to 20 μm, and the fiber length is 0.3
3. The method for producing a carbon/carbon composite material according to claim 2, wherein the thickness is 20 mm. 4. The method for producing a carbon/carbon composite material according to claim 1, wherein the carbonaceous powder has a carbon residue of 90% or more and a particle size of 0.1 to 50 μm. 5. The method for producing a carbon/carbon composite material according to claim 1, wherein the matrix precursor powder is a powdered phenolic resin or a powdered pitch.
JP1289723A 1989-11-07 1989-11-07 Production of carbon/carbon composite material Pending JPH03150266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1289723A JPH03150266A (en) 1989-11-07 1989-11-07 Production of carbon/carbon composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1289723A JPH03150266A (en) 1989-11-07 1989-11-07 Production of carbon/carbon composite material

Publications (1)

Publication Number Publication Date
JPH03150266A true JPH03150266A (en) 1991-06-26

Family

ID=17746921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1289723A Pending JPH03150266A (en) 1989-11-07 1989-11-07 Production of carbon/carbon composite material

Country Status (1)

Country Link
JP (1) JPH03150266A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330915A (en) * 1992-05-26 1993-12-14 Yazaki Corp Production of carbon/carbon composite material
EP0603765A1 (en) * 1992-12-19 1994-06-29 Maruzen Petrochemical Co., Ltd. Process for the manufacture of preformed material for making carbon composite
US5753356A (en) * 1993-08-04 1998-05-19 Borg-Warner Automotive, Inc. Friction lining material comprising less fibrillated aramid fibers and synthetic graphite
US5789065A (en) * 1996-10-11 1998-08-04 Kimberly-Clark Worldwide, Inc. Laminated fabric having cross-directional elasticity and method for producing same
US5856244A (en) * 1993-08-04 1999-01-05 Borg-Warner Automotive, Inc. Carbon deposit friction lining material
US5858883A (en) * 1993-08-04 1999-01-12 Borg-Warner Automotive, Inc. Fibrous lining material comprising a primary layer having less fibrillated aramid fibers and synthetic graphite and a secondary layer comprising carbon particles
US6001750A (en) * 1993-08-04 1999-12-14 Borg-Warner Automotive, Inc. Fibrous lining material comprising a primary layer having less fibrillated aramid fibers, carbon fibers, carbon particles and a secondary layer comprising carbon particles
US6130176A (en) * 1993-08-04 2000-10-10 Borg-Warner Inc. Fibrous base material for a friction lining material comprising less fibrillated aramid fibers and carbon fibers
EP1369528A1 (en) * 2002-04-12 2003-12-10 Sgl Carbon Ag Carbon fiber electrode substrate for electrochemical cells
EP1440955A2 (en) 2003-01-24 2004-07-28 Eagle Industry Co., Ltd. Sliding element for seals and their process of manufacturing
US20100307163A1 (en) * 2008-01-28 2010-12-09 Beard John W Fiber-based ablative and high temperature pre-preg material
JP2014105148A (en) * 2012-11-29 2014-06-09 Cfc Design Inc Intermediate material for carbon fiber-reinforced carbon composite material
JP2017008272A (en) * 2015-06-26 2017-01-12 株式会社Cfcデザイン High functional carbon/carbon composite having high carbon fiber contribution ratio

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05330915A (en) * 1992-05-26 1993-12-14 Yazaki Corp Production of carbon/carbon composite material
EP0603765A1 (en) * 1992-12-19 1994-06-29 Maruzen Petrochemical Co., Ltd. Process for the manufacture of preformed material for making carbon composite
US6130176A (en) * 1993-08-04 2000-10-10 Borg-Warner Inc. Fibrous base material for a friction lining material comprising less fibrillated aramid fibers and carbon fibers
US5856244A (en) * 1993-08-04 1999-01-05 Borg-Warner Automotive, Inc. Carbon deposit friction lining material
US5858883A (en) * 1993-08-04 1999-01-12 Borg-Warner Automotive, Inc. Fibrous lining material comprising a primary layer having less fibrillated aramid fibers and synthetic graphite and a secondary layer comprising carbon particles
US5958507A (en) * 1993-08-04 1999-09-28 Borg-Warner Automotive, Inc. Carbon deposit friction lining material
US6001750A (en) * 1993-08-04 1999-12-14 Borg-Warner Automotive, Inc. Fibrous lining material comprising a primary layer having less fibrillated aramid fibers, carbon fibers, carbon particles and a secondary layer comprising carbon particles
US5753356A (en) * 1993-08-04 1998-05-19 Borg-Warner Automotive, Inc. Friction lining material comprising less fibrillated aramid fibers and synthetic graphite
US5789065A (en) * 1996-10-11 1998-08-04 Kimberly-Clark Worldwide, Inc. Laminated fabric having cross-directional elasticity and method for producing same
EP1369528A1 (en) * 2002-04-12 2003-12-10 Sgl Carbon Ag Carbon fiber electrode substrate for electrochemical cells
JP2004031326A (en) * 2002-04-12 2004-01-29 Sgl Carbon Ag Carbon fiber electrode substrate for electrochemical cell
US7144476B2 (en) 2002-04-12 2006-12-05 Sgl Carbon Ag Carbon fiber electrode substrate for electrochemical cells
EP1440955A2 (en) 2003-01-24 2004-07-28 Eagle Industry Co., Ltd. Sliding element for seals and their process of manufacturing
EP1440955A3 (en) * 2003-01-24 2007-06-20 Eagle Industry Co., Ltd. Sliding element for seals and their process of manufacturing
US20100307163A1 (en) * 2008-01-28 2010-12-09 Beard John W Fiber-based ablative and high temperature pre-preg material
US9045376B2 (en) * 2008-01-28 2015-06-02 John W. Beard Fiber-based ablative and high temperature pre-preg material
JP2014105148A (en) * 2012-11-29 2014-06-09 Cfc Design Inc Intermediate material for carbon fiber-reinforced carbon composite material
JP2017008272A (en) * 2015-06-26 2017-01-12 株式会社Cfcデザイン High functional carbon/carbon composite having high carbon fiber contribution ratio

Similar Documents

Publication Publication Date Title
US20060177663A1 (en) Carbon-carbon composite article manufactured with needled fibers
US5205888A (en) Process for producing carbon fiber reinforced carbon materials
US20080057303A1 (en) Method for Manufacturing Carbon Fiber Reinforced Carbon Composite Material Suitable for Semiconductor Heat Sink
US5057254A (en) Process for producing carbon/carbon composites
JPH03150266A (en) Production of carbon/carbon composite material
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP2783807B2 (en) Carbon fiber reinforced carbon composite material and method for producing the same
GB2112827A (en) Carbon fiber materials
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JPH04154663A (en) Production of carbon fiber reinforced carbon composite material
JPS62212263A (en) Manufacture of carbon-carbon fiber composite material
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3131911B2 (en) Method for producing thick porous carbon material
JPH02124766A (en) Production of carbon fiber reinforced carbonaceous material
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JP4080095B2 (en) Manufacturing method of thick porous carbon material
JPH04284363A (en) Manufacture of carbon plate
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPS60260469A (en) Manufacture of carbon material
JP3345437B2 (en) Method for producing carbon fiber reinforced carbon composite
JP3004777B2 (en) Method for producing precursor molded body for carbon fiber reinforced carbon composite material
JPS63265863A (en) Carbon fiber reinforced composite carbon material and its production
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material